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ABSTRACT:  
ERPs (Event Related Potentials) are 

EEG signals which are directly measured 
from cortical electrical response to 
external stimuli such as feelings, sensual 
or cognitive events. The evaluation of the 
amplitude and latency of the ERP wave 
has important significance in evaluating 
neurological reflex. However, the ERP 
wave amplitude is small compared with 
the EEG wave, and considerably 
affected by the noise such as eyes, 
muscles, heart motion etc. In this paper, 

datasets are collected from ERPLAB and 
journals provided available datasets with 
the stimulus of sound and light. Using 
adaptive noise cancellation (ANC) 
combined with LMS algorithm the waves 
P300 of ERP were detected and 
separated. The algorithm was evaluated 
by the ratio SNR and average value. 
Results were compared with other 
published tools such as P300 calculation 
algorithm of ERPLAB softwar. 

Key words: Event Related Potentials, Adaptive Noise Cancellation, Least Mean Square, 
Electroencephalogram. 
1. INTRODUCTION  

Electroencephalography records (EEGs) 
carry information about different responses to 
certain stimuli in the human brain. Some of the 
characteristics of these signals are their 
frequencies and shapes. These components are in 
the order of just a few up to 200 μV, and the 
frequencies differ according to different 
neurological rhythms, such as the alpha, beta, 
delta and theta rhythms [1]. 

Event related potentials (ERPs) can be 
considered as voltage deflections generated by 
cortical neurons that are time-locked to specific 
events and associated with stages of information 
flow in specific cortical areas. ERPs were first 

identified in 1964, and have remained as a useful 
diagnostic tool, in both psychiatry and neurology. 
Besides, they have been widely used in brain–
computer interfacing (BCI). ERPs are those 
EEGs that directly measure the electrical 
response of the cortex to sensory, motor or 
cognitive events [2]. They are voltage 
fluctuations in the EEG induced within the brain, 
as a sum of a large number of action potentials 
(APs). They are typically generated in response to 
peripheral or external stimulations, and appear as 
somatosensory, visual, and auditory brain 
potentials, or as slowly evolving brain activity 
observed before voluntary movements or during 
anticipation of conditional stimulation. ERPs are 
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quite small (1–30µV) relative to the background 
EEG activity. However, although evaluation of 
the ERP peaks does not still result in a reliable 
diagnosis, the application of ERP in psychiatry 
has been very common and widely used. The 
ERP waveform can be quantitatively classified 
according to three main characteristics: 
amplitude, latency, and scalp distribution. In 
addition, an ERP signal may also be analyzed 
with respect to the relative latencies between its 
subcomponents. The amplitude characterizes the 
extent of neural activity and how it responds 
functionally to experimental variables, the latency 
expresses the timing of this activation, and the 
scalp distribution displays the spatial pattern of 
the voltage gradient on the scalp at any time. The 
ERP signals are either positive, represented by the 
letter P, such as P300, or negative, represented by 
the letter N, such as N100 and N400. The timing 
is estimated in terms of milliseconds after the 
stimuli (audio, visual, or somatosensory). The 
P300 wave represents cognitive functions 
involved in orientation of attention, contextual 
updating, response modulation, and response 
resolution, and consists mainly of two 
overlapping subcomponents P3a and P3b. P300 
has significant diagnostic and prognostic 
potential, especially in combination with other 
clinical symptoms and evidences [2]. 

The simplest and most widely used method 
for analysis of ERPs is averaging measured 
values of a trial set known as Ensemble 
Averaging (EA). It is an optimal way to improve 
signal-to-noise ratio (SNR) when underlying 
model of the observations assumes that ERP is a 
deterministic signal independent to additive 
background noise. Major drawback of averaging 
technique is its dependency on the amount of 
trials, which has to be large enough for better 
results [3]. The average of a trial set can depend 
considerably on the realistic model features. This 
will be more problematic for time series 

averaging that sum activities of many distinct 
brain and non-brain sources whose detailed 
features are of primary interest, including their 
spatial and temporal trial-to-trial variability [4].  
Filtering is another common method used for the 
single trial analysis of ERP, through which the 
contamination due to on-going background 
activity can be attenuated from ERP. Major 
disadvantage of filtering method is low SNR and 
the performance of filter in detection of signals 
depends on statistical properties of the signal [5]. 
To overcome these problems, concept of adaptive 
filters and its applications as noise canceller was 
introduced by Widrow et al [6]. Since then, 
adaptive noise cancellation techniques (ANC) 
have been used in many engineering applications. 

The basic concept of the adaptive filter 
design is the minimization of error between input 
and reference signal. There are various types of 
algorithm or error estimation methods exploited 
in adaptive filters to adjust the weight of filters 
and error estimation according to signal and noise 
properties. Most efficient gradient based 
algorithms for EEG signals are LMS, RLS and 
their different variants are used for adaptive 
filtering of EEG/ERP signals. Kalman filtering 
and generic observation models have been used 
to denoise the ERP signals [7]. Prony’s Approach 
has been developed for detection of P300 Signals 
[8]. The EEG/ERP signal as initially decomposed 
into the background EEG and ERP signal before 
and after the stimulus time. The ERP component 
is also divided into two segments, the early brain 
response, which is a low-level high-frequency 
signal, and the late response, which is a high-
level low-frequency signal. Main contribution of 
the proposed work is the methodology extracting 
ERP from EEG/ERP signal based on application 
of ANC through LMS algorithm. 

2. MATERIALS AND METHODS 

2.1 Materials [9, 10]  
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Data used in this paper is taken from web 
database [9]. Frequencies of EEG signals are less 
than 100Hz. In many cases, this frequency is less 
than 30Hz. In addition, most recordings present a 
50-Hz frequency component contaminating 
several electrodes. Therefore, the signals are 
lowpass filtered to eliminate this frequency 
component and other high frequency components 
generally produced by muscular activity. A 
Butterworth filter of order 10 with a cutoff 
frequency of 45 Hz is used [1]. Performing the 
averaging and filtering by the adaptive filter on 
total of trials of EEG data. 

2.2 Methods [11] 

The original signal s(n) can be affected by 
many different kind of noise, however for 
simplicity we consider signal affected by adding 
the noise signal X(n) linearly. The corrupted 
signal d(n) is composed of s(n) and X(n):  

d(n) = s(n) + X(n) 

We want to remove X(n) to extract s(n), but 
we don’t know it. Instead of that we have noise 
sources xi(n) received by secondary sensors, e.g. 
EOG, EMG, ECG etc. So we can subtract the  

 

corrupted signal d(n) by mentioned noise 
source signals multipled with weight coefficients: 
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or  

e(n) = s(n) + X(n) – wTx(n)  (1) 

where L is the length of the FIR filter. The 
original signal s(n) is different to the noise-
canceled signal e(n). In order to fit e(n) and s(n), 
we try to find w, which estimates X(n) – wTx(n) 
nearly equal to 0.  

Indeed the squared expectation of e(n) can 
be calculated as follows: 

E[e2(n)] = E[(d(n) –wTx(n))2] 

      = E[(s(n)+X(n)- wTx(n))2] 

      = E[s2(n)+ (X(n)- wTx(n))2 -2s(n)wTx(n)  

       – 2X(n)wTx(n)] 

X(n) and wTx(n) are uncorrelated with each 
other, so that E{X(n)wTx(n)} = 0. Similarly, 
E[s(n)wTx(n)] = 0. With above mentioned 
conditions above, we have: 

E[e2(n)] = E[s2(n)+ (X(n)- wTx(n))2] 

where e2(n), s2(n), (X(n)- wTx(n))2 are 
positive.  So trial to minimize E[(X(n)- wTx(n))2] 
leads to finding w, which estimates X(n) – wTx(n) 
nearly equal to 0 and it means that e(n) will be 
fitted to s(n).  

Finally, we have used adaptive filter with 
optimizing criterion of least mean square (LMS) 
algorithm to calculate the weight ratios w. Figure 
1 illustrates the structure of an adaptive filter. 
Detailed description of mentioned algorithm can 
be found in [11]. 

 

 

 

 

 
 

Figure 1. Structure of an adaptive filter 

3. RESULTS 

3.1 The results from the sample data of 
ERPLAB [13] 

To verify proposed method we used the 
sample data containing P300 wave of the 
software package ERPLAB [13]. This continuous 
EEG dataset file contains raw 32-channel data 
plus records of 154 events that occured during the 
experiment. In this experiment, there were two 
types of events: "square" events corresponding to  
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the appearance of a green colored square in the 
display and “rt” events corresponding to the 
reaction time of the subject. The “square” could 
be presented at five locations on the screen 
distributed along the horizontal axis. In this 
experiment, the subject had to attend the selected 
location on the computer screen and had to 
respond only when a square was presented at this 
location, and ignore circles when they were 

presented either at the attended location or at 
unattended locations. 

 Signals were firstly preprocessed by 
Butterworth filter of order 10 with a cutoff 
frequency of 45 Hz to remove noise 50Hz and 
high frequency comonents. Then, we calculated 
ERP signal using average algorithm and adaptive 
filter of our proposed work and compared with 
the result of ERPLAB available code.  

 
Figure 2a. The segment of sample data of ERPLAB 

 
Figure 2b. ERP image of channel FPz calculated 

by average algorithm of ERPLAB 

 

Figure 2c. ERP image of channel FPz calculated 
by average algorithm of this work 

Figure 2a is segment of sample data of 
ERPLAB. Figure 2b is ERP average images 
plotted by ERPLAB of channels FPz. Fig. 2c is 
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ERP average images plotted by average code of 
our work of channels FPz.  
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Figure 2d. ERP image of channel FPz calculated by 
adaptive filter of this work 

The result shows a good accordance in 
waveform and amplitude with ERPLAB result. 
The P300 wave is shown quite clearly at about 
300ms after stimulus. However, the average of a 
distribution suggests a large enough data, that can 
be problematic in many realistic models. This 
may be even more problematic for time series  

 

averages that sum  signals of brain and non-brain 
sources whose detailed features are out of 
primary interest. Using adaptive filter can 
overcome this. Figure 2d shows ERP image 
calculated by ANC of our work on channel FPz. 
The result shows a good accordance in waveform 
and amplitude with results of average algorithm 
and noise reduced.  

3.2 The results from data of Biosemi Active 
Two system [9] 

The data were recorded with a Biosemi 
Active Two system. Event matrix contains the 
time-points at which the flashes (events) 
occurred. In each of the datasets, the first flash 
comes 400 ms after the beginning of the EEG 
recording. Stimuli are arrays containing the 
sequence of flashes. Entries have values between 
1 and 6 and each entry corresponds to a flash of 
one image on the screen. 

 

 
Figure 3a. The segment of data of Biosemi Active Two system

 Signals are firstly preprocessed by 
Butterworth filter of order 10 with a cutoff 
frequency of 45 Hz to remove noise 50Hz and 
high frequency components. Then, we use 
available code of ERPLAB and our code based 

on average algorithm and adaptive filter to extract 
ERP signal. All results are shown in figures 3b-d.  

Figure 3a shows a segment of data of Biosemi 
Active Two system. Figures 3b, 3c and 3d show 
the results of ERP signal calculated by ERPLAB  
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code, our average and adaptive filter code resp.  
of the channel P07. These results shows good 
accordance with [9], in which he P300 waves 
appear at about 300ms after stimulus.  

 

Figure 3b. ERP image of channel P07 calculated 
by average algorithm of ERPLAB 

 
Figure 3c. ERP image of channel P07 calculated 

by average algorithm of this work 

 

 
Figure 3d. ERP image of channel P07 calculated 

by adaptive filter of this work 

5. CONCLUSIONS 

The ERP signal is a specific indicator of the 
brain function and can be potentially used as 
predictor of many applications in neurology 
research, diagnosis or treatment. ERPs are also 
related to the circumscribed cognitive process and 
can be use in neurofeedback application. 
Extracting ERP signal on EEG background 
suggests high reliability and flexibility in order to 
realize longterm measurements. Proposed work is 
an important component of our project on using 
ERP to study neurological behavior and 
application of neurofeedback in diagnosis and 
treatment. The results verified on published 
datasets showed good accordance with published 
results and proved that proposed algorithm could 
be used with good reliability. Mentioned ANC 
could be improved using neuron network if 
reference datasets is large enough to test.   
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 TÓM TẮT:  
Tín hiệu điện thế sự kiện (ERP) là tín 

hiệu EEG được đo trực tiếp từ vỏ não do 
tác dụng kích thích bên ngoài như cảm 
xúc, gợi cảm hoặc nhận thức. Việc đánh 
giá của biên độ và độ trễ của sóng ERP 
có ý nghĩa quan trọng trong việc đánh 
giá phản xạ thần kinh. Tuy nhiên, biên độ 
sóng ERP là nhỏ so với các sóng điện 
não đồ, và bị ảnh hưởng đáng kể bởi 
nhiễu mắt, cơ, nhịp tim… Bài báo này sử 

dụng dữ liệu công bố của ERPLAB với 
các kích thích của âm thanh và ánh sáng 
nhằm kiểm chứng phương pháp phát 
hiện và tách sóng P300 của ERP bằng 
thuật toán ANC kết hợp với LMS. Các 
thuật toán được đánh giá bởi các SNR tỷ 
lệ và giá trị trung bình. Kết quả được so 
sánh với các công cụ tính toán khác như 
thuật toán tính toán P300 của phần mềm 
ERPLAB. 

Từ khóa: Event Related Potentials, Adaptive Noise Cancellation, Least Mean Square, 
Electroencephalogram. 
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