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ABSTRACT:

Orthotropic materials are particular
type of anisotropic materials; In contrast
with isotropic materials, their properties
depend on the direction in which they are
measured. Orthotropic composite
materials and their structures have been
extensively used in a wide range of
engineering applications. Studies on
their physical behaviors under in-work
loading conditions are essential. In this
present, we apply an extended meshfree
radial  point interpolation  method
(XRPIM) for analyzing crack behaviour in
2D orthotropic materials models. The
thin plate spline (TPS) radial basis

function (RBF) is used for constructing
the RPIM shape functions. Typical
advantages of using RBF are the
satisfaction of the Kronecker's delta
property and the high-order continuity.
To calculate the stress intensity factors
(SIFs), Interaction integral method with
orthotropic auxiliary fields are used.
Numerical examples are performed to
show the accuracy of the approach; the
results are compared with available
refered results. Our numerical
experiments have shown a very good
performance of the present method.
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1. INTRODUCTION

Orthotropic composite materials and their
structures are used widely in various fields in
engineering. One of the most preeminent property
of composite is the high strength to weight ratio
in comparison with conventional engineering
materials. In many cases, orthotropic composites
are fabricated in thin plate forms which are so
susceptible to fault. A typical fault in composite
structure is cracking due to inperfection in
fabrication process or hard working conditions
such as overload, fatigue, corrosion and so on.
For the reason that, crack behavior of orthotropic
materials has become an interesting study subject.

In the analytical field, there are some
important results early given by Sih et al [1],
Bowie et al [2], Tupholme et al [3], Barnet et al
[4] and Kuo and Bogy [5]. They forcused on
finding out the singular fields such as stress and
displacement at near crack tip in anisotropic
models. More recent contributions can be listed in
Nobile et al [6, 7] and Carloni et al [8, 9].

There are several numerical studies that have
performed to obtain the fracture behavior of
orthotropic materials such as the extended finite
element method (XFEM) [10, 11, 12]. In XFEM,
the finite element approximation is enriched with
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Heaviside function for crack face and appropriate
functions extracted from the analytical solutions
for a crack tip near field. Moreover, the element
free Galerkin method (EFG) [13] has been
applied for fracture analysis of composite by
Ghorashi et al [14]. In this aproach, the support
domain is modified to involve the discontinuity at
the crack face and the singularity at the crack tip.
Unlike the FEM, a set of scattered nodes is used
to model the domain in the meshfree methods.
Since no finite element mesh is required in the
approximation, meshfree methods are very
suitable for modeling crack growth problems [15,
16, 17, 18].

In this work, we present an extended
meshfree Galerkin method based on the radial
point interpolation method (XRPIM) associated
with the vector level set method for modeling the
crack problem in orthotropic materials under
static and dynamic loading conditions. To
calculate the SIFs, the dynamic form of
interaction integral formulation for homogeneous
orthotropic materials is taken. Several numerical
examples including static, dynamic SIFs
calculation are performed and investigated to
highlight the accuracy of the proposed method.

2. FRACTURE MECHANICS FOR
RTHOTROPIC MATERIALS

The linear elastic stress—strain relations can be
written as

¢=Co 1)

where ¢, € are linear stress and strain vector
respectivily and C is the fourth-order

compliance tensor, in 2D, C can be defined as:
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where E, G and v are Young’s modulus,
shear modulus and Poisson’s ratio, respectively.

For a plane stress state, with
I, J=1, 2, 6, Ccan be simplified into:

2D 3D
Cl=C; ®
For a plane strain state, C can be written as:
2D 3D 3D~3D 3D
Cij = Cij _CiS st /Css (4)

Consider an anisotropic cracked body
subjected to arbitrary forces with general
boundary conditions as shown in Fig. 1. Global

Cartesian coordinate (X,, X,), local Cartesian
coordinate (X, X,) and local polar coordinate

(r, @) defined on the crack tip are also
displayed in Fig. 1. Using equilibrium and
compatibility conditions [19], a four-order partial
differential equation with the following
characteristic equation can be obtained
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Figure 1. Orthotropic crack model

It was proved by Lekhnitskii [19] that the
roots of Eqg. (5) are always complex or purely

imaginary (S, =S, +1is,,, k=1, 2) and occur

in conjugate pairsas S;, S, and S,, S,.
According to Sih et al [1], displacement and

stress fields in the vicinity of the crack tip are

Mode I:

u, =K, ~2r/ z Re[(s,—s,)™

(S,P,+/COS@ +S,SIN® —S, P,4/COS@ + S, SiN )]
u, = K,~2r/z Re[(s, —s,)™

(5,0,1/COS @+ S, SiN @ —5,0;,/COS @ + 5, 5iN Q)]
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Mode I1:

u, = K,~2r/ z Re[(s,—s,)™
(P,/COS@ +5,SiNp — p,\/cos @ +5,Sin )]
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(7)
where p,, g, are defined by
P = Cllslf +Cp,— ClGSk
P = Cllslf +Cp,— ClGSk (8)

3. XRPIM FORMULATION FOR CRACK
PROBLEM

3.1. Meshless XRPIM discretization and vector
level set method

Base on the extrinsic enrichment technique,
the displacement approximation is rewritten in
terms of the signed distance function f and the
distance from the crack tip as follow:

u"(x, )= 400U + Y ¢ (e H(f(x))

1eW (x) leW, (x)

+ 2, 4 (0B, ()5, ©)

1eW, (x) j=1
where ¢, is the RPIM shape functions [20]

and f (x) is the signed distance from the crack

line. The jump enrichment functions H (f (x))
and the vector of branch enrichment functions
B,(x) (1=1,2,3,4)are defined respectively by
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+1 if f(x)>0

H(f(x))z{ _ (10)

-1 if f(x)<0

B(x)= Wrsin2, JreosZ,
2 2 (1)
\/Fsin gsin 0, x/Fcos%sin ®)

where r is the distance from x to the crack tip

x_. and ¢ is the angle between the tangent to

TIP

the crack line and the segment x—x_, as shown

in Fig. 2. W, denotes the set of nodes whose
support contains the point x and is bisected by the
crack line and W, is the set of nodes whose
support contains the point x and is slit by the

crack line and contains the crack tip. «,, B, are

additional  variables in the variational

formulation.
3.2. Discrete equations

Substituting the approximation (9) into the
well-known weak form for solid problem, using
the meshless procedure, a linear system of
equation can be written as

Ku=F (12)

with K being the stiffness matrix,
respectively, and F being the vector of force,
they can be defined by

- [B/DB,d0 (13)
F =[®]bdo+ [ @] fdr (14)

where @ is the vector of enriched RPIM
shape functions; the displacement gradient matrix
B must be calculated appropriately dependent
upon enriched or non-enriched nodes.

4. J-INTEGRAL FOR DYNAMIC SIFS
IMPLEMENTATION

The dynamic stress intensity factors are
important parameters, and they are used to

calculate the positive maximum hoop stress to
evaluate dynamic crack propagation properties.
The dynamic form of J-integral for orthotropic
material can be adopted [21]

3" = [(ou,-(W-K)s,)qda  (15)

VI'

where W = % o,&, Is strain energy density;
g is a weight function, changing from g =1 near
a crack-tip and q =0 at the exterior boundary of
the J domain.

In this paper, the interaction integral
technique is applied to extract SIFs. After some

mathematical ~ transformations, the  path
independent integration can be written as

M = j oY + o, —0rs,6,)q,dA  (16)

ij 1)

The stress intensity factors can then be
evaluated by solving a system of linear algebraic
equations:

M® =2d K, +d K, (17)
M® =d K, +2d K, (18)
where

C
d. =—2Im(s +s
= im (s +5,)

dlzz_ilm(i] S imss,), (19)

SlsZ

5. NUMERICAL EXAMPLES

5.1. Rectangular edge crack plate with various
of the axes of orthotropy

A rectangular orthotrpic plate with an edge
horizontal crack is considered in this example.
Several orientation of orthotropic axes are
investigated in SIFs calculation. The dimensions
and load condition are shown in Fig. 2. The
orthotropic material properties are given as
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E, =1148GPa, E, =117GPa, v, =021, and

G, = 9.66GPa . The plane stress state is assumed

in this problem.
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Figure 2. Orthotropic edge crack plate

A model with 20x 40 regular distributed
nodes is used. A coefficient defined for the
support domain o =2.2 is taken. The are five
values of orientations of the axes of orthotropy
(e =0 30", 45°, 60° and 90°) are taken in
account in the problem. The results are compared
with XFEM solution given by Asadpoure et al
[10] with 1925 nodes and FEM solution given by
Aliabadi [22]. The plot in Fig. 3 show the
comparison and it can be see that the single mode

obtained at « =0° and « =90°. In mode I, the
normalized SIF increases from o« =0" to

a =45"and then decreases t0 « =90". It is
different from mode IlI, the maximum SIF

obtained at a =30°.

Charts in Fig. 4 and Fig. 5 show the effect of the
coefficient of support domain size. It can be seen

that the values of o, from 2.0 to 2.2 give

acceptable results.

5.2. Cantilever orthotropic plate under shear
stress

In this example, a cantilever rectangular
plate made of orthotropic material with an edge
crack at left side is considered. The plate is
subjected to a shear loading at the top edge.
Dimension, load and boundary condition are

display in Fig. 6. The orthotropic material
properties are the same with the previous
example.
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Figure 3. Normalized SIFs results with several
orientations of the axes of orthotropy
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Figure 4. Normalized mode | SIFs results with
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Figure 5. Normalized mode Il SIFs results with

coefficients of support domain size o,
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The orthotropic material properties are the
same with the previous example.

There are 20x 40 regular distributed nodes are
used in this plane stress analysis. Several values
of orthotropic material axes are considered (from
-90 to 90 degree).
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Figure 6. Orthotropic edge crack plate under
shear loading
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Figure 7. Normalized SIFs results with several
orientations of the axes of orthotropy

The plots in Fig. 7 show the mixed-mode
values of stress intensity factor with respect to
various orthotropic angle from -90° to 90°. The
obtained results from the proposed XRIM
approach are compared with EFG solutions given

by Ghorashi et al [14] and FEM solutions from
Chu and Hong [23]. A very close agreement is
acquired.

5.3. Orthotropic plate with central slant crack

The last example studies a rectangular orthotropic
plate with a slanted crack at center. As shown in

Fig. 8, the dimensions parameters are
H=2w =2, 2a=2v/2, a=45". The
orthotropic material properties are given as
E, =3.5GPa, E,=12GPa, v, =0.7, and

G, =3.0GPa. The problem is performed with

30x60
compared with available analytical and numerical
solutions as shown in Table 1

nodes and mixed-mode SIFs are
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Figure 8. Orthotropic plate with central slanted
crack

Table 1. Mix-mode normalized SIFs for

plate with central slanted crack K = K / o+/7a

Method a K
K | KII

XRPIM 0.523 0.475

Sih et al [1] 0.500 0.500
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Atluri et al [24] 0.484 0.512
Kim and Paulino [25] 0.506 0.495
Ghorashi et al [14] 0.512 0.530
Asadpoure et al [12] 0.514 0.519

6. CONSLUSION

A meshless extended radial point
interpolation method (XRPIM) has been
proposed for cracks analysis in orthotropic
median under different loadings and several

material orientations. This method is convenient
in treating the Dirichlet boundary conditions
because of the RPIM shape functions satisfying
the Kronecker’s delta property. Several numerical
examples are considered with different material
models and loading conditions. The obtained
solutions show a good agreement of between the
proposed method and the references. The
presented approach has shown several advantages
and it is promising to be extended to more
complicated problems such as dynamic crack
analysis and crack propagation problems for
orthotropic materials.

Phwong phap khéng lwéi RPIM md& réng
cho bai toan nut trong vat liéu trwc hudng

e Nguyén Thanh Nha
e BUli Quéc Tinh
e Trwong Tich Thién

Trwong Dai hoc Bach khoa, PHQG-HCM

TOM TAT:

Vat liéu truec hudong la mot dang dac
biét trong nhém vaét liéu bat dang huéng.
Khéng nhw vét liéu ddng hudéng, céac
thuéc tinh co hoc cua ching phu thuéc
vao céc phuong toa do nhat dinh. Véat
liéu composite truc hudng va cac két
céu cla ching ngay nay duoc st dung
réng rai trong cac tng dung ky thuét.
Viéc nghién ctru cac tng xwr cua chung

duéi cac diéu kién tai trong lam viéc fa
rét can thiét. Trong nghién ciu nay, tac
gia ap dung phuwong phap khéng luéi mé
réng dura trén phép néi suy diém huéng
kinh (XRPIM) cho bai toan phéan tich nat
trong vat liéu composite truc hudng.
Dang ham co s¢ huong kinh (RBF) v&i
ham spline (TPS) duoc dung dé céu tao
ham dang RPIM. Cac wu diém cda ham
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co SO hwéng kinh la théa man thuéc tinh
Kronecker's delta va lién tuc bac cao. Pé
tinh toan hé sé cuong dé tng suét (SIF),
phwong phap tich phan twong tac duoc
st dung két hop véi mién phu tro truc
huwéng lan can dinh vét nit. Cac vi du sb
duoc thyc hién nhdm kiém ching sw

chinh xac cda phwong phap. Cac loi giai
ttr XRPIM dugc so sanh véi cac Ioi giai
tham khao ttr cac phwong phap khac.
Két qua so sanh cho thdy phuong phép
duoc chon phu hop déi véi bai toan da
dé céap.

Ter khoa: vat lidu truc huéng, hé sb cudong do Gng suat, phuong phap khong luéi RPIM
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