Tối ưu hóa tính chất quang điện màng dẫn điện trong suốt SnO₂:Sb (ATO) loại p được chế tạo bằng phương pháp phún xạ magnetron

- Đặng Hữu Phúc
- Nguyễn Văn Duẫn
- Nguyễn Sĩ Hoài Vũ
- Lê Trấn
- Lê Văn Hiếu

Trường Đại học Khoa học Tự nhiên, ĐHQG-HCM

(Bài nhận ngày 02 tháng 12 năm 2014, nhận đăng ngày 22 tháng 06 năm 2015)

TÓM TẮT

Màng SnO₂ pha tạp Sb (ATO) được chế tạo từ bia gốm hỗn hợp (SnO₂+ Sb₂O₃) bằng phương pháp phún xạ magnetron dòng một chiều (DC) trong khí nền Ar ở áp suất 2,10⁻³ torr. Phổ nhiễu xạ tia X (XRD), hiệu ứng Hall và phổ truyền qua UV-VIS được sử dụng để khảo sát đặc trưng của màng. Nhiệt độ đế của màng được khảo sát theo hai cách, cách thứ nhất màng được ủ trong khí Ar sau khi được lắng đọng ở nhiệt độ phòng, cách thứ hai màng được lắng đọng trực tiếp theo nhiệt **Từ khóa:** Bán dẫn loại p, phún xạ, antimony.

GIỚI THIỆU

Trong những năm đầu của thế kỷ 21, các loại màng dẫn điện trong suốt(TCO) loại n như ITO[26], ZnO pha tạp kim loại nhóm III[12], SnO₂ pha tạp kim loại nhóm V[24] hoặc Flo(F)[25]đã phát triển đến đỉnh cao và đạt đến mức bão hòa với điện trở suất cỡ10⁻⁴ Ω .cm, nồng độ hạt tải âm cỡ 10²¹ cm⁻³, độ truyền qua trong vùng ánh sáng khả kiến trên 80 %. Kết quả đạt được này đã được ứng dụng vào thực tiễn như điện cực trong suốt cho pin mặt trời, các loại LED, cửa sổ điện sắc, màn hình hiển thị phẳng [2, 5]... Chính vì sự bão hòa của TCO loại n

độ đế. Kết quả cho thấy, màng ATO được tạo theo cách thứ nhất dễ dàng cho loại p hơn. Màng có tính chất điện loại p, có cấu trúc đa tinh thể bốn phương (tetragonal – tứ giác) rutile của màng SnO_2 tinh khiết, và có độ truyền qua trong vùng khả kiến trên 80 % ở nhiệt độ ủ tối ưu 500 °C. Tính chất điện của màng tốt nhất với điện trở suất, nồng độ lỗ trống và độ linh động tương ứng là $0,55 \ \Omega.cm, 1,2.10^{19} \ cm^{-3}$ và $0,54 \ cm^2 V^1 \ s^{-1}$ và phần trăm Sb_2O_3 tối ưu trong bia là 10 % wt.

cũng như công nghệ bán dẫn cần được phát triển rộng hơn trong tương lai, TCO loại p được các nhà khoa học tập trung nghiên cứu trong những năm gần đây, với hy vọng kết hợp được cả hai loại TCO nhằm tạo ra các thiết bị quang điện đa dạng hơn.

TCO loại p được quan tâm nghiên cứu trước nhất là vật liệu có cấu trúc delafositte AMO_2 hoặc AMO_2 pha tạp kim loại, nhưng những kết quả nghiên cứu về loại vật liệu chỉ đáp ứng được tính chất điện của TCO, chẳng hạn $CuY_{1-x}Ca_xO_2$ [7],CuScO₂ [8], CuCrO₂ [10], CuCr_{1-x}Mg_xO₂ [9, 10] đạt được điện trở suất nhỏ hơn 1 Ω.cm nhưng độ truyền qua trong vùng khả kiến dưới 50 %, riêng CuAlO₂ [19] có điện trở suất khoảng 1 Ω.cm nhưng độ truyền qua cũng chỉ dưới 70 % trong vùng khả kiến. Do những han chế của vật liêu delafositte, ZnO pha tap N hoặc đồng pha tap kim loại nhóm III và N đã được quan tâm nghiên cứu, nhưng kết quả không như mong muốn vì tính chất điện kém bền do tạp acceptor giảm dần theo thời gian [6, 13, 16, 20]. Một loại vật liệu triển vọng có khả năng đáp ứng được tính chất điện và quang của TCO loại p chính là SnO₂ bởi vì chúng có độ rộng vùng cấm lớn khoảng 3,6 eV, độ bền cơ, nhiệt và hóa cao. Hơn nữa SnO₂ pha tạp các kim loại nhóm III dễ hình thành loại p do Sn có hóa trị IV.

Những năm gần đây, màng SnO₂ loại p pha tạp các kim loại nhóm III bước đầu được một số tác giả nghiên cứu như SnO₂ pha tạp Al của Bon Heun Koo [21], SnO₂ pha tạp Ga của Hee Young Lee [22] và Zhenguo Ji [14], SnO₂ pha tạp In của tác giả Zhenguo Ji [11], hay SnO₂ pha tạp Sb của J. Ni, X. Zhao [15]. Ngoài ra SnO₂ còn được pha tạp kim loại nhóm II như Zn của Jia Miao Ni [23], và đồng pha tạp 2 kim loại In và Ga với mục đích tăng độ linh động của Zhenguo Ji [17]. Đại đa số các công trình sử dụng phương pháp chế tạo là phún xạ RF [23], chỉ một vài công trình sử dụng các phương pháp sol-gel [11], sraypyrolysis [17]...

Trong các công trình sử dụng phương pháp RF đã nêu trên, các thông số chế tạo màng như công suất phún xạ, áp suất phún xạ, đặc biệt nhiệt độ ủ màng đã được khảo sát nhưng nhiệt độ ủ màng, thời gian ủ màng và đặc biệt nhiệt độ áp trực tiếp trên đế trong quá trình lắng đọng rất khác nhau ở các công trình khác nhau. Vấn đề này chưa thấy công trình nào giải thích một cách rõ ràng, hơn nữa phương pháp phún xạ magnetron DC chưa được công trình nào nghiên cứu. Vì vậy, trong công trình này chúng tôi nghiên cứu tính chất quang điện, cấu trúc tinh thể của màng SnO_2 pha tạp antimony (Sb) được lắng đọng trên đế thạch anh bằng phương pháp phún xạ magnetron DC từ bia gốm hỗn hợp SnO_2 và Sb_2O_3 . Các thông số cần được khảo sát như nhiệt độ đế trực tiếp trong quá trình chế tạo, nhiệt độ ủ màng và phần trăm pha tạp Sb_2O_3 trong bia.

THỰC NGHIỆM

Màng SnO₂:Sb (ATO) được chế tạo bằng phương pháp phún xạ magnetron dc từ bia gốm hỗn hợp (SnO₂ và Sb₂O₃), với phần trăm khối lượng (% wt) Sb₂O₃ thay đổi từ 0 % đến 15 %, trong hệ tạo màng Univex 450. Đế được làm sạch bằng dung dịch NaOH 10 % và acetone để loại bỏ chất bẩn, rồi được rửa bằng nước cất và được sấy khô trước khi được đưa vào buồng chân không. Trước khi tiến hành phún xạ tạo màng, bia vật liệu được tẩy bề mặt bằng phóng điện plasma trong môi trường khí Argon ở áp suất khoảng 15 phút. Áp suất khí nền ban đầu đạt 10⁻⁵ torr, áp suất làm việc 10⁻³ torr, công suất phún xạ là 15 W và khoảng cách giữa bia và đế 7 cm.

Quá trình tạo màng ATO được chia thành hai quy trình: Quá trình đầu, màng ATO được lắng đọng trực tiếp với nhiệt độ đế khác nhau. Quá trình thứ hai, màng ATO được lắng đọng ở nhiệt độ phòng sau đó được ủ trong môi trường Ar theo nhiệt độ đế.

Độ dày màng được xác định bằng phần mềm Scout thông qua phổ truyền qua UV-VIS. Cấu trúc tinh thể của màng được xác định bằng phương pháp nhiễu xạ tia X trên máy D8– ADVANCE. Phổ truyền qua trong vùng từ 200÷1100 nm được đo bằng máy UV-Vis Jasco V-530. Tính chất điện được xác định bằng phép đo Hall trên máy đo HMS3000.

KẾT QUẢ VÀ BÀN LUẬN

Khảo sát cấu trúc màng ATO

Hình 1A và1B biểu diễn ảnh nhiễu xạ tia X của màng SnO₂ và màng SnO₂ pha tạp Sb (ATO) được lắng đọng trên để thạch anh theo nhiệt độ đế. Trong đó, tất cả các màng được áp nhiệt độ trực tiếp trong quá trình chế tạo, riêng màng f được lắng đọng ở nhiệt độ 500 °C sau đó được ủ lên 600 °C, vì tốc độ bay hơi của vật liệu lắng đọng trên để lớn hơn tốc độ ngưng tụ của chúng ở nhiệt độ để trên 500 °C, nên màng không thể hình thành được. Hình 1A cho thấy màng vô định hình ở nhiệt độ phòng, và bắt đầu tinh thể ở nhiệt độ đế 200 °C trở lên với cấu trúc tứ giác rutile của SnO₂ (JCPDS No. 41-14445), đặc biệt màng tinh thể cao ở nhiệt độ đế 400 °C trở lên với mặt tinh thể ưu tiên là (110) và mặt này phát triển cao nhất khi màng được ủ từ 500 °C lên 600 °C. Trong khi đó, Hình 1B cho thấy chiều hướng phát triển tinh thể của màng ATO tương tự màng SnO₂, nhưng có điểm khác biệt là cường độ nhiễu

xạ tia X của các màng SnO_2 pha tạp Sb luôn luôn thấp hơn màng không pha tạp, và ảnh nhiễu xạ tia X cũng cho thấy không tồn tại đỉnh tạp Sb hoặc các oxít của chúng. Rõ ràng Sb có chèn vào mạng SnO₂, thể hiện rõ khi màng cho tính chất bán dẫn loại p ở nhiệt độ đế 500 °C, đặc biệt khi màng được ủ từ 500 °C lên 600 °C, nồng độ lỗ trống của màng tăng lên và ảnh nhiễu xạ tia X (Hình 1B) cho thấy mặt (110) của SnO₂ biến mất, thay vào đó có sự xuất hiện của hai mặt (101) và ($\overline{2}$ 30) của Sn₂O₃ và các mặt (101) (200) (211) của SnO₂.

Từ kết quả trên rút ra rằng: màng ATO có thể là bán dẫn loại p khi chúng được ủ sau khi được chế tạo. Chính vì vậy để tránh vật liệu bị bay hơi ngược xảy ra trên đế khi màng được lắng đọng ở nhiệt độ cao, màng có thể được lắng đọng ở nhiệt độ phòng sau đó được ủ theo nhiệt độ.

Hình 2. A) Phổ nhiễu xạ tia X của màng SnO₂được ủ theo nhiệt độ trong khí Ar sau khi được lắng đọng ở nhiệt độ phòng.

Hình 2A cho thấy màng SnO₂ có cấu trúc tứ giác rutile, đa tinh thể với các mặt phát triển là (110), (101) và (211) khi nhiệt độ ủ dưới 550 °C, ở nhiệt độ ủ 550 °C pha tinh thể Sn₂O₃ xuất hiện do SnO_2 phân ly tạo thành đồng thời tạo ra khuyết Oxy, với các mặt ưu tiên (110) và $(\overline{2}30)$ và mặt $(\overline{2}30)$ chuyển sang mặt ưu tiên (030) khi màng được ủ ở 600 °C và trên nhiệt độ này, pha Sn₂O₃ có khả năng bị oxy hóa gần như hoàn toàn thành SnO₂ do khí Oxy nhã ra từ thành buồng. Sự xuất hiện pha Sn₂O₃ đóng góp hạt tải dương cho màng do sự thay thế vị trí Sn⁴⁺ bởi Sn³⁺ tạo ra mức acceptor trong mạng, trong khi đó khuyết Oxy dễ bị lắp đầy bởi Oxy của khí nền ở nhiệt độ cao. Vì vậy hạt tải dương do Sn³⁺ đóng góp vào màng tạo ra bán dẫn loại p với điện trở suất của chúng rất cao 278 Ω.cm và 153 Ω.cm tương ứng với nhiệt đô ủ 550 °C và 600 °C và nồng đô hạt tải dương cỡ 1016 cm-3 ở những nhiệt độ này (Bång 2).

Hình 2. B) Phổ nhiễu xạ tia X của màng ATO được ủ theo nhiệt độ trong khí Ar sau khi được lắng đọng ở nhiệt độ phòng.

Hình 2B cho thấy cường độ nhiễu xạ của tất cả các đỉnh phổ của màng ATO luôn thấp hơn so với màng SnO₂ được chế tạo trong cùng điều kiện, điều này cho thấy Sb có chèn vào mạng SnO₂, và kết quả rõ nhất khi nhiệt độ ủ đạt 500 °C vì lúc này số hạt tải dương chiếm đại đa số, màng cho tính chất điện loại p với số hạt tải dương cỡ 1017 cm-3 (Bảng 2). Sự xuất hiện của pha Sn₂O₃ ở nhiệt độ này cho thấy khi Sb chèn vào mạng đáng kể, làm giải phóng năng lượng góp phần làm phân ly SnO₂ thành Sn₂O₃, điều này không thấy ở màng SnO₂ được chế tạo trong cùng điều kiện, năng lượng giải phóng từ sự thay thế Sb vào vị trí Sn cũng góp phần làm oxy hóa Sn₂O₃ thành SnO₂ đối với các màng được ủ ở 550 °C và 600 °C. Màng ATO cho điện trở suất thấp nhất ở nhiệt độ ủ 550 °C (Bảng 2), có chứa pha tinh thể Sn₂O₃, nhưng để khẳng định hơn nữa sự đóng góp của hat tải dương của Sn³⁺ có đáng kể hay không, cần tăng thời gian ủ của các màng ATO loại p có và không có pha tinh thể Sn₂O₃ từ 1 giờ lên 2 giờ.

Hình 3. A) Phổ nhiễu xạ tia X của màng ATO ủ trong 1 giờ theo nhiệt độ.

ủ trong 2 giờ theo nhiệt độ.

Khi màng được ủ trong 2 giờ, Sb tiếp tục thay thế Sn trong mạng SnO_2 dẫn đến cường độ nhiễu xạ tia X của màng giảm chút ít so với cường độ của màng được ủ trong 1 giờ (Hình 3A và 3B), đồng thời nhiệt tỏa ra góp thêm năng lượng cho màng. Đó là lý do pha Sn_2O_3 được chuyển thành SnO_2 ở nhiệt độ ủ 500 °C do oxy hóa, pha Sn_2O_3 xuất hiện ở nhiệt độ ủ 600 °C do SnO_2 phân ly, và pha Sn_2O_3 phát triển tốt nhất ở nhiệt độ ủ 550 °C với 2 mặt ưu tiên (030) và (101) có cường độ cao hơn so với một mặt (030) của màng được ủ trong 1 giờ. Tuy nhiên, điều khác biệt lớn là điện trở suất tăng chút ít khi pha Sn₂O₃ trong màng ATO phát triển tốt hơn ở nhiệt độ ủ 550 °C trong 2 giờ so với 1 giờ. Điều này có thể kết luận rằng vai trò dẫn điện loại p của pha Sn₂O₃ không đáng kể và màng có điện trở suất nhỏ nhất khi được lắng đọng từ bia ATO chứa 10 % wt Sb₂O₃, đó là do số hạt tải tăng lên từ sự thay thế Sn⁴⁺ bởi Sb³⁺. Vấn đề còn lại cần khảo sát để tìm ra phần trăm tạp Sb₂O₃ tối ưu trong bia sao cho Sb thay thế Sn trong màng ATO nhiều nhất.

Hình 4. Phổ nhiễu xạ tia X của màng ATO được khảo sát theo % wt Sb_2O_3 trong bia ở nhiệt độ ủ 500 ^{0}C trong 2 giờ

Hình 4 trình bày phổ nhiễu xạ tia X của các màng được lắng đọng từ bia ATO chứa phần trăm khối lượng Sb₂O₃ khác nhau ở nhiệt độ ủ 500 °C trong 2 giờ. Kết quả cho thấy pha Sn₂O₃ không tồn tại đối với các màng được lắng đọng từ bia ATO chứa 5 và 10 % wt Sb₂O₃. Đó là do Sb³⁺ thay thế Sn⁴⁺ đủ nhiều nên năng lượng tỏa đủ lớn dẫn đến pha Sn_2O_3 vừa xuất hiện do SnO_2 bị phân ly thì bị oxy hóa ngay. Ngược lại, màng được tạo từ bia ATO chứa 15 % wt Sb₂O₃ có số hạt tải dương tăng không đáng kể do bị bù trừ bớt bởi hạt tải âm Sb³⁺ dư thừa nằm xen kẻ trong mạng đồng thời năng lượng tỏa ra đủ dư để phân ly SnO₂ thành Sn₂O₃ tương ứng với mặt (211). Vậy điều kiện tốt nhất để màng dẫn điện loại p khi được lắng đọng từ bia ATO chứa 10 % wt Sb₂O₃ ở nhiệt độ ủ 500 °C.

Tính chất điện của màng ATO

Kết quả (Bảng 1) cho thấy tất cả màng SnO₂ được lắng đọng trực tiếp từ nhiệt độ phòng (tp) lên 500 °C đều có tính chất điện loại n, kể cả mẫu được ủ lên 600 °C sau khi được tạo ở 500 °C. Trong khi đó, màng được tạo từ bia ATO chứa 15 % wt Sb₂O₃ cho kết quả dẫn điện loại p khi nhiệt độ để đạt 500 °C, rõ ràng Sb bắt đầu thay thế Sn trong mạng SnO₂ ở nhiệt độ này, điều này đã đề cập ở phần "Khảo sát cấu trúc màng ATO", và nồng đô lỗ trống tăng từ bậc 10¹⁵ cm⁻³ lên bậc 10¹⁶ cm⁻³, đồng thời độ linh động giảm 6 lần khi màng được lắng đong ở nhiệt độ đế 500 °C rồi ủ lên 600 °C trong khí Ar trong 1 giờ, điều này khẳng định Sb thay thế Sn đáng kể khi màng được ủ nhiệt. Chính vì vậy tính chất điện của màng cần được khảo sát theo nhiệt độ ủ sau khi màng được tạo ở nhiệt độ phòng.

Bảng 1. Kết quả đo Hall của màng SnO₂ và màng ATO được làm từ bia chứa 15 % Sb₂O₃ được lắng đọng theo nhiệt độ đế.

		Màng SnO ₂				Màng ATO			
Tên mẫu	Nhiệt độ đế (°C)	Điện trở suất (Ω.cm)	Độ linh động (cm ² V ¹ s ⁻¹)	Nồng độ hạt tải (cm ⁻³)	Loại hạt tải	Điện trở suất (Ω.cm)	Độ linh động (cm ² V ¹ s ⁻¹)	Nồng độ hạt tải (cm ⁻³)	Loại hạt tải
а	tp	8				8			
b	200	1,0	1,391	$-4,5.10^{18}$	n	43,8	0,02	$-7,1.10^{18}$	n
с	300	3,5	0,519	$-3,4.10^{18}$	n	1,2	0,44	$-1,2.10^{19}$	n
d	400	0,5	2,217	$-5,2.10^{18}$	n	1,7	2,79	$-1,3.10^{18}$	n
e	500	0,05	3,9	-3,6.10 ¹⁹	n	43,6	19,3	7,4.10 ¹⁵	р
f	500 ů 600	2,81	1,27	-1,75.10 ¹⁸	n	26,1	3,49	6,9.10 ¹⁶	р

		Màng SnO ₂				Màng ATO			
Tên mẫu	Nhiệt độ đế (°C)	Điện trở suất (Ω.cm)	Độ linh động (cm ² V ¹ s ⁻¹)	Nồng độ hạt tải (cm ⁻³)	Loại hạt tải	Điện trở suất (Ω.cm)	Độ linh động (cm ² V ¹ s ⁻¹)	Nồng độ hạt tải (cm ⁻³)	Loại hạt tải
a	tp	8				8			
b	200	17,11	2,51	-1,5.10 ¹⁷	n	4,5	0,65	$-2,1.10^{18}$	n
с	300	8				12,8	2,61	-1,8.10 ¹⁷	n
d	400	8				71,8	0,81	1,1.10 ¹⁷	р
e	500	8				30,6	1,72	1,2.10 ¹⁷	р
f	550	278	1,59	1,4.10 ¹⁶	р	0,83	1,73	4,4.10 ¹⁸	р
g	600	153	3,1	1,3.10 ¹⁶	р	4,2	2,9	5,1.10 ¹⁷	р
h	650	210	5,89	5,1.10 ¹⁵	р	12,8	4,1	1,2.10 ¹⁷	р

Bảng 2. Kết quả đo Hall của màng SnO₂ và ATO với 15 % Sb₂O₃ được lắng đọng ở nhiệt độ phòng đó ủ theo nhiệt độ trong môi trường Ar.

Theo kết quả biểu diễn trong Bảng 2, màng SnO₂ không dẫn điện ở nhiệt độ phòng và trở nên dẫn điện loại n khi được ủ ở 200 °C, màng ATO cũng cho kết quả tương tự nhưng điện trở suất nhỏ hơn rất nhiều so với màng SnO₂ ở nhiệt độ ủ 200 °C. Nguyên nhân này do sư tồn tại acceptor Sn²⁺ đóng góp hạt tải dương và khuyết Oxy đóng góp hạt tải âm bù trừ nhau khi màng được lắng đọng ở nhiệt độ phòng, và màng trở nên dẫn điện loại n khi màng được ủ lên 200 °C do aceptor Sn²⁺ chuyển thành Sn⁴⁺ cho cả SnO₂ và ATO, ngoài ra còn có sự phân ly của pha vô định hình Sb_2O_3 thành Sb góp phần cho màng ATO dẫn điện loại n tốt hơn màng SnO₂. Kết quả Bảng 2 cũng cho thấy màng SnO2 không dẫn điện khi được ủ từ 300 °C đến 500 °C đó là do Sn²⁺ chuyển hoàn toàn thành Sn⁴⁺ cùng với sự lấp đầy khuyết Oxy từ Oxy của khí nền, trong khi đó màng ATO dẫn điện và có tính chất loại nở nhiệt độ ủ 300 °C và bắt đầu có tính chất điện loại p ở nhiệt độ 400 °C đó là do Sb chèn vào mạng SnO₂ với số lượng đủ lớn. Ở nhiệt độ ủ 550 °C trở lên màng SnO₂ dẫn điện loại p do sự phân ly của SnO₂ thành Sn₂O₃ nhưng điện trở suất cao hơn rất nhiều so với màng ATO được chế tạo trong cùng điều kiện, điều này chứng tỏ vai trò dẫn điện của hat tải dương chủ yếu là do Sb³⁺ thay thế Sn⁴⁺ chứ không do Sn³⁺ thay thế Sn⁴⁺ quyết định. Thật vậy, ở nhiệt độ trên 550 °C, nồng độ lỗ trống của màng SnO₂ thuần giảm dần do Sn₂O₃ bị oxy hóa tăng dần, đồng thời độ linh động tăng dần lên theo nhiệt độ ủ, điều này trái ngược hoàn toàn với kết quả của màng ATO, ngoại trừ nhiệt độ ủ 650 °C cả hai màng đều có số lỗ trống giảm. Kết quả cho thấy màng có điện trở suất thấp nhất tương ứng với bia ATO chứa 15 % wt Sb₂O₃ ở nhiệt độ ủ tốt nhất là 550 °C, nhưng để khẳng định hơn nữa sự đóng góp của hạt tải dương của Sn³⁺ có đáng kể hay không, cần tăng thời gian ủ của các màng ATO loại p có và không có pha tinh thể Sn_2O_3 từ 1 giờ lên 2 giờ.

		Màn	g ATO ů trong	1 giờ	Màng ATO ủ trong 2 giờ					
Tên	Nhiệt	Điện trở	Độ	Nồng độ	Điện trở	Độ	Nồng độ	Loại		
mẫu	độ đế	suất	linh động	hạt tải	suất	linh động	hạt tải	hạt		
	$(^{\circ}C)$	$(\Omega.cm)$	$(cm^2V^1s^{-1})$	(cm^{-3})	$(\Omega.cm)$	$(\mathrm{cm}^2 \mathrm{V}^1 \mathrm{s}^{-1})$	(cm^{-3})	tåi		
e	500	30,6	1,72	$1,2.10^{17}$	0,78	2,48	$3,2.10^{18}$	р		
f	550	0,83	1,73	4,4.10 ¹⁸	1	1,13	5,5.10 ¹⁸	р		
g	600	4,2	2,9	5,1.10 ¹⁷	2,13	1,13	2,6.10 ¹⁸	р		
h	650	12,8	4,1	1,2.10 ¹⁷	3,1	0,95	2,1.10 ¹⁸	р		

Bảng 3. Kết quả đo Hall của màng ATO được lắng đọng ở nhiệt độ phòng sau đó ủ 1 giờ và 2 giờ trong môi trường khí Ar.

Như đã đề cập ở phần "Khảo sát cấu trúc màng ATO", vai trò dẫn điện loại p của Sn³⁺ có ảnh hưởng đến tính ổn định của màng hay không cần phải được xác định rõ. Kết quả (Bảng 3) khẳng định sự đóng góp của Sn³⁺ vào vai trò dẫn điện loại p là không đáng kể thông qua số hạt tải dương của màng ATO không có pha Sn₂O₃ tăng nhiều hơn màng có pha Sn_2O_3 ở nhiệt độ ủ trong 2 giờ so với 1 giờ. Vậy nồng độ lỗ trống tăng lên từ sự thay thế Sb^{3+} vào vị trí Sn^{4+} là chủ yếu và lỗ trống do Sn^{3+} đóng góp là thiểu số. Vấn đề còn lại cần xác định %wt Sb_2O_3 trong bia sao cho khi màng được lắng đọng từ chúng có nồng độ Sb^{3+} thay thế Sn^{4+} nhiều nhất.

Bảng 4. Kết quả đo Hall của màng ATO được lắng đọng ở nhiệt độ phòng từ các bia ATO chứa % wt Sb₂O₃ (5, 10, 15 %) khác nhau sau đó ủ lên 500 °C trong khí Ar.

Tên mẫu	% wt Sb ₂ O ₃ chứa trong bia ATO	Điện trở suất (Ω.cm)	Độ linh động (cm ² V ¹ s ⁻¹)	Nồng độ hạt tải (cm ⁻³)	Loại hạt tải
a	5	36,8	0,18	9,5.10 ¹⁷	Р
b	10	0,55	0,54	1,2.10 ¹⁹	Р
с	15	0,78	2,48	3,2.10 ¹⁸	Р

Kết quả (Bảng 4) cho thấy màng có điện trở suất thấp nhất 0,55 Ω.cm với nồng độ lỗ trống cao nhất cỡ 1,2.10¹⁹ cm⁻³ tương ứng với bia ATO chứa 10 % wt Sb₂O₃. Rõ ràng số lượng Sb³⁺ thay thế Sn⁴⁺ vừa đủ sẽ cho số lỗ trống cao nhất. Còn **Tính chất quang của màng ATO** khi % wt Sb_2O_3 trong bia quá lớn, $Sb^{3+}s\tilde{e}$ không thay thế hết vào mạng tạo ra các hạt tải âm thừa bù trừ bớt các hạt tải dương nên số lỗ trống giảm xuống.

Hình 5. A) Phổ truyền qua của màng SnO₂ được chế tạo từ nhiệt độ phòng sau đó ủ trong khí Ar theo nhiệt độ.

Trang 30

Kết quả về tính chất điện ở phần "Tính chất điện của màng ATO" cho thấy màng ATO có điện trở suất tốt hơn khi chúng được lắng đọng ở nhiệt độ phòng rồi được ủ theo nhiệt độ, vì vậy đề tài này không khảo sát phổ truyền qua trong vùng bước sóng 200 ÷ 1100 nm của các màng SnO₂ và màng ATO được lắng đọng trực tiếp theo nhiệt độ đế mà chỉ khảo sát phổ truyền qua của màng SnO₂và màng ATO được ủ theo nhiệt độ trong khí Ar sau khi được lắng đọng ở nhiệt độ phòng.

Hình 5A biểu diễn phổ truyền qua trong vùng bước sóng 200 ÷ 1100 nm của các màng SnO_2 được ủ theo nhiệt độ trong khí Ar sau khi được lắng đọng ở nhiệt độ phòng. Ở nhiệt độ phòng, màng tạo được chứa pha SnO đúng như giải thích trong phần "Tính chất điện của màng ATO", nghĩa là mức acceptor Sn^{2+} là tâm sâu nên hấp thụ một phần ánh sáng khả kiến có bước sóng nhỏ hơn 450 nm như đã đề cập trong công trình [1, 18], do đó độ rộng vùng cấm của màng SnO₂và ATO bị giảm. Trong khi đó màng được ủ ở nhiệt độ đế trên 200 ⁰C, pha SnO được cung cấp năng lượng nhiệt chuyển dần thành SnO₂ vì thế độ truyền qua của màng tăng dần lên trên 80 % trong vùng khả kiến đồng thời bờ hấp thu tử ngoại dịch dần từ vùng khả kiến về vùng bước sóng ngắn hơn khi nhiệt độ ủ tăng dần đến 500 °C, còn trên 500 °C sự biến đổi này không đáng kể, nghĩa là pha SnO gần như không còn.

Trong khi đó phổ truyền qua của màng ATO trong cùng vùng bước sóng 200 ÷ 1100 nm (Hình 5B) cho thấy sự khác biệt so với phổ truyền qua của màng SnO₂ trong cùng vùng bước sóng, cụ thể độ truyền qua trung bình của màng ATO rất thấp khi nhiệt độ ủ dưới 400 °C, đó là do sự phân ly của Sb₂O₃ thành Sb, nên ánh sáng bị hấp thụ đều trong toàn vùng khả kiến, điều này hoàn toàn hợp lý với giải thích ở phần "Khảo sát cấu trúc màng ATO", và khi nhiệt độ ủ đạt 400 °C, Sb bắt đầu chèn dần vào mạng dẫn đến độ truyền qua của màng tăng lên và đạt trên 80 % khi nhiệt độ ủ đạt 500 °C.

Hình 6 biểu diễn phổ truyền qua trong vùng 200÷1100 nm của các màng ATO được lắng đọng ở nhiệt độ phòng từ các bia chứa % wt Sb_2O_3 (5, 10, 15 %) khác nhau, tất cả màng có độ dày khoảng 400 nm, được ủ ở nhiệt độ 500 °C

sau khi lắng đọng. Nhận thấy các màng có độ truyền qua trong vùng khả kiến trên 80 %, kết quả này đáp ứng được tính chất quang đối với tiêu chuẩn của màng dẫn điện trong suốt.

KÊT LUẬN

Màng ATO chế tạo được chỉ chứa pha SnO_2 đa tinh thể với cấu trúc bốn phương rutile, có tính chất điện loại p ở nhiệt độ ủ tối ưu 500 °C trong thời gian hai giờ với điện trở suất, nồng độ lỗ trống và độ linh động của hạt tải tương ứng là 0,55 Ω .cm, 1,2.10¹⁹ cm⁻³,0,54 cm²V¹s⁻¹, độ truyền qua của màng trong vùng khả kiến trên 80 %. Kết quả đạt được này tương ứng với bia ATO chứa 10 % wt Sb₂O₃.

Studying and fabricating p - type transparent conducting antimony - doped SnO₂ thin films by magnetron sputtering

- Dang Huu Phuc
- Nguyen Van Duan
- Nguyen Si Hoai Vu
- Le Van Hieu
- Le Tran

University of Science, VNU-HCM

ABSTRACT

Sb doped tin oxide films (ATO) were fabricated on Quart glasses from $(SnO_2 +$ Sb₂O₃) mixture ceramic target by direct current (DC) magnetron sputtering in Ar ambient gas at working pressure of 2.10⁻³ torr. X ray diffraction (XRD), Hall effect measurements and UV-vis spectra performed to characterize the were deposited films. The substrate temperature of films was investigated for two ways. Films were annealed in Ar ambient gas after deposited at room temperature in one way. They were deposited directly with different

Key words: p-Type, magnetron sputtering, ATO.

TÀI LIỆU THAM KHẢO

[1]. Z.M. Jarzebski, *Journal of the Electrochemical Society*, 123, 199-205 (1976).

temperatures in the other. It is found that the fabricated of ATO films in the first way was easier than the other. Deposited films showed р type electrical property, polycrystalline tetragonal rutile structure and their average transmittance was above 80 % in visible light range at the optimum annealing temperature of 500 °C. The best electrical properties of film were obtained on 10 %wt Sb₂O₃ doped SnO₂ target with its resistivity, hole concentration and Hall mobility are 0.55 Ω .cm, 1.2.10¹⁹ cm⁻³ and $0.54 \text{ cm}^2 \text{V}^1 \text{s}^{-1}$, respectively.

[2]. S.J. Laverty, H. Feng, Pmaguire, J Electrochem Soc, 144, 2165-2173 (1997).

- [3]. A.V. Tadeev, G. Delabouglise, M. Labeau, *Mater. Sci.* Eng B, 57, 76-83 (1998).
- [4]. K. Omura, P. Veluchamy, M. Tsuji, T. Nishio, D. Murojono, J. Electrochem. Soc, 146, 2113-2116 (1999).
- [5]. D.S. Ginley, C. Bright, MRS Bull, 25, 15-18 (2000).
- [6]. T.J. Coutts, D.L. Young, X. Li, Mater. Res. Soc. Symp. Proc., 199, 623 (2000)
- [7]. M. KJayaraj, A.D. Draeseke, J. Tate, A.W. Sleight, *Thin Solid Films*, 397, 244–248 (2001).
- [8]. N. Duan, A.W. Sleight, M.K. Jayaraj, J. Tate, *Appl. Phys. Lett*, 77 (2000).
- [9]. R. Nagarajan, A.D. Draeseke, A.W. Sleight, J. Tate, J. Appl. Phys., 89, 8022 (2001).
- [10]. R. Nagarajan, N. Duan, M.K. Jayaraj, J. Li, K.A. Vanaja, A. Yokochi, A. Draeseke, J. Tate, A.W. Sleight, Int. *J.Inorg. Mater*, 3, 265 (2001).
- [11]. Z. Ji, Z. He, Y. Song, K. Liu, Z. Ye, *Journal of Crystal Growth*, 282–285, 259 (2003).
- [12]. V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, P. Vilarinho, *Surface and Coatings Technology*, 659–662, 180–181 (2004).
- [13]. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, *Prog. Mat. Sci*, 293, 50 (2005).
- [14]. Y. Huang, Z. Ji, C. Chen, *Applied Surface Science*, 4819–4822, 253 (2007).
- [15]. J. Ni, X. Zhao, X. Zheng, J. Zhao, B. Liu, *Acta Materialia*, 278–285, 57 (2009).

- [16]. K. Tang, S. LGu, S.M. Zhu, J.G. Liu, H. Chen, J.D. Ye, R. Zhang, Y.D. Zheng, *Appl. Phys. Lett.*, 192106, 95 (2009).
- [17]. Q. Mao, Z. Ji, Lina, Phys. Status Solidi B, 299–302, 247 (2010).
- [18]. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S.H.K. Park, C.S. Hwang, R. Martins, *Applied Physics Letters*, 052105, 97 (2010).
- [19]. C.T. Su, H.Y. Lee, B.K. Wu, M.Y. Chern, *Journal of Crystal Growth*, 25–29, 328 (2011).
- [20]. X. Chen, Z. Zhang, B. Yao et al., *Applied Physics Letters*, 091908, 99 (2011).
- [21]. J. Ni, X. Zhao*, X. Zheng, J. Zhao, B. Liu, Received 15 June 2008, *Journal of Ceramic Processing Research*, 385-389, 13 (2012).
- [22]. F. Finanda, Damisih, H.C. Ma, H.Y. Lee, Journal of Ceramic Processing Research, 181-185, 13 (2012).
- [23]. J.M. Ni, X.J. Zhao, J. Zhao, J Inorg Organomet. Polym., 21–26, 22 (2012).
- [24]. G.W. Kim, C.H. Sung, Y.J. Seo, K.Y. Park, S.N. Heo, S.H. Lee, B.H. Koo, *Journal of Ceramic Processing Research*, 394-397, 13 (2012).
- [25]. F.M. Flores, A.G. Cervantes, K.E.N. Zepedab, J.G.Q. Galván, A. Hernández, M. Olvera, M. Meléndez-Lira, *Revista Mexicana de Fisica*, 335–338, 59 (2013).
- [26]. V.G. Kytin, V.A. Kulbachinskii, O.V. Reukova, Y.M. Galperin, T.H. Johansen, S. Diplas, A.G. Ulyashin, *Appl. Phys.* A, 957– 964, 114 (2014).