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ABSTRACT:  
The so-called T-stress, or second 

term of the William (1957) series 
expansion for linear elastic crack-tip 
fields, has found many uses in fracture 
mechanics applications. In this paper, an 
interaction integral method for calculating 
the T-stress for two-dimensional crack 
problems using the extended radial point 
interpolation method (XRPIM) is 
presented. Typical advantages of RPIM 
shape function are the satisfactions of 

the Kronecker’s delta property and the 
high-order continuity. The T-stress can 
be calculated directly from a path 
independent interaction integral entirely 
based on the J-integral by simply the 
auxiliary field. Several benchmark 
examples in 2D crack problem are 
performed and compared with other 
existing solutions to illustrate the 
correction of the presented approach. 
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1. INTRODUCTION  

 The fracture behavior of cracked structures 
is dominated mainly by the near-tip stress field. 
In linear-elastic fracture mechanics interest is 
focused mostly on stress intensity factors (SIFs) 
which describe the singular stress field ahead of a 
crack tip and govern fracture of a specimen when 
a critical stress intensity factor is reached. The 
usefulness of crack tip parameters representing 
the singular stress field was shown very early by 
numerous investigations. Nevertheless, there is 
experimental evidence that also the stress 
contributions acting over a longer distance from 
the crack tip may affect fracture mechanics 

properties [1, 2]. The constant stress contribution 
(first “higher-order” term of the Williams stress 
expansion, denoted as the T-stress term [3]) is the 
next important parameter. Several researchers [4, 
5, 6 and 7] have shown that the T-stress, in 
addition to the K or J-integral, provides an 
effective two-parameter characterization of plane 
strain elastic crack-tip fields in a variety of crack 
configurations and loading conditions. In special 
cases, the T-stress may be advantageous to know 
also higher coefficients of the stress series 
expansion. In order to calculate the T-stress, 
researchers have used several techniques such as 
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the stress substitution method [1], the variational 
method [8], the Eshelby J-integral method [9], the 
Betti-Rayleigh reciprocal theorem [10, 11] and 
the interaction integral method [10, 12]. Among 
these method, the last three method are based on 
path-independent integral and the T-Stress can be 
caculated using data remote from crack-tip, so the 
result is achieved higher accuracy compared to 
the other method. 

 For a few idealized cases, analytical 
solutions for T-stress are available. However, for 
practical problems involving finite geometries 
with complex loading, numerical methods need to 
be employed. Chuin-Shan Chen et al (2001) 
applied a p-version finite element method to 
compute the T-stress [10]. In 2003, Glaucio H. 
Paulino and Jeong-Ho Kim presented a new 
approach to compute the T-stress in funtionally 
graded materials (FGMs) based on the interaction 
integral method, in combination with the finite 
element method [13]. In 2004, Alok Sutradhar 
and Glaucio H. Paulino used Symmetric Galerkin 
boundary element method (SBEM) for 
calculating T-stress and SIFs [14].  

 During the past two decades, the so-called 
meshless or meshfree methods have developed, 
and their applications in solving many 
engineering problems have proved their 
applicability. Different from FEM, meshfree 
methods do not require a mesh connect data 
points of the simulation domain. Since no finite 
mesh is required in the approximation, meshfree 
methods are very suitable for analyzing crack 
problems [15, 16, 17, 18].  

 In this study, we propose an extended 
meshfree method based on the radial point 
interpolation method (XRPIM) associated with 
the vector level set method for evaluating T-stress 
for two-dimensional crack problems. To calculate 
the T-stress, the interaction integral formulation 
for homogeneous materials is used. Several 

numerical examples T-stress calculation are 
performed and investigated to highlight the 
accuracy of the proposed method.  

2.  XRPIM FORMULATION FOR 
CRACK PROBLEMS 

2.1. Weak-form formulation 
Consider a 2D solid with domain   and 

bounded by  , the initial crack face is denoted 
by boundary C , the body is subjected to a body 
force b  and traction t  on t  as depicted in Fig. 
1. If the crack faces are assumed to be traction-
free, the weak-form obtained for this elastostatic 
problem can be written as 

0
t

T T Td d d  
  

     ε σ u b u t  (1) 

 where u  are the vectors of displacements, 
σ  and ε  are stress and strain tensors, 
respectively. These unknowns are functions of 
location and time: ( , )tu u x ,  ( , )tσ σ x  and  

( , )tε ε x . 

 
Figure 1. A 2D crack model 

2.2. Meshless X-RPIM discretization and 
vector level set method 

 Base on the extrinsic enrichment technique, 
the displacement approximation is rewritten in 
terms of the signed distance function f and the 
distance from the crack tip as follow: 
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where I is the RPIM shape functions [19] and 
 f x  is the signed distance from the crack line. 

The jump enrichment functions   H f x  and 
the vector of branch enrichment functions  jB x   
(j = 1, 2, 3, 4) are defined respectively by 

  
 
 

1 0

1 0

if f
H f

if f

 


 





x
x

x
 (3) 

  ( sin , cos ,
2 2

sin sin , cos sin )
2 2

B r r

r r

 

 
 

x
 (4) 

 where r  is the distance from x to the crack 

tip TIPx  and   is the angle between the tangent to 

the crack line and the segment TIPx x  as shown 

in Fig. 2. bW  denotes the set of nodes whose 

support contains the point x and is bisected by the 

crack line and SW  is the set of nodes whose 

support contains the point x and is slit by the 

crack line and contains the crack tip. ,I Ij   are 

additional variables in the variational 
formulation. 

 

 

 Figure 2. Sets of enriched nodes 

2.3. Discrete equations 

Substituting the approximation (2) into the 
well-known weak form for solid problem (1), 
using the meshless procedure, a linear system of 
equation can be written as 

Ku F  (5) 

with K being the stiffness matrices, respectively, 
and F  being the vector of force, they can be 
defined by  

T

IJ I J d


 K B DB  (6) 

t

T T

I I I I Id d
 

    F Φ b Φ t  (7) 

 where Φ  is the vector of enriched RPIM 
shape functions; the displacement gradient matrix 
B must be calculated appropriately dependent 
upon enriched or non-enriched nodes. 

3. THE INTERACTION INTEGRAL FOR T-
STRESS IMPLEMENTATION 

3.1. M-integral formulation 

The path-independent J-integral [20] is 
defined as  

 1 ,10
lim ,j ij i jJ W u n d 


    (8) 

where W is strain energy density given by  

0
,ij ij

kl
W


    (9) 

and jn denotes the outward normal vector to the 
contour  . 

After some mathematical transformations, 
the interaction integral can be written as 

  1
1
2

aux aux
ik ik ik ik j jM dn    


 

  
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      ,1 ,1
aux aux

ij i ij i jdu u n 


   (10) 

3.2. Auxiliary fields for T-stress 

 The auxiliary fields are judiciously chosen 
for the interaction integral depending on the 
nature of the problem to be solved. Since the T-
stress is a constant stress that is parallel to the 
crack, the auxiliary stress and displacement fields 

are chosen due to a point force f  in the 1x  

direction (locally), applied to the tip of a semi-
infinite crack in an infinite homogeneous body, as 
shown in Fig. 3. 
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Figure 3. Auxiliary Field for T-stress: Michell’s 
solution 

 The auxiliary stresses are given by Michell’s 
solution [21]: 

3 2
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 The corresponding auxiliary displacements 
are [22] 
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 where d is the coordinate of a fixed point on 

the 1x  axis,   is the shear modulus, and 

   
 
3 / 1 planestress

3 4 planestrain

 



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 (13) 

3.3. Determination of T-stress 
 By considering the auxiliary field in Eq. 

(11) , a simple expression for the T-stress in 
terms of the interaction integral M, the point 
force for the auxiliary field f , and material 
properties ,E   can be obtained. 

'ET M
f

  (14) 
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4. NUMERICAL EXAMPLES 

4.1. Edge crack plate under tensile loading 

 In the first example, a rectangular plate with 
an edge crack is considered. The plate is 
subjected to a tensile stress 1   as shown in 

Fig. 4. The dimensions are set as / 12H W  . 
Various values of crack length are chosen to 
investigate the static mode I SIF of the model. 
The plain strain state is assumed with elastic 
modulus 1E   and Poisson’s ratio 0.3  . 
There are 16 192  scattered nodes are used for 
the problem. The coefficient of size of support 

domain is set as 2.2d   and the length of J-

domain / 3Jl a . The obtained results 

including normalized SIFs ( /I IK K a  ), 

normalized T-Stress ( /T T  ) and biaxiality 

ratio ( / IB T Ka ) are compared with 

Symmetric Galerkin boundary element method 
solution given by Sutradhar and Paulino [14], 
FEM solution given by Chuin-Shan Chen et al 
[10] and Feet T et al  [23]. 

 
Figure 4. Edge crack plate under tensile loading 

 There are two crack length ratios are 
investigated ( / 0.3, 0.5a W  ). Table 1 and 
Table 2 summerize the acceptable results 

H
a




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obtained by XRPIM in the comparison with other 
solutions. 

Table 1. Normalized T-Stress, SIFs and biaxiality 
ratio for edge crack plate ( / 0.3a W  )  

Method T  IK  B  

XRPIM 
(proposed) 

-0.6098 1.7419 -0.3501 

Analytical 
[23] 

-0.6141 - -0.3664 

SGBEM 
[14] 

-0.6105 1.6597 -0.3679 

FEM [10] -0.6103 1.6598 -0.3677 

Table 2. Normalized T-Stress, SIFs and biaxiality 
ratio for edge crack plate ( / 0.5a W  )  

Method T  IK  B  

XRPIM 
(proposed) 

-0.3998 2.8618 -0.1397 

Analytical 
[23] 

-0.4182 - -0.1481 

SGBEM 
[14] 

-0.4184 2.8241 -0.1481 

FEM [10] -0.4217 2.8246 -0.1493 

 
4.2. Center crack plate under tensile loading 

 The next example deals with a rectangular 
plate with a central crack as shown in Fig. 5. The 
dimensions are given as / 1H W   and 

/ 0.3a W  . The plate is subjected to a tensile 
load at the top and the bottom edges. The 
Young’s modulus and the Poisson’s ratio is 
similar to the previous example. 

Because of the symmetry of geometry and load, a 
half model is consider with the symmetry 
boundary condition. A distribution of 25 50   

 

 

 

nodes is used for the XRPIM model. Table 3 
shows the comparison between the XRPIM 
results and other solutions with a good 
agreement. 

 
Figure 5. Rectangular plate with center crack 

under tensile loading 
Table 3. Normalized T-Stress, SIFs and biaxiality 

ratio for edge crack plate ( / 0.3a W  )  

Method T  IK  B  

XRPIM 
(proposed) 

-1.1768 1.1663 -1.0090 

Analytical 
[23] 

-1.1557 - -1.0279 

SGBEM 
[14] 

-1.1554 1.1232 -1.0286 

FEM [10] -1.1554 1.1232 -1.0286 

4.3. Inclined edge crack plate under tensile 
loading 

 In the last example, a plate with a slanted 
crack is considered. The plate is subjected to a 
uniform traction 1   at both top and bottom 
edges. The dimensions are 2 1H W  , the crack 

length is / 0.4 2a W   and the incline angle is  
045  . The Young’s modulus is taken as 

1E   and Poisson’s ratio is set as 0.3  .  

H
2 a





W
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Figure 6. Inclined edge crack plate 

  

 This problem was solved by Kim and 
Paulino using FEM with interaction integral [24]. 
Moreover,  Sutradhar and Paulino [14] used 
symmetric Galerkin boundary element method to 
get solution for this problem. In this work, the 
mixed mode values of normalized SIF and T-
Stress are calculated using XRPIM to compare 
with available reference results as shown in Table 
4, which indicates good agreement. 

Table 4. Normalized SIFs and T-Stress, for 
inclined edge crack plate  

Method /IK a  /IIK a  T  

XRPIM 
(proposed) 

1.471 0.568 0.727 

SGBEM 
[14] 

1.446 0.615 0.775 

FEM  [13] 1.446 0.615 0.764 

5. CONSLUSION 

 The interaction integral method applied to 
two-dimensional crack problems to evaluate T-
stress using the XRPIM has been presented. 
Three numerical examples in which the T-stress 
are evaluated by means of the M-integral. The 
numerical results obtained are good agreement 
with known results from the references. The 
presented approach has shown several advantages 
and it is promising to be extended to more 
complicated problems such as computation T-
stress and SIFs, crack propagation problems in 
functionally graded materials. 
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Áp dụng tích phân tương tác tính toán T-
Stress cho bài toán nứt hai chiều với 
phương pháp không lưới RPIM 

 Nguyễn Thanh Nhã 
 Nguyễn Thái Hiền 
 Nguyễn Ngọc Minh 
 Trương Tích Thiện 

 Trường Đại học Bách khoa, ĐHQG-HCM  
 

 TÓM TẮT: 

 Thông số T-stress, còn gọi là số 
hạng thứ hai trong chuỗi khai triển của 
William cho các các trường đàn hồi 
tuyến tính ở lân cận đỉnh vết nứt, đóng 
vai trò quan trọng trong các bài toán cơ 
học nứt. Trong báo cáo này, phương 
pháp tích phân tương tác được dùng kết 
hợp với phương pháp không lưới mở 
rộng dựa trên phép nội suy điểm hướng 
kính (XRPIM) được dùng để tính toán 
thông số T-stress. Hàm dạng RPIM được 
chọn vì có các ưu điểm như thỏa mãn 

thuộc tính Kronecker’s delta và liên tục 
bậc cao. Thông số T-stress được tính 
toán trực tiếp từ tích phân tương tác 
được chiết xuất từ tích phân độc lập 
đường đi J, kết hợp với các miền phụ trợ 
cho T-stress. Một số bài toán nứt phẳng 
được tính toán và kiểm chứng kết quả 
với lời giải tham khảo từ các phương 
pháp khác. Sự phù hợp giữa các kết quả 
thể hiện tính chính xác của phương pháp 
được chọn. 

 Từ khóa: vật liệu FGM, hệ số cường độ ứng suất, phương pháp không lưới RPIM 
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