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ABSTRACT:

The Bessel differential equation with
the Bessel function of solution has been
applied.

Bessel functions are the canonical
solutions of Bessel's differential
equation. Bessel's equation arises when
finding separable solutions to Laplace's
equation in cylindrical or spherical
coordinates. Bessel functions are
important for many problems of

advection—diffusion progress and wave
propagation.

In this paper, authors present the
analytic solutions of the atmospheric
advection-diffusion equation with the
stratification of the boundary condition.
The solution has been found by applied
the separation of variable method and
Bessel's equation.
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1. INTRODUCTION

The air pollution modeling often leads to
solving the general second order partial
differential equations (PDE) [11]. The most
commonly equation is steady state atmospheric
advection — diffusion equation. The separation of
variable method is used to solve the PDE. This
method is simpler than the Green function
method [8], [10], [9]. The atmospheric advection
— diffusion equation is transformed to the Bessel
equation, with the solution is Bessel function [1].
In this paper, the authors introduce the
applications of Bessel equations to solve
atmospheric advection - diffusion. The boundary
conditions considering the factors of atmospheric
stratification and divided into four main types:
Dirichlet (total absorption), Neumann (total
reflection), Mixed type | (reflections at the

ground, absorption at inversion layer) and Mixed
Type 1l (absorption at the ground, reflections at
the inversion layer). This model uses Berliand’s
profile with the wind speed and diffusion
coefficients are described by the power law
functions [2], The Berliand’s profile is closer to
reality than the constants of wind speed and
diffusion from Gauss plume model [3], [6]. In
other hand, the separation of variable method
simpler than the Green function method.

2. AIR POLLUTANT MODEL
The atmospheric advection - diffusion
equation can be written as
U (Z) 6C(X, y1 Z) — i Ky ac(xv yv Z)
OX oy oz

+£(Kz Cxy.2) Z)j +S (1)
oz oz
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where X, y, z are coordinates in the along-
wind, cross wind and vertical directions, C is the
concentration of pollutant from the emission
source located at the point (xs, ys, zs), U is the
wind speed in downwind direction, Ky and Kz
are eddy diffusivities in the crosswind and
vertical directions respectively, S is the point
source’s function.

The point source’s function can be
described as

S(%,2)=Q0(x=x)5(y=.)3(2-2) 5y

Where Q is the source strength, 5 s the
Dirac delta function [7].

The wind speed U and the eddy diffusivity
Kz are depended on the height, which are given
as

U(z)=az*,a=U(z,)z,"

K,(z) =bz’ b=K,(z,)z,” 3)

This profile is called Berliand’s profile [2].
The boundary conditions can be divided to
four case as follows

Table 1. Table of the boundary condition, h is the height of the inversion layer.

Dirichlet Mixed type I
C(xy.z)=0atz=0z=h szzoatz=0,C(x,y,z)=0atz=h

Neumann Mixed type |
KZW=OatZ=O,Z=h C(x,y,z)=0atz=0,KZW=0atz=h,

The solution of equation (1) is

exp| -y /20,7 (x
p[ Y /20, ( ):|C(X,Z)
V2ra 2 (X) (4)

K, =do,?(x)/2dx

C(xy,2)=

Where o, (x) is the standard deviation in
the crosswind direction [4].

The equation of C(x,z) becomes
&92-&3@ @j -
oXx a oz oz

By using the separation of variables in the

form C(x,z)=X(x)Z(z), the solution of the
equation (5) is given as
dXx

—+A*X =0 (6)
dx
And
i(zﬁ d—zjmz(iJz“z -0 @)
dz dz b

Where A is the constant depend on the
boundary conditions.

The solution of the equation (6) with the
constant A, which depend on the boundary
condition is given as

X (x)= Aexp(—lzx) (8)

The solution of the equation (7) depend on
the boundary conditions of the atmospheric
advection-diffusion equation. In this paper, the
authors present the scheme to solve equation (7)
with the Dirichlet boundary condition. The form
of the Dirichlet boundary condition of the
equation (7) is

Z=0atz=0,z=h 9)

Setting a non-zero value ofA, then

transform variables ast = z(@#+72
'z (Z) =G (t) , the equation (7) becomes
t’G"+1G '+(k2t2—‘u2)G =0 (10)

The equation (10) is the Bessel equation
with the solution is given as

G(t)=B,J, (kt)+B,J_, (kt) (11)
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Where J () is the Bessel function in order
u of variable z.

Using the boundary condition respectively,
the solution of the concentration distribution can
be found as follows

Clxz)= T a-p)i2
(17)=Q 5 () .
E3 be?y, (x=X,)
an:; A eXp{_—4ah’
Where

T=a-[F+2
IRARACA S A AL )
3,4 (74)
And y, givenas
J”(yn)=0 (14)

In other case of boundary condition, the
solutions of the advection- diffusion equation can
be found with similar schemes. The concentration
of pollutant are obtained in follows table

Table 2. Table of the concentration pollutant formulas.

Boun_d_ary The concentration of pollutant
condition
Qexp[-y* /20,2 (x)] ¢ gz & be?y,? (x=x,)
C(x,y,z)= «/an W(ZZS) nZ:L‘A‘ exp| ——
Wh
Dirichlet | ' 5[5 [y
v, (z/h) 7 (2, Ih)
t=a-B+2,A = 50 v 3,(7,)=0
u+l n
QEXp[—yz/Zayz(X)J a+l T (a-pyi2 be?y, (x=x,)
C LY, — v _ n s
(X y Z) \/an X aha+l ahr (ZZS) ;Aﬂexp 8ahr
Neumann | Where
I v (i) 3, va(z 10)™
t=a-B+2,A = [ 3 l(;g },J_M(n)=0
(7
Qexp[-y* /20,2 (x)] ¢ gz & be?y,? (x=x,)
C(x,y,z)= _ _ n s
(xy.2) N
Mixed Where
type |
A PAC) SN PA T
= — 2, = y J =0
T (04 ﬂ+ A) J7H+l (?/n) —,u(yn)
Qexp|[-y* /20,2 (x)] ¢ e be?y,2 (X=X,
C(x,y,z)= A\
(xy.2) T ) A -
Mixed Where
type 1l
3, 7a(zIh)" 13, 7, (z 10)"
T=a—ﬂ+2,A1= H|: J;|(;|:) :|"],u—l(yn)=0
u n
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3. NUMERICAL RESULT

To illustrate three—dimensional dispersion
for a point source, the parameters of the model
are setting as follows:

The point source located at (xs= 10 m, ys =
0 m, z s = 50 m) with the strength Q=10 mg/s.

The meteorological input parameters are
taken from [5], [8]: @ =0.29, B =0.45, a=1.5

(m**%/s), b = 0.25 (M***/s) and &, =0.32x"(1*7),

The model prediction for concentrations
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with z=1.5m (the normalized “breathing level” of
Vietnamese). Fig 1 shows the normalized
“breathing level” concentrations directly of a
point source. First, the concentrations rise and
reach to the maximum level, and then begin
decreasing because of continued wvertical and
horizontal spreading. On the other hand, Fig 1
shows the concentration line with boundary
condition in the Dirichlet type is similar to the
Mixed type 11, and the Neumann type is similar to
the Mixed type I.
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Figure 1. The Variation of normalized breathing level concentration on the center-line C(x, 0, 2 m) with downwind
distance from a point source located at (10, 0, 50 m).

Fig 1. shows how plumes disperse in horizontal plane. The solid line, dotted line, dashed line and dot-dashed
line correspond to the downwind distance of x = 300 m, x = 600 m, x = 1200 m and x = 2400 m respectively.

Page 17



SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K4- 2015

4

x 10

NEUMANN BOUNDARY CONDICTION

s

0 ] - .
<250 200 150 -100

!
50 0 50
y(meters)

100 150 200 250

Figure 2 Variation of normalized breathing level

concentration C(x, y, 1.5 m) with crosswind distance

due to a point source.

Fig 3 shows how plumes disperse in

vertical plane. The solid line, dotted line,

dashed line and dot-dashed line correspond to
the downwind distance of x = 300 m, x = 600 m,

X = 1200 m and x = 2400 m respectively.
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Figure 3 Variation of normalized centerline
concentration C(x, 0, z) with height due to a point
source.

The concentration reach to maximum with z

closed to % =50 m.

The resulting contour profiles in the Oxy
plane are plotted in Fig 4.

In this study, the analytic solution of
equation (14) cannot be found. Therefor, the
numerical method is used to approximate the
solution. Fig 4 shows the equation (14) always
have a solution.

3000 4000

Figure 4 Normalized breathing level concentration contour maps C(x, y, 1.5 m) in the Oxy plane from a point

source.
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BOUDARY EQUATION WITH BESSEL FUNCTION
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Figure 5. The plot of the Bessel function.

4. DISCUSSION

In this study, the analytical dispersion model
of air pollutants released from a point source with
the inversion layer boundary condition are
discussed. These models can be applied to predict
the air pollutant for Vietnamese cities.
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Ung dung ham Bessel dé tinh cac chat gay
0 nhiem khdng khi véi sy phan tang cua

Khi quyén
Tran Anh Diing*
Chu Thi Hang*
Bli Ta Long 2

! Trwérng Pai hoc Céng nghiép Thanh phd H6 Chi Minh.
2 Trwdng Dai hoc Bach Khoa, PHQG-HCM.

TOM TAT:

Cac phuwong trinh vi phan Bessel véi
cac ham loi giai Bessel da duwgc ap
dung.

Cac ham Bessel la 107 gidi kinh dién
cua phuwong trinh vi phan Bessel.
Phuwong trinh Bessel phat sinh khi viéc
tim kiém céc 10i gidi c6 thé tach roi cho
phuong trinh Laplace trong hé toa do tru
hodc cédu. Cac ham Bessel rat quan
trong dbi v&i nhiéu bai toan vé su tién

trién binh luu-khuéch tén va sw truyén
song.

Trong bai bao nay, cac tac gia trinh
bay cac |07 giai giai tich cua phwong trinh
binh lwu-khuéch tén trong khi quyén
binh luu-véi sw phéan tang cua diéu kién
bién. Loi gidi d4 duoc fim thdy bdng
cach ap dung cac phuwong phap tach
bién va phuong trinh Bessel.

T khéa: O nhiém khéng khi, ham Bessel, phuong phép tach bién.
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