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ABSTRACT: 
The Bessel differential equation with 

the Bessel function of solution has been 
applied. 

Bessel functions are the canonical 
solutions of Bessel's differential 
equation. Bessel's equation arises when 
finding separable solutions to Laplace's 
equation in cylindrical or spherical 
coordinates. Bessel functions are 
important for many problems of 

advection–diffusion progress and wave 
propagation.  

In this paper, authors present the 
analytic solutions of the atmospheric 
advection-diffusion equation with the 
stratification of the boundary condition. 
The solution has been found by applied 
the separation of variable method and 
Bessel’s equation. 
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1. INTRODUCTION  

The air pollution modeling often leads to 
solving the general second order partial 
differential equations (PDE) [11]. The most 
commonly equation is steady state atmospheric 
advection – diffusion equation. The separation of 
variable method is used to solve the PDE. This 
method is simpler than the Green function 
method [8], [10], [9]. The atmospheric advection 
– diffusion equation is transformed to the Bessel 
equation, with the solution is Bessel function [1]. 
In this paper, the authors introduce the 
applications of Bessel equations to solve 
atmospheric advection - diffusion. The boundary 
conditions considering the factors of atmospheric 
stratification and divided into four main types: 
Dirichlet (total absorption), Neumann (total 
reflection), Mixed type I (reflections at the 

ground, absorption at inversion layer) and Mixed 
Type II (absorption at the ground, reflections at 
the inversion layer). This model uses Berliand’s 
profile with the wind speed and diffusion 
coefficients are described by the power law 
functions [2], The Berliand’s profile is closer to 
reality than the constants of wind speed and 
diffusion from Gauss plume model [3], [6]. In 
other hand, the separation of variable method 
simpler than the Green function method. 

2. AIR POLLUTANT MODEL 

The atmospheric advection – diffusion 
equation can be written as 

( , , ) ( , , )( )

( , , )

y

z

C x y z C x y zU z K
x y z

C x y zK S
z z

        
      

   (1) 



TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K4- 2015 

 Page 15 

where x, y, z are coordinates in the along-
wind, cross wind and vertical directions, C is the 
concentration of pollutant from the emission 
source located at the point (xs, ys, zs), U is the 
wind speed in downwind direction, Ky and Kz 
are eddy diffusivities in the crosswind and 
vertical directions respectively, S is the point 
source’s function. 

The point source’s function can be 
described as 
 

       , , s s sS x y z Q x x y y z z          (2) 

Where Q is the source strength,   is the 
Dirac delta function [7]. 

The wind speed U and the eddy diffusivity 
Kz are depended on the height, which are given 
as 
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This profile is called Berliand’s profile [2]. 
The boundary conditions can be divided to 

four case as follows 

 
Table 1. Table of the boundary condition, h is the height of the inversion layer. 
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The solution of equation (1) is 
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Where  y x  is the standard deviation in 

the crosswind direction [4]. 
The equation of  ,C x z  becomes 

     C b Cz z
x a z z

         
                      (5) 

By using the separation of variables in the 
form      ,C x z X x Z z , the solution of the 

equation (5) is given as 

       2 0dX X
dx

                                        (6) 

And  
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             (7) 

Where   is the constant depend on the 
boundary conditions. 

The solution of the equation (6) with the 
constant A, which depend on the boundary 
condition is given as 

       2expX x A x                           (8) 

The solution of the equation (7) depend on 
the boundary conditions of the atmospheric 
advection-diffusion equation. In this paper, the 
authors present the scheme to solve equation (7) 
with the Dirichlet boundary condition. The form 
of the Dirichlet boundary condition of the 
equation (7) is 

     0 at 0,Z z z h                               (9) 
Setting a non-zero value of  , then 

transform variables as  2 /2t z     

,      1 / 2Z z z G t , the equation (7) becomes 

     2 2 2 2'' ' 0t G tG k t G                    (10) 

The equation (10) is the Bessel equation 
with the solution is given as 

     1 2G t B J kt B J kt                  (11) 
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Where  J z  is the Bessel function in order 

  of variable z.  

Using the boundary condition respectively, 
the solution of the concentration distribution can 
be found as follows 
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And n  given as  

        0nJ                                             (14) 

In other case of boundary condition, the 
solutions of the advection- diffusion equation can 
be found with similar schemes. The concentration 
of pollutant are obtained in follows table 

 
Table 2. Table of the concentration pollutant formulas. 

 
Boundary 
condition The concentration of pollutant 

Dirichlet 

 
 

    2 2 2 2
1 /2

1

exp / 2
, , exp

82
y n s

s n
ny

Q y x b x x
C x y z zz A

ah ah


 

  







      
  

  

Where 

   
 

/2 / 2

2
1

/ /
2, ,

n n s

n
n

J z h J z h
A

J

 
 



 
  



   
          0nJ    

 

Neumann 

 
 

    2 2 2 2
1 / 2

1
1

exp / 2 1, , exp
82

y n s
s n

ny

Q y x b x x
C x y z zz A

ah ah ah


  

   








          
    

  

Where 

   
 

/ 2 / 2

2

/ /
2,

n n s

n
n

J z h J z h
A

J

 
 



 
  


 



   
       ,  1 0nJ      

Mixed 
type I 

 
 

    2 2 2 2
1 /2

1

exp / 2
, , exp

82
y n s

s n
ny

Q y x b x x
C x y z zz A

ah ah


 

  







      
  

  

Where 

   
 

/ 2 /2

2
1

/ /
2, ,

n n s

n
n

J z h J z h
A

J

 
 



 
  


 

 

   
         0nJ     

Mixed 
type II 

 
 

    2 2 2 2
1 /2

1

exp / 2
, , exp

82
y n s

s n
ny

Q y x b x x
C x y z zz A

ah ah


 

  







      
  

  

Where 

   
 

/2 / 2

2

/ /
2, ,

n n s

n
n

J z h J z h
A

J

 
 



 
  



   
        1 0nJ    

  
 



TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K4- 2015 

 Page 17 

3. NUMERICAL RESULT 

To illustrate three–dimensional dispersion 
for a point source, the parameters of the model 
are setting as follows: 

The point source located at (xs= 10 m, ys = 
0 m, z s = 50 m) with the strength Q= 10 mg/s. 

The meteorological input parameters are 
taken from [5], [8]:   =0.29,   =0.45, a=1.5 

(m1-0.29/s), b = 0.25 (m2-0.45/s) and y =0.32x1/(1+α). 

The model prediction for concentrations   

with z=1.5m (the normalized “breathing level” of 
Vietnamese). Fig 1 shows the normalized 
“breathing level” concentrations directly of a 
point source. First, the concentrations rise and 
reach to the maximum level, and then begin 
decreasing because of continued vertical and 
horizontal spreading. On the other hand, Fig 1 
shows the concentration line with boundary 
condition in the Dirichlet type is similar to the 
Mixed type II, and the Neumann type is similar to 
the Mixed type I. 

 
 
 

Figure 1. The Variation of normalized breathing level concentration on the center-line C(x, 0, 2 m) with downwind 
distance from a point source located at (10, 0, 50 m). 

Fig 1. shows how plumes disperse in horizontal plane. The solid line, dotted line, dashed line and dot-dashed 
line correspond to the downwind distance of x = 300 m, x = 600 m, x = 1200 m and x = 2400 m respectively. 
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Figure 2  Variation of normalized breathing level 

concentration C(x, y, 1.5 m) with crosswind distance 
due to a point source. 

Fig 3 shows how plumes disperse in 
vertical plane. The solid line, dotted line, 
dashed line and dot-dashed line correspond to 
the downwind distance of x = 300 m, x = 600 m, 
x = 1200 m and x = 2400 m respectively. 

 

 
Figure 3  Variation of normalized centerline 

concentration C(x, 0, z) with height due to a point 
source. 

The concentration reach to maximum with z 

closed to sz = 50 m.  
The resulting contour profiles in the Oxy 

plane are plotted in Fig 4.  
In this study, the analytic solution of 

equation (14) cannot be found. Therefor, the 
numerical method is used to approximate the 
solution. Fig 4 shows the equation (14) always 
have a solution. 

 
Figure 4 Normalized breathing level concentration contour maps C(x, y, 1.5 m) in the Oxy plane from a point 

source.
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Figure 5. The plot of the Bessel function. 

 

 
4. DISCUSSION 

In this study, the analytical dispersion model 
of air pollutants released from a point source with 
the inversion layer boundary condition are 
discussed. These models can be applied to predict 
the air pollutant for Vietnamese cities. 
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Ứng dụng hàm Bessel để tính các chất gây 
ô nhiễm không khí với sự phân tầng của 
khí quyển 
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TÓM TẮT: 
Các phương trình vi phân Bessel với 

các hàm lời giải Bessel đã được áp 
dụng. 

Các hàm Bessel là lời giải kinh điển 
của phương trình vi phân Bessel. 
Phương trình Bessel phát sinh khi việc 
tìm kiếm các lời giải có thể tách rời cho 
phương trình Laplace trong hệ tọa độ trụ 
hoặc cầu. Các hàm Bessel rất quan 
trọng đối với nhiều bài toán về sự tiến 

triển bình lưu-khuếch tán và sự truyền 
sóng. 

Trong bài báo này, các tác giả trình 
bày các lời giải giải tích của phương trình 
bình lưu-khuếch tán trong khí quyển 
bình lưu-với sự phân tầng của điều kiện 
biên. Lời giải đã được tìm thấy bằng 
cách áp dụng các phương pháp tách 
biến và phương trình Bessel. 

Từ khóa: Ô  nhiễm không khí, hàm Bessel, phương pháp tách biến. 
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