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ABSTRACT:  

Orthotropic materials are particular 
type of anisotropic materials; In contrast 
with isotropic materials, their properties 
depend on the direction in which they are 
measured. Orthotropic composite 
materials and their structures have been 
extensively used in a wide range of 
engineering applications. Studies on 
their physical behaviors under in-work 
loading conditions are essential. In this 
present, we apply an extended meshfree 
radial point interpolation method 
(XRPIM) for analyzing crack behaviour in 
2D orthotropic materials models. The 
thin plate spline (TPS) radial basis 

function (RBF) is used for constructing 
the RPIM shape functions. Typical 
advantages of using RBF are the 
satisfaction of the Kronecker’s delta 
property and the high-order continuity. 
To calculate the stress intensity factors 
(SIFs), Interaction integral method with 
orthotropic auxiliary fields are used. 
Numerical examples are performed to 
show the accuracy of the approach; the 
results are compared with available 
refered results. Our numerical 
experiments have shown a very good 
performance of the present method. 
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1 . INTRODUCTION  

 Orthotropic composite materials and their 
structures are used widely in various fields in 
engineering. One of the most preeminent property 
of composite is the high strength to weight ratio 
in comparison with conventional engineering 
materials. In many cases, orthotropic composites 
are fabricated in thin plate forms which are so 
susceptible to fault. A typical fault in composite 
structure is cracking due to inperfection in 
fabrication process or hard working conditions 
such as overload, fatigue, corrosion and so on. 
For the reason that, crack behavior of orthotropic 
materials has become an interesting study subject.  

In the analytical field, there are some 
important results early given by Sih et al [1], 
Bowie et al [2],  Tupholme et al [3], Barnet et al 
[4] and Kuo and Bogy [5]. They forcused on 
finding out the singular fields such as stress and 
displacement at near crack tip in anisotropic 
models. More recent contributions can be listed in 
Nobile et al [6, 7] and Carloni et al [8, 9].  

There are several numerical studies that have 
performed to obtain the fracture behavior of 
orthotropic materials such as the extended finite 
element method (XFEM) [10, 11, 12]. In XFEM, 
the finite element approximation is enriched with  
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Heaviside function for crack face and appropriate 
functions extracted from the analytical solutions 
for a crack tip near field. Moreover, the element 
free Galerkin method (EFG) [13] has been 
applied for fracture analysis of composite by 
Ghorashi et al [14]. In this aproach, the support 
domain is modified to involve the discontinuity at 
the crack face and the singularity at the crack tip. 
Unlike the FEM, a set of scattered nodes is used 
to model the domain in the meshfree methods. 
Since no finite element mesh is required in the 
approximation, meshfree methods are very 
suitable for modeling crack growth problems [15, 
16, 17, 18]. 

In this work, we present an extended 
meshfree Galerkin method based on the radial 
point interpolation method (XRPIM) associated 
with the vector level set method for modeling the 
crack problem in orthotropic materials under 
static and dynamic loading conditions. To 
calculate the SIFs, the dynamic form of 
interaction integral formulation for homogeneous 
orthotropic materials is taken. Several numerical 
examples including static, dynamic SIFs 
calculation are performed and investigated to 
highlight the accuracy of the proposed method.  

2.  FRACTURE MECHANICS FOR 
RTHOTROPIC MATERIALS 

The linear elastic stress–strain relations can be 
written as 

ε Cσ  (1) 

where σ , ε  are linear stress and strain vector 

respectivily and C  is the fourth-order 

compliance tensor, in 2D, C  can be defined as: 
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where ,E G  and   are Young’s modulus, 
shear modulus and Poisson’s ratio, respectively.  

For a plane stress state, with 
, 1, 2, 6i j  , C can be simplified into: 

2 3D D
ij ijC C  (3) 

For a plane strain state, C can be written as: 

2 3 3 3 3
3 3 33/D D D D D

ij ij i jC C C C C   (4) 

Consider an anisotropic cracked body 
subjected to arbitrary forces with general 
boundary conditions as shown in Fig. 1. Global 
Cartesian coordinate 1 2( , )X X , local Cartesian 

coordinate 1 2( , )x x  and local polar coordinate 

( , )r   defined on the crack tip are also 
displayed in Fig. 1. Using equilibrium and 
compatibility conditions [19], a four-order partial 
differential equation with the following 
characteristic equation can be obtained 
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Figure 1. Orthotropic crack model 

It was proved by Lekhnitskii [19] that the 
roots of Eq. (5) are always complex or purely 

imaginary ( , 1, 2)k kx kys s is k    and occur 

in conjugate pairs as 1 1,s s  and 2 2,s s . 

According to Sih et al [1], displacement and 
stress fields in the vicinity of the crack tip are 
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Mode II: 
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where ,k kp q  are defined by 

2
11 12 16k k kp C s C C s    

2
11 12 16k k kp C s C C s    (8) 

3. XRPIM FORMULATION FOR CRACK 
PROBLEM 

3.1. Meshless XRPIM discretization and vector 
level set method 

 Base on the extrinsic enrichment technique, 
the displacement approximation is rewritten in 
terms of the signed distance function f and the 
distance from the crack tip as follow: 
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where I is the RPIM shape functions [20] 

and  f x  is the signed distance from the crack 

line. The jump enrichment functions   H f x  
and the vector of branch enrichment functions 

 jB x   (j = 1, 2, 3, 4) are defined respectively by 
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where r  is the distance from x to the crack tip 

TIPx  and   is the angle between the tangent to 

the crack line and the segment TIPx x  as shown 

in Fig. 2. bW  denotes the set of nodes whose 

support contains the point x and is bisected by the 

crack line and SW  is the set of nodes whose 

support contains the point x and is slit by the 

crack line and contains the crack tip. ,I Ij   are 

additional variables in the variational 
formulation. 

3.2. Discrete equations 

Substituting the approximation (9) into the  
well-known weak form for solid problem, using 
the meshless procedure, a linear system of 
equation can be written as 

 Ku F  (12) 

with K  being the stiffness matrix, 
respectively, and F  being the vector of force, 
they can be defined by  

T

IJ I J d


 K B DB  (13) 

t

T T

I I I I Id d
 

    F Φ b Φ t  (14) 

where Φ  is the vector of enriched RPIM 
shape functions; the displacement gradient matrix 
B   must be calculated appropriately dependent 
upon enriched or non-enriched nodes. 

4. J-INTEGRAL FOR DYNAMIC SIFS 
IMPLEMENTATION 

The dynamic stress intensity factors are 
important parameters, and they are used to 

calculate the positive maximum hoop stress to 
evaluate dynamic crack propagation properties. 
The dynamic form of J-integral for orthotropic 
material can be adopted [21] 

  ,1 1 ,

dyn

ij i j j

V

J u W K q dA 


    (15) 

where  1
2 ij ijW    is strain energy density; 

q  is a weight function, changing from 1q   near 

a crack-tip and 0q   at the exterior boundary of 
the J domain. 

In this paper, the interaction integral 
technique is applied to extract SIFs. After some 
mathematical transformations, the path 
independent integration can be written as 

 ,1 ,1 1 ,

aux aux aux

ij i ij i ij ij j j

A

M u u q dA         (16) 

 The stress intensity factors can then be 
evaluated by solving a system of linear algebraic 
equations: 
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5. NUMERICAL EXAMPLES 

5.1. Rectangular edge crack plate with various 
of the axes of orthotropy 

 A rectangular orthotrpic plate with an edge 
horizontal crack  is considered in this example. 
Several orientation of orthotropic axes are 
investigated in SIFs calculation. The dimensions 
and load condition are shown in Fig. 2. The 
orthotropic material properties are given as 
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1
114.8E GPa , 

2
117E GPa , 

12
0.21,   and 

12
9.66G GPa . The plane stress state is assumed 

in this problem. 

 

Figure 2. Orthotropic edge crack plate 

A model with 20 40  regular distributed 
nodes is used. A coefficient defined for the 
support domain 2.2   is taken. The are five 
values of orientations of the axes of orthotropy 

( 0 0 000 30 45 , 60, ,   and 090 ) are taken in 
account in the problem. The results are compared 
with XFEM solution given by Asadpoure et al 
[10] with 1925 nodes and FEM solution given by 
Aliabadi [22]. The plot in Fig. 3 show the 
comparison and it can be see that the single mode 

obtained at  00   and 090  . In mode I, the 

normalized SIF increases from 00   to 
045  and then decreases to 090  . It is 

different from mode II, the maximum SIF 

obtained at 030  . 

Charts in Fig. 4 and Fig. 5 show the effect of the 
coefficient of support domain size. It can be seen 

that the values of d  from 2.0 to 2.2 give 

acceptable results. 

5.2. Cantilever orthotropic plate under shear 
stress 

In this example, a cantilever rectangular 
plate made of orthotropic material with an edge 
crack at left side is considered. The plate is 
subjected to  a shear loading at the top edge. 
Dimension, load and boundary condition are 

display in Fig. 6. The orthotropic material 
properties are the same with the previous 
example.  

 

Figure 3. Normalized  SIFs results with several 
orientations of the axes of orthotropy 

 
Figure 4. Normalized mode I SIFs results with 

coefficients of support domain size d  

 
Figure 5. Normalized  mode II SIFs results with 

coefficients of support domain size d  
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The orthotropic material properties are the 
same with the previous example.  

There are 20 40  regular distributed nodes are 
used in this plane stress analysis. Several values 
of orthotropic material axes are considered (from 
-90 to 90 degree). 

 
Figure 6. Orthotropic edge crack plate under 

shear loading 

 
Figure 7. Normalized  SIFs results with several 

orientations of the axes of orthotropy 

The plots in  Fig. 7 show the mixed-mode 
values of stress intensity factor with respect to 
various orthotropic angle from -900 to 900. The 
obtained results from the proposed XRIM 
approach are compared with EFG solutions given 

by Ghorashi et al [14] and FEM solutions from 
Chu and Hong [23]. A very close agreement is 
acquired. 

5.3. Orthotropic plate with central slant crack 

The last example studies a rectangular orthotropic 
plate with a slanted crack at center. As shown in 
Fig. 8, the dimensions parameters are 

2 2H W  , 2 2 2a  , 045  . The 
orthotropic material properties are given as 

1 3.5E GPa , 2 12E GPa , 21 0.7  , and 

12
3.0G GPa . The problem is performed with 

30 60  nodes and mixed-mode SIFs are 
compared with available analytical and numerical 
solutions as shown in Table 1 

 
Figure 8. Orthotropic plate with central slanted 

crack 

Table 1. Mix-mode normalized SIFs for 

plate with central slanted crack /K K a   

Method 
IK  IIK  

XRPIM  0.523 0.475 

Sih et al [1] 0.500 0.500 
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Atluri et al [24] 0.484 0.512 

Kim and Paulino [25] 0.506 0.495 

Ghorashi et al [14] 0.512 0.530 

Asadpoure et al [12] 0.514 0.519 

 
6. CONSLUSION 

 A meshless extended radial point 
interpolation method (XRPIM) has been 
proposed for cracks analysis in orthotropic 
median under different loadings and several 

material orientations. This method is convenient 
in treating the Dirichlet boundary conditions 
because of the RPIM shape functions satisfying 
the Kronecker’s delta property. Several numerical 
examples are considered with different material 
models and loading conditions. The obtained 
solutions show a good agreement of between the 
proposed method and the references. The 
presented approach has shown several advantages 
and it is promising to be extended to more 
complicated problems such as dynamic crack 
analysis and crack propagation problems for 
orthotropic materials. 

 

 

 

 

 

Phương pháp không lưới RPIM mở rộng 
cho bài toán nứt trong vật liệu trực hướng 

 Nguyễn Thanh Nhã 
 Bùi Quốc Tính 
 Trương Tích Thiện 

Trường Đại học Bách khoa, ĐHQG-HCM 

 
TÓM TẮT: 

Vật liệu trực hướng là một dạng đặc 
biệt trong nhóm vật liệu bất đẳng hướng. 
Không như vật liệu đẳng hướng, các 
thuộc tính cơ học của chúng phụ thuộc 
vào các phương tọa độ nhất định. Vật 
liệu composite trực hướng và các kết 
cấu của chúng ngày nay được sử dụng 
rộng rãi trong các ứng dụng kỹ thuật. 
Việc nghiên cứu các ứng xử của chúng 

dưới các điều kiện tải trọng làm việc là 
rất cần thiết. Trong nghiên cứu này, tác 
giả áp dụng phương pháp không lưới mở 
rộng dựa trên phép nội suy điểm hướng 
kính (XRPIM) cho bài toán phân tích nứt 
trong vật liệu composite trực hướng. 
Dạng hàm cơ sở hướng kính (RBF) với 
hàm spline (TPS) được dùng để cấu tạo 
hàm dạng RPIM. Các ưu điểm của hàm 
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cơ sở hướng kính là thỏa mãn thuộc tính 
Kronecker’s delta và liên tục bậc cao. Để 
tính toán hệ số cường độ ứng suất (SIF), 
phương pháp tích phân tương tác được 
sử dụng kết hợp với miền phụ trợ trực 
hướng lân cận đỉnh vết nứt. Các ví dụ số 
được thực hiện  nhằm kiểm chứng sự 

chính xác của phương pháp. Các lời giải 
từ XRPIM được so sánh với các lời giải 
tham khảo từ các phương pháp khác. 
Kết quả so sánh cho thấy phương pháp 
được chọn phù hợp đối với bài toán đã 
đề cập. 

 Từ khóa: vật liệu trực hướng, hệ số cường độ ứng suất, phương pháp không lưới RPIM 
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