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ABSTRACT:  
A meshless method based on radial 

point interpolation was developed as an 
effective tool for solving partial 
differential equations, and has been 
widely applied to a number of different 
problems. Besides its advantages, in this 
paper we introduce a new way to 
improve the speed and time calculations, 
by construction and evaluation the 
support domain. From the analysis of 

two-dimensional thin plates with different 
profiles, structured conventional isotropic 
materials and functional graded 
materials (FGM), the results are 
compared with the results had done 
before that indicates: on the one hand 
shows the accuracy when using the new 
way, on the other hand shows the time 
count as more economical. 
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1. INTRODUCTION  

 In recent years, meshless methods have been 
widely used to solve partial differential equations 
(PDEs), Element Method free Galerkin (EFG) 
proposed by Belytschko [1], this method allows 
the construction of technical shape functions by 
approximately moving least squares (MSL) [2], 
which does not require the connection between 
the nodes to build the interpolation function in the 
distribution contemplated [3]. The interpolation 
method through the center point (RPIM) [4] is an 
approach that is important for the grid boundary 
value problem. This method was applied to 
analyze reliability for a variety of 2D and 3D 
Solids, The formulation is based on the shape 
functions a system interpolation points, each 
point interpolation built up an independent shape 

functions, this job is simple but yet in the process 
of building the shape functions of the system 
contemplated node will vary depending on the 
position of the interpolation point, so it will take 
more time. In this article we use RPIM to define 
support domain to save time, corporeality: 

 Set the child domain, identified midpoint 
each domain, determine the midpoint between 
each data node, the number of node that are used 
to build content for all types of interpolation 
points in the region are executed instead the 
system must rebuild node for each interpolation 
point.  

 In this study, we use the RPIM were 
improve to simulate 2D linear elasto-static 
problems for isotropic and orthotropic 
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functionally graded materials [FGM]. The 
method is applied to find numerical solution of 
several problems, the obtained results are 
compared with either analytical solutions or 
numerical solution form FEM that presented by 
other authors in the literatures [5], [6]. 

2. MESHFREE RADIAL POINT 
INTERPOLATION METHOD USING THIN 
PLATE SPLINE WEIGHT FUNCTION. 

To approximate the distribution functions 

 within a sub-domain , this function 

can be interpolated based on all nodal values at  
within this sub-domain ( i = 1,…..,n and n is the 
total number of nodes in the sub-domain). The 

well-known RPIM interpolation  , 

 is frequently defined in the following 
form 

                          (1) 

Where u = [u(x1)   u(x2)   …   u(xn)]T is the 

vector of nodal displacements;  is the radial 

basis function;   is the monomial in the 2D 

space coordinates , j = 1,……,m 
where m is the number of polynomial basis 

functions. The constants  and  are determined 

to construct the shape function.  

In this study, the radial basis functions used 
to construct the RPIM shape function are Thin 

Plate Spline (TPS)  with 

  the shape 

parameter  Enforcing  in 
equation (1) to pass through all the nodal values 
at n nodes surrounding the point of interest x, a 
system of n linear equations are obtained, one for 
each node, which can be written in the matrix 
form as: 

  (2)                    

The moment matrix of RBFs R0 and the 
polynomial moment matrix Pm are as following 

 (3)          

    (4)   

The vectors of coefficients for RBFs and the 
vector of coefficients for polynomial are 

      (5) 

 (6)
    There are n+m variables in equation (2), 
so the following m constraint conditions can be 
used as additional equations. 

    (7) 

Combining equations (2) and (7) yields the 
following matrix form 

    (8) 

The vector of coefficients can be obtained 
by multiplying the inverted of matrix  with 
vector  

     (9) 

Substituting to equation (1) can yield 

                                                                        
(10)                                                               

where the RPIM shape functions can be 
express as: 

 =   

                   (11) 
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The vector of RPIM shape functions 
corresponding to the nodal displacements can be 
written as 

  (12) 

Finally, equation (10) can be rewritten as follows 

  (13) 

One of the most important factors in 
meshless method is the concept of the influence 
domain and the radius of this domain that used to 
determine the number of field nodes within the 
interpolated domain of interest. Often, the size of 
support domain is computed with the following 
formula 

     (14) 

 Where  is the mean distance of the 

scattered node and  is the scaling factor. 

3. CONSTRUCTION OF SHAPE 
FUNCTIONS 

Let Ω be a bounded domain in R2 and 
consider the boundary value problem, 

   (    15)                          

where f is a field function given in Ω,  is a 

Dirichlet condition given on ΓD,  is a Neumann 
condition given on  ΓN  and ∂/∂n is 
differentiation along the outer normal to ΓN. 

We assume that N field nodes, 

distributed in the problem domain 
and on its boundary are given. Consider an 
approximation of the solution u(x) represented as 
follows: 

    (16) 

where  is a shape function corresponding to 

each field node . The purpose here is to 
determine the unknown coefficients, , in (1), so 
that the approximate solution satisfies the 

boundary conditions. These coefficients can be 
obtained as the solution of the linear system, 

                 (17) 

      (18) 

After enforcement of the Dirichlet boundary 
condition. In this section, we suggest a new 
definition of the shape function in RPIM. 

Figure 1. Support domain for RPIM shape function 

 In Fig.1 describe RPIM method, each 
domain supports constructed by a center and 
made a gauss point radius, dmax is constant, di is 
average cell size between the points, all of the 
nodes located the radius will be used building 
shape functions with gauss point that, so each 
time building a form for a function, there will be 
a loop is performed to determine the node point 
within a radius of gauss point. 

Figure 2. Support domain for improve RPIM     
shape function 

 In Fig.2 describe improving RPIM, we set 
the midpoint between the elements, every 
midpoint is used to determine a support region, 
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each gauss point of element which will use the 
identified node to build shape functions without 
having to run additional loop, this work helped 
reducing the loop as well as saving time. 

4. Numerical examples 
4.1 Perforated tensile specimen 

Consider a plate with dimensions and boundary 
conditions as shown in Fig.3. The plate is 
subjected to a uniform tensile load at the top. The 
young modulus and Poisson ratio are given as E = 
1e3, υ = 0.3. There are 210 nodes are used in this 
model. 

Figure 3. Profiles of plates. 

Figure 4. Position at the top edge 

The positions at the top edge are displayed 
in Fig.4, the results obtained by improved RPIM 
are compared with FEM results given by Ansys 
and RPIM, indicating the error < 5% and results 
is acceptable. 

Figure 5. Compare CPU time. 
 Charts in Fig.5 show the comparison of 
CPU time in modified RPIM and traditional 
RPIM. It can be seen that modified RPIM gives 
result faster than RPIM. Especially in the case of 
using 12 Gauss point, the duration of modified 
RPIM faster 30s than RPIM. 

4.2 Plane stress bracket      

 

Figure 6. Profiles of plates. 
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Figure 7. RPIM stress result σyy. 

 

Figure 8. Improve RPIM stress result σyy. 
Figure 7 and Figure 8 show the position and 

stress σyy, results maximum stress in the y 
direction, in this case the author uses 4 gauss 
point for an element, and the error is 2.63%. 

In this example, we consider a model with 
dimensions and Boundary conditions as shown in 
Fig.6. The plate is subjected to a uniform tensile 
load at the position of below edge of the bigger 
hole. The young modulus and Poisson ratio are 
given as E = 1e3, υ = 0.3. There are 1137 nodes 
are used in this model. 

 

Figure 9. Position of below edge of the bigger 
hole, in this case 4 gauss points were used. 

 
Figure 10. Position of below edge of the bigger 
hole, in this case 8 gauss points were used. 

 
 

Figure 11. Position of below edge of the bigger 
hole, in this case 12 gauss points were used. 

Plots in Fig.9, Fig.10 and Fig.11 show the 
position below edged of the bigger hole. It can be 
seen that resulting in displacement of RPIM and 
modified RPIM as asymptotic when gauss points 
ascending score, in this case the author uses 4, 8, 
12 gauss points, use cases 12 gauss point results 
of the two methods for error close to zero. 

4.3 Isotropic FGM link bar 

The FG link bar, made of titanium/titanium 
monoboride is subjected to a tensile load of 1 unit 
at the right edge. Values assigned to material 
parameters of titanium monoboride (TiB) and 
titanium (Ti) are 
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, , 
,                  (19) 

These properties are assumed to vary 
exponentially in the y-direction according to the 
following relations: 

    (20) 

    (21) 

where the non-homogeneity parameters  
and  are given by 

    (22) 

   (23) 

 

In Fig.13 authors used modified RPIM to 
calculate the FGM, maximum stress in the 
directions x at location I and II (5th row in Table 
1 left) is compared with the results of other 
articles [10], [11], [12], error when using RPIM-
modified with FGM were compared with RBF-
MLPG5 at location I is 1.62% and 2.37% at 
location II.         

 

 
Figure 12. Profiles of plates with functionally graded materials (FGM) was used. 

Figure 13. Improve RPIM stress result σxx with FGM. 
 

Table 1. Comparison of normal stress in the direction x. 

Method Material property Location I Location II 

FEM(Graded element) [10] Homogeneous 2.908 2.137 

FGM 2.369 2.601 

MLS-MLPG1 [11] Homogeneous 2.918 2.140 

FGM 2.360 2.594 

RBF-MLPG5 [12] Homogeneous 2.901 2.131 

FGM 2.403 2.607 

RPIM-modified Homogeneous 2.937 2.153 

FGM 2.364 2.669 



TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 18, SOÁ K4- 2015 

 Trang 137 

5. CONCLUSION 

The work has now developed an effective 
algorithm based on radial meshfree method of 
interpolation points. In this method, the shape 
functions are determined depending on the 
subdomain is considered a part of a rectangle 
bounds of the problem domain. The new 
definition allows us to quickly assess the function 
of the form from the matrix to assess functional  

 

shape and form of their decomposition can be 
calculated in advance of the pre-treatment 
evaluation process. Our numerical results indicate 
that the new definition of the shape functions 
provide reliable solutions with low computational 
cost. In addition, the results showed that the new 
definition contributes to rapid assessment of the 
approximate solution. 

 
 
 
 
 
Cải thiện phương pháp không lưới RPIM 
và áp dụng phân tích ứng xử đàn hồi cho 
vật liệu phân lớp chức năng FGM. 

 Phùng Quốc Việt 
 Nguyễn Thanh Nhã 
 Trương Tích Thiện 

 Trường Đại học Bách khoa, ĐHQG-HCM 
 

TÓM TẮT: 
Phương pháp không lưới dựa trên 

phương pháp nội suy điểm qua tâm 
(RPIM) gần đây được phát triển như một 
công cụ hiệu quả để giải phương trình vi 
phân từng phần và được áp dụng rộng 
rãi để giải quyết các vấn đề khác nhau. 
Ngoài những ưu điểm vược trội của nó, 
trong bài viết này chúng tôi giới thiệu một 
chương trình tính mới nhằm cải thiện tốc 
độ cũng như là thời gian tính toán, bằng 

việc xây dựng và thẩm định lại các miền 
hỗ trợ. Từ việc phân tích hai chiều các 
tấm mỏng có biên dạng khác nhau, có 
cấu trúc vật liệu đẳng hướng thông 
thường và vật liệu phân lớp chức năng 
(FGM), kết quả sẽ được so sánh với 
những bài toán đã thực hiện trước đây: 
một mặt cho thấy tính chính xác khi sử 
dụng chương trình mới, mặt khác cho 
thấy thời gian tính là tiết kiệm hơn.

 
Từ khóa: Phương pháp không lưới, Hàm cơ sở hướng kính, Phép nội suy điểm hướng 

kính, FGM. 
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