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ABSTRACT:

The so-called T-stress, or second
term of the William (1957) series
expansion for linear elastic crack-tip
fields, has found many uses in fracture
mechanics applications. In this paper, an
interaction integral method for calculating
the T-stress for two-dimensional crack
problems using the extended radial point
interpolation  method  (XRPIM) s
presented. Typical advantages of RPIM
shape function are the satisfactions of

the Kronecker's delta property and the
high-order continuity. The T-stress can
be calculated directly from a path
independent interaction integral entirely
based on the J-integral by simply the
auxiliary field. Several benchmark
examples in 2D crack problem are
performed and compared with other
existing solutions to illustrate the
correction of the presented approach.
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1. INTRODUCTION

The fracture behavior of cracked structures
is dominated mainly by the near-tip stress field.
In linear-elastic fracture mechanics interest is
focused mostly on stress intensity factors (SIFs)
which describe the singular stress field ahead of a
crack tip and govern fracture of a specimen when
a critical stress intensity factor is reached. The
usefulness of crack tip parameters representing
the singular stress field was shown very early by
numerous investigations. Nevertheless, there is
experimental evidence that also the stress
contributions acting over a longer distance from
the crack tip may affect fracture mechanics

properties [1, 2]. The constant stress contribution
(first “higher-order” term of the Williams stress
expansion, denoted as the T-stress term [3]) is the
next important parameter. Several researchers [4,
5, 6 and 7] have shown that the T-stress, in
addition to the K or J-integral, provides an
effective two-parameter characterization of plane
strain elastic crack-tip fields in a variety of crack
configurations and loading conditions. In special
cases, the T-stress may be advantageous to know
also higher coefficients of the stress series
expansion. In order to calculate the T-stress,
researchers have used several techniques such as
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the stress substitution method [1], the variational
method [8], the Eshelby J-integral method [9], the
Betti-Rayleigh reciprocal theorem [10, 11] and
the interaction integral method [10, 12]. Among
these method, the last three method are based on
path-independent integral and the T-Stress can be
caculated using data remote from crack-tip, so the
result is achieved higher accuracy compared to
the other method.

For a few idealized cases, analytical
solutions for T-stress are available. However, for
practical problems involving finite geometries
with complex loading, numerical methods need to
be employed. Chuin-Shan Chen et al (2001)
applied a p-version finite element method to
compute the T-stress [10]. In 2003, Glaucio H.
Paulino and Jeong-Ho Kim presented a new
approach to compute the T-stress in funtionally
graded materials (FGMs) based on the interaction
integral method, in combination with the finite
element method [13]. In 2004, Alok Sutradhar
and Glaucio H. Paulino used Symmetric Galerkin
boundary element method (SBEM) for
calculating T-stress and SIFs [14].

During the past two decades, the so-called
meshless or meshfree methods have developed,
and their applications in solving many
engineering problems have proved their
applicability. Different from FEM, meshfree
methods do not require a mesh connect data
points of the simulation domain. Since no finite
mesh is required in the approximation, meshfree
methods are very suitable for analyzing crack
problems [15, 16, 17, 18].

In this study, we propose an extended
meshfree method based on the radial point
interpolation method (XRPIM) associated with
the vector level set method for evaluating T-stress
for two-dimensional crack problems. To calculate
the T-stress, the interaction integral formulation
for homogeneous materials is used. Several

numerical examples T-stress calculation are
performed and investigated to highlight the
accuracy of the proposed method.

2. XRPIM FORMULATION FOR
CRACK PROBLEMS

2.1. Weak-form formulation

Consider a 2D solid with domain Q and
bounded by I, the initial crack face is denoted
by boundary I'_, the body is subjected to a body
force b and traction t on T, as depicted in Fig.
1. If the crack faces are assumed to be traction-
free, the weak-form obtained for this elastostatic
problem can be written as

[6eT6d 2~ [ Su"bdQ - [ 6uTTT =0 1)
Q Q T,

where u are the vectors of displacements,
o and & are stress and strain tensors,
respectively. These unknowns are functions of

location and time: u=u(x,t), o=0(x,t) and

g =g(x,t).

Ny

Figure 1. A 2D crack model

2.2. Meshless X-RPIM discretization and
vector level set method

Base on the extrinsic enrichment technique,
the displacement approximation is rewritten in
terms of the signed distance function f and the
distance from the crack tip as follow:

u"(x, )= 400U + Y ¢ (e H(f(x))
1eW (x) 1eW, (x)

4

+ 2 4,002 B, (X)5, )

1eW, (x) j
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where ¢, is the RPIM shape functions [19] and
f (x) is the signed distance from the crack line.
The jump enrichment functions H ( f(x)) and
the vector of branch enrichment functions B, (x)
(1=1, 2, 3, 4) are defined respectively by
+1 if f(x)>0
H(f(x))= ] @)
-1 if f(x)<0
B(x)= Wrsin2, reosZ,
2 2 @)
\/Fsin gsin o, x/Fcos%sin Q)

where r is the distance from x to the crack

tip x,, and ¢ is the angle between the tangent to
the crack line and the segment x—x_, as shown

in Fig. 2. W, denotes the set of nodes whose
support contains the point x and is bisected by the
crack line and W, is the set of nodes whose
support contains the point x and is slit by the

crack line and contains the crack tip. «,, g, are

additional  variables in the variational
formulation.
crack line
f>0
f<0

crack line
f>0 f-0

Figure 2. Sets of enriched nodes
2.3. Discrete equations

Substituting the approximation (2) into the
well-known weak form for solid problem (1),
using the meshless procedure, a linear system of
equation can be written as

Ku=F (5)

with K being the stiffness matrices, respectively,
and F being the vector of force, they can be
defined by

K, = [B]DB,dQ (6)
F =[®bdo+[@]fdr )

where @ is the vector of enriched RPIM
shape functions; the displacement gradient matrix
B must be calculated appropriately dependent
upon enriched or non-enriched nodes.

3. THE INTERACTION INTEGRAL FOR T-
STRESS IMPLEMENTATION

3.1. M-integral formulation
The path-independent J-integral [20] is
defined as

J =lim
r-oJr

(W3, —oyu, )ndr, (@)
where W is strain energy density given by
W = jo ‘0.5, )

and n i denotes the outward normal vector to the
contour I".

After some mathematical transformations,
the interaction integral can be written as

M = Ir {%(Giké‘iiux +05 )51j } n,dr

- jr (o-ijuff;’X +0 Uy, )njdr (10)
3.2. Auxiliary fields for T-stress

The auxiliary fields are judiciously chosen
for the interaction integral depending on the
nature of the problem to be solved. Since the T-
stress is a constant stress that is parallel to the
crack, the auxiliary stress and displacement fields

are chosen due to a point force f in the X,

direction (locally), applied to the tip of a semi-
infinite crack in an infinite homogeneous body, as
shown in Fig. 3.

Page 108



TAP CHi PHAT TRIEN KH&CN, TAP 18, SO K4- 2015

crack |

Figure 3. Auxiliary Field for T-stress: Michell’s
solution

The auxiliary stresses are given by Michell’s
solution [21]:

—f f .
o)X =——c0s°0, o3 =——sin’0
r r

o ~ =" cos? osine (11)
r

The corresponding auxiliary displacements
are [22]

f(1+K)Ini— f sin’@
8mu d 4nu

aux _
1

f(x-1
ud Z—MQ-FLSin@COSQ (12)
8mu Ay

where d is the coordinate of a fixed point on

the X, axis, g is the shear modulus, and

Kz{(S—v)/(Hv) planestress 13)

(3—-4v) planestrain

3.3. Determination of T-stress

By considering the auxiliary field in Eq.
(11) , a simple expression for the T-stress in
terms of the interaction integral M, the point
force for the auxiliary field f, and material
properties E,v can be obtained.

;- E (14)
f

where

(15)

~[E planestress
N planestrain

E/(1-v?)

4. NUMERICAL EXAMPLES
4.1. Edge crack plate under tensile loading

In the first example, a rectangular plate with
an edge crack is considered. The plate is
subjected to a tensile stress o =1 as shown in
Fig. 4. The dimensions are set as H /W =12.
Various values of crack length are chosen to
investigate the static mode | SIF of the model.
The plain strain state is assumed with elastic
modulus E =1 and Poisson’s ratio v =0.3.
There are 16x192 scattered nodes are used for
the problem. The coefficient of size of support

domain is set as ay = 2.2 and the length of J-

domain 1, =a/3. The obtained results

including normalized SIFs (K_|= K, lora),
normalized T-Stress (T =T /o) and biaxiality

ratio (B=Tx/7ta/K,) are compared with

Symmetric Galerkin boundary element method
solution given by Sutradhar and Paulino [14],
FEM solution given by Chuin-Shan Chen et al
[10] and Feet T et al [23].

A A f* A
A
H
a
e W -
Y
Y ¥ YoV ¥

Figure 4. Edge crack plate under tensile loading

There are two crack length ratios are
investigated (a/W =0.3, 0.5). Table 1 and
Table 2 summerize the acceptable results
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obtained by XRPIM in the comparison with other

solutions.

Table 1. Normalized T-Stress, SIFs and biaxiality
ratio for edge crack plate (a/W =0.3)

Method T K, B
XRPIM -0.6098 1.7419 -0.3501
(proposed)
Analytical  -0.6141 - -0.3664
[23]
SGBEM -0.6105 1.6597 -0.3679
[14]
FEM [10] -0.6103 1.6598 -0.3677

Table 2. Normalized T-Stress, SIFs and biaxiality
ratio for edge crack plate (a/W =0.5)

nodes is used for the XRPIM model. Table 3
shows the comparison between the XRPIM
results and other solutions with a good
agreement.

A A AT A A
A
2a
H —
pra W .
Y
Y ¥V YoV ¥

Figure 5. Rectangular plate with center crack
under tensile loading

Method T K, B .
Table 3. Normalized T-Stress, SIFs and biaxiality
XRPIM  -0.3998  2.8618 -0.1397 ratio for edge crack plate (a/W =0.3)
(proposed) _ —
Analytical  -0.4182 i 10.1481 Method T K, B
[23] XRPIM | -1.1768 | 11663 | -1.0090
SGBEM  -0.4184 2.8241 -0.1481 (proposed)
[14] Analytical | -1.1557 - -1.0279
FEM [10] -0.4217 2.8246 -0.1493 [23]
SGBEM -1.1554 1.1232 -1.0286
4.2. Center crack plate under tensile loading [14]
The next example deals with a rectangular FEM[10] | -1.1554 | 1.1232 | -1.0286

plate with a central crack as shown in Fig. 5. The
H/W=1 and
a/W =0.3. The plate is subjected to a tensile
load at the top and the bottom edges. The
Young’s modulus and the Poisson’s ratio is
similar to the previous example.

dimensions are given as

Because of the symmetry of geometry and load, a
half model is consider with the symmetry
boundary condition. A distribution of 25x 50

4.3. Inclined edge crack plate under tensile
loading

In the last example, a plate with a slanted
crack is considered. The plate is subjected to a
uniform traction o =1 at both top and bottom
edges. The dimensions are H = 2W =1, the crack
length is a/w = 0.4\/5 and the incline angle is

B =45". The Young’s modulus is taken as

E =1 and Poisson’s ratio is set as v = 0.3.
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Figure 6. Inclined edge crack plate

This problem was solved by Kim and
Paulino using FEM with interaction integral [24].
Moreover, Sutradhar and Paulino [14] used
symmetric Galerkin boundary element method to
get solution for this problem. In this work, the
mixed mode values of normalized SIF and T-
Stress are calculated using XRPIM to compare
with available reference results as shown in Table
4, which indicates good agreement.

Table 4. Normalized SIFs and T-Stress, for
inclined edge crack plate

Method | «, /vza | K, /7a T
XRPIM 1471 0.568 0.727
(proposed)
SGBEM 1.446 0.615 0.775
[14]
FEM [13] 1.446 0.615 0.764

5. CONSLUSION

The interaction integral method applied to
two-dimensional crack problems to evaluate T-
stress using the XRPIM has been presented.
Three numerical examples in which the T-stress
are evaluated by means of the M-integral. The
numerical results obtained are good agreement
with known results from the references. The
presented approach has shown several advantages
and it is promising to be extended to more
complicated problems such as computation T-
stress and SIFs, crack propagation problems in
functionally graded materials.
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Ap dung tich phan twong téc tinh toan T-
Stress cho bai toan n&t hai chiéu voi
phwong phap khong i RPIM

e Nguyén Thanh Nha
e Nguyén Thai Hién

e Nguyén Ngoc Minh
e Trwong Tich Thién

Trwong Dai hoc Bach khoa, PHQG-HCM

TOM TAT:

Théng sé T-stress, con goi /a sé
hang tht hai trong chudi khai trién cua
William cho céc céc truong dan hoi
tuyén tinh & lan can dinh vét nit, déng
vai trd quan trong trong cac bai toan co
hoc ntt. Trong bado cao nay, phuong
phép tich phan tuong tac duoc diung két
hop voi phuong phap khéng lwdi moé
réng dura trén phép néi suy diém huéng
kinh (XRPIM) duoc dung dé tinh toén
thong sé T-stress. Ham dang RPIM duorc
chon vi c6 cac wu diém nhw théa man

thudc tinh Kronecker’s delta va lién tuc
bac cao. Théng sb T-stress duoc tinh
toan truc tiép tor tich phén tuong tac
duoc chiét xuét tor tich phéan doc lép
duong di J, két hop véi cac mién phu tro
cho T-stress. Mét sé bai toan nit phang
duoc tinh todn va kiém chung két qua
VvOi 100 giai tham khao ttr cac phuwong
phap khac. Sw phu hop giira céc két qua
thé hién tinh chinh xac cta phuong phép
duworc chon.

Ter khoa: vat lisu FGM, hé sb cuong do ung suit, phuong phap khong ludi RPIM
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