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ABSTRACT:

Functionally graded materials
(FGMs) have been widely used as
advanced materials characterized by
variation in properties as the dimension
varies. Studies on their physical
responses under in-serve or external
loading conditions are necessary.
Especially, crack behavior analysis for
these advanced material is one of the
most essential in engineering. In this
present, an extended meshfree radial
point interpolation method (RPIM) is
applied for calculating static and dynamic
stress intensity factors (SIFs) in
functionally graded materials. Typical

advantages of RPIM shape function are
the satisfactions of the Kronecker’s delta
property and the high-order continuity.
To assess the static and dynamic stress
intensity factors, non-homogeneous form
of interaction integral with the non-
homogeneous asymptotic near crack tip
fields is wused. Several benchmark
examples in 2D crack problem are
performed such as static and dynamic
crack parameters calculation. The
obtained results are compared with other
existing solutions to illustrate the
correction of the presented approach.
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1. INTRODUCTION

Functionally graded materials (FGMs) are
types of advanced composite that have been made
based on the concept of continuous variation of
microstructures. The non-uniform distributions of
the reinforcement phase cause different material
properties in one or more specified directions [1,
2]. In recent years, the FGMs hold promising for
applications that require extra high material
performance [3]. For example, FGMs are used in
thermal protection systems because they evolve

the advantage of typical ceramics such as heat
and corrosion resistance and typical of metal such
as stiffness and mechanical strength. FGMs can
be applied to generate thermal barrier coating for
space  applications,  thermal-electric  and
piezoelectric devices, optical materials with
graded reflective indices, bone and dental
implants in medicine and so on. In many cases,
FGMs structure are brittle and prone to cracking
due to hard working conditions such as overload,
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vibration, fatigue, and so on. For the reason that,
crack behaviors of such FGMs has become an
interesting study subject.

In this work, we focus on fracture behaviors
of FGMs under static and dynamic loading. There
are several analytical and also numerical studies
that have been performed to obtain the fracture
behavior of FGMs structures. Delale and Erdogan
et al considered the stress field at crack tip in
FGM which has the same square root singularity
as that in the homogenous materials [4]. In 1987,
Eischen et al present his mixed-mode crack
analysis in non-homogenous materials using
finite element method (FEM) [5]. Gu P. et al
(1999) used domain J-integral to calculate the
crack tip field of FGM [6]. In 2002, Kim and
Paulino used FEM to calculate the mixed-mode
SIFs in FGMs with some modifies for path-
independent integral [7]. In 2005, Menouillard et
al applied extended finite element method
(XFEM) to calculate mixed-mode stress intensity
factors for graded materials [8]. In the next year,
Song et al applied FEM to compute the dynamic
SIFs for heterogeneous materials [9]. In 2007,
Kim and Paulino performed crack propagation
problems in FGMs using XFEM [10]. Recently,
in the last year, Chiong et at presented the scaled
boundary FEM using polygon element for
dynamic SIFs calculation for FGMs [11].

Over the ensuing decades, the so-called
meshless or meshfree methods have developed.
Different from FEM, meshfree methods do not
require a mesh connect data points of the
simulation domain. Since no finite mesh is
required in the approximation, meshfree methods
are very suitable for modeling crack growth
problems [12, 13, 14, 15]. There are a few studies
about meshless method for fracture problems in
FGMs in recent years. Rao and Rahman (2003)

used EFG method for calculating SIFs in
isotropic FGMs [16]. In 2006, Sladek et al
applied meshless local Petrov-Galerkin method to
evaluate fracture parameters for crack problems
in FGM [17]. In 2009, Koohkan et al presented a
new technique with J-integral to calculate the SIF
values for FGM crack problems [18].

In this study, we propose an extended
meshfree method based on the radial point
interpolation method (XRPIM) associated with
the vector level set method for modeling the
crack problem in functionally graded materials
under static and dynamic loading conditions. To
calculate the SIFs, the dynamic form of
interaction integral formulation for
nonhomogeneous materials is used. Several
numerical examples including static and dynamic
SIFs calculation are performed and investigated
to highlight the accuracy of the proposed method.

2. XRPIM FORMULATION FOR
CRACK PROBLEMS

2.1. Weak-form formulation
Consider a 2D solid with domain Q and
bounded by I, the initial crack face is denoted

by boundary I'_, the body is subjected to a body

force b and traction t on T, as depicted in Fig.

1. The weak-form obtained for this elasto-
dynamic problem can be written as
[ouTtpdQ+ [ s ed 2
2 2 1)
~[ouTbdQ - [suTtdr =0
Q I,

where u, U are the vectors of displacements and
acceleration, ocand & are stress and strain
tensors, respectively. These unknowns are

functions of location and time: u=u(x,t),

U=10a(xt), e¢=0c(x,t) and &=¢g(x,t).
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Figure 1. A FGM crack model

2.2. Meshless X-RPIM discretization and
vector level set method

Base on the extrinsic enrichment technique,
the displacement approximation is rewritten in
terms of the signed distance function f and the
distance from the crack tip as follow:

u"(x, )= 400U + Y ¢ (e H(f(x))

1eW (x) leW, (x)
+ 2, 60028, (x) B, ¥
1eW, (x) j=1

where ¢, is the RPIM shape functions [19] and
f (x) is the signed distance from the crack line.
The jump enrichment functions H ( f(x)) and
the vector of branch enrichment functions B, (x)
(1=1, 2, 3, 4) are defined respectively by

+1 if f(x)>0
H(f(x))z{—l it f(x)<0 ©
B(x):(\/Fsinf,x/Fcosg,
2 2
(4)
\/Fsingsin 0, x/Fcos%sin ®)

where r is the distance from x to the crack

tip x,, and ¢ is the angle between the tangent to
the crack line and the segment x—x_, as shown

in Fig. 2. W, denotes the set of nodes whose
support contains the point x and is bisected by the
crack line and W, is the set of nodes whose
support contains the point x and is slit by the

crack line and contains the crack tip. «,, g, are

additional  variables in  the variational
formulation.
crack line
f>0
f <0
crack line

f=0

Figure 2. Sets of enriched nodes
2.3. Discrete equations

Substituting the approximation (2) into the
well-known weak form for solid problem (1),
using the meshless procedure, a linear system of
equation can be written as

Mii+Ku=F (5)
with M, K being the mass and stiffness

matrices, respectively, and F being the vector of
force, they can be defined by

M, =pJ®Tq)JdQ (6)
K, = [B]DB,dQ @)
F =[®]bdo+ [ @] fdr ®)

where @ is the vector of enriched RPIM
shape functions; the displacement gradient matrix
B must be calculated appropriately dependent
upon enriched or non-enriched nodes.

3. JIINTEGRAL FOR DYNAMIC SIFS
IMPLEMENTATION
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The dynamic stress intensity factors are
important parameters, and they are used to
calculate the positive maximum hoop stress to
evaluate dynamic crack propagation properties.
The dynamic form of J-integral for
nonhomogeneous materials is written as [9]

]= Iajull—Wé )q,dA

+I(Puiui,1 ~%C,, .&,6K ) odA 9

vV

where W = ¥, o€, Is strain energy density;
q is a weight function, changing from q =1 near
a crack-tip and q =0 at the exterior boundary of
the J domain.

In this paper, the interaction integral
technique is applied to extract SIFs. After some
mathematical ~ transformations, the  path
independent integration can be written as

ij 1)

M = J ouy +o."u, ~ole )q’jdA

+j( “u,, 4l Ut —Cy e, )adA (1)

A

The stress intensity factors can then be
evaluated by solving a system of linear algebraic
equations:

K, =M™ E, /2 (11)

K, =M™"E 2 (12)

1]
where E, = E,_ /(1-v, ) for plain strain state

4. NUMERICAL EXAMPLES

4.1. Single mode in infinite edge crack FGM
plate

In the first example, we consider a
rectangular FGM plate with an edge crack. The
plate is subjected to a far field tensile stress as
shown in Fig. 3. To imply the infinity boundary,
the dimensions are set as H /W =10. Various

values of crack length and ratio of E,/E are

choosen to investigate the static mode | SIF of the
model.

The elastic modulus is assumed to follow an
exponential function as in (13) and the Poisson’s
ratio is held constant at v = 0.3

E(x)=Ee™, 0<x <W (13)
where E, = E(0), E,=EW) and
=(1/W)log(E, /E))

A model with 16 x160 regular distributed
nodes is used for calculation. The obtained results
are compared with available analytical solution
given by Erdogan and Wu [20] and XFEM
solution given by Dolbow and Gosz [21].

[e3
A A A A A
H/2 E = E(x)
v = const
Xl
9
a
H/2 v

(e
Figure 3. Infinite edge crack FGM plate

There are two crack length ratios are investigated
(a/W =02, 04).

Table 1 and Table 2 summerize the
acceptable results obtained by XRPIM in the
comparison with other numerical solutions.

Table 1. Normalized SIFs for plate with edge
crack (a/W =0.2)

E/E XRPIM Analytical XFEM
27 71 (proposed) [20] [21]
0.1 1.286 1.2965 1.279
0.2 1.378 1.396 1.381
1.0 1.331 1.373 1.363
5.0 1.080 1.132 1.133
10.0 0.948 1.024 1.004
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Table 2. Normalized SIFs for plate with edge
crack (a/W =0.4)

E/E XRPIM Analytical XFEM
27 71 (proposed) [20] [21]
0.1 2.564 2.570 2.552
0.2 2.428 2.443 2.438
1.0 2.068 2.107 2.116
5.0 1.679 1.748 1.752
10.0 1.512 1.626 1.590

4.2. Center crack FGM plate under dynamic
tensile loading

In the next example, a FGM plate with a
central crack is considered as shown in Fig. 4.
The dimensions are given as 2H =40mm;
2W =20mm and 2a=4.8mm. The plate is
subjected to a step tensile load at the top and the
bottom edges. The Poisson’s ratio taken is 0.3,
the Young’s modulus and density are assumed to
vary through the exponential functions of both x;
and x. coordinates as follows:

E-E e(ﬂ]x]+,82xz), p= poe(ﬂ]x]+/32x2> (14)

0

Where E, =199.992GPa,

B, =pB,=01

p, = 5000kg / m’,

There are 30x 60 scattered nodes are used
for the problem. A time step At =0.1us is used
for Newmark integration calculation. Fig. 5
shows  the dynamic  SIFs

(K,, /(c\za)) at the right crack tip versus

normalized

normalized time (tc, /H) where
c,=7.34mm/us is the dilatational wave
velocity. The XRPIM results are compared with
the FEM results given by Seong et al [9] and the

charts show a good agreement. It can be seen in

the results that after the time of H /c,, the both

SIFs start to increase. The amplitude of the mode-
I SIF is much larger than that of the mode-11 SIF.
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Figure 4. Center crack FGM plate with material
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Figure 5. Normalized dynamic SIFs results

4.3. Center crack FGM plate under dynamic
tensile loading

The last example deals with a center crack
FGM plate that has the same geometry and load
condition with the one in 5.2. section. However,
in this problem, as shown in Fig. 6, the material
distribution is different from the previous case in

which g =0 and three values of g, are

considered (3, =0,0.05,0.1).

Because of the symmetry of geomertry, load
and material, a half model is consider with the

symmetry boundary condition at x =W . A

distribution of 10 x40 nodes is used for the
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XRPIM model. The plots in Fig. 7 and Fig. 8
show the XRPIM solutions with several cases of

B, values. In the comparision with the report of

Seong et al [9], the XRPIM dynamic SIFs results
are acceptable. It can be seen that the values of
mode-I SIF are much larger than mode-Il. The

material value g =01 gives maximum stress
intensity factors in both modes. In the case of
B, =0 (homogenous), the model is single mode
so mode-11 SIF is equal to zero during the time.
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Figure 6. Center crack FGM plate with material
T
distribution in "2 - directions
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Figure 7. Normalized dynamic SIFs results for
mode-I
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Figure 8. Normalized dynamic SIFs results for
mode-II

5. CONSLUSION

An extended radial point interpolation
method (XRPIM) has been proposed for static
and dynamic cracks analysis in functionally
graded models. This method is convenient in
treating the Dirichlet boundary conditions
because of the RPIM shape functions satisfying
the Kronecker’s delta property. Three numerical
examples are investigated with different material
models and crack modes. The obtained solutions
show a good agreement of between the presented
method and the references. The presented
approach has shown several advantages and it is
promising to be extended to more complicated
problems such as dynamic crack propagation
problems for functionally graded materials.
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Phwong phap khéng lwéi RPIM md& réng
cho bai toan nt déng trong vat liéu phan

|&'p chire nang
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Trwong Dai hoc Bach khoa, PHQG-HCM

TOM TAT:

Véat liéu phan I6p chirc ndang (FGM)
ngay nay dugc str dung réng réi trong
nhitng két cdu doi héi tinh ndng tmg xur
phirc tap cta vét liéu céu tao. Diéu nay
c6 duoc tir dic trung tinh chét vét liéu
thay doi theo vi tri ciia vét liéu FGM. Viéc
nghién ctru dap tng vat ly cua vat liéu
FGM (ng véi céc diéu kién fam viéc, tai
trong Ia rat can thiét. Bac biét, viéc phan
tich tng xtr ntt cho nhikng vat liéu nay la
vO cung quan trong trong ky thuat. Trong
bao cao nay, phwong phap khbéng Iwoi
mé& réngstr dung phép ndi suy diém
huwéng kinh (XRPIM) duoc ép dung dé
tinh cac hé sb cuong dé ung suét tai
dinh vét nut véi tai tinh va déng trong vt

liéu phéan I6p chic nang. Ham dang
RPIM cé céc wu diém nhw théa man
thudc tinh Kronecker’s delta va lién tuc
bac cao. Dé tinh toan cac hé sb cuong
dé (g suét tinh va déng trong vét liéu
FGM, tac gid st dung dang khéng thuan
nhét cla tich phan tuong tac véi truong
phu tro & lan cén dinh vét nit cho véat
liéu khéng thuan nhat. Mot sé vi du kiém
chieng cho bai toan nut tinh va dong
trong khéng gian hai chiéu duoc thuc
hién va so sanh véi cac két qua tham
khédo ttr cac céng bd trude ddy. Sw phu
hop gitra cac két qud cho thay sw dung
dan cta phuong phap duoc gidi thiéu.

Ter khoa: vat lisu FGM, hé sb cuong do ung suit, phuong phap khong ludi RPIM
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