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ABSTRACT:

A meshless method based on radial
point interpolation was developed as an
effective tool for solving partial
differential equations, and has been
widely applied to a number of different
problems. Besides its advantages, in this
paper we introduce a new way to
improve the speed and time calculations,
by construction and evaluation the
support domain. From the analysis of

two-dimensional thin plates with different
profiles, structured conventional isotropic
materials and  functional graded
materials (FGM), the results are
compared with the results had done
before that indicates: on the one hand
shows the accuracy when using the new
way, on the other hand shows the time
count as more economical.
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1. INTRODUCTION

In recent years, meshless methods have been
widely used to solve partial differential equations
(PDEs), Element Method free Galerkin (EFG)
proposed by Belytschko [1], this method allows
the construction of technical shape functions by
approximately moving least squares (MSL) [2],
which does not require the connection between
the nodes to build the interpolation function in the
distribution contemplated [3]. The interpolation
method through the center point (RPIM) [4] is an
approach that is important for the grid boundary
value problem. This method was applied to
analyze reliability for a variety of 2D and 3D
Solids, The formulation is based on the shape
functions a system interpolation points, each
point interpolation built up an independent shape

functions, this job is simple but yet in the process
of building the shape functions of the system
contemplated node will vary depending on the
position of the interpolation point, so it will take
more time. In this article we use RPIM to define
support domain to save time, corporeality:

Set the child domain, identified midpoint
each domain, determine the midpoint between
each data node, the number of node that are used
to build content for all types of interpolation
points in the region are executed instead the
system must rebuild node for each interpolation
point.

In this study, we use the RPIM were
improve to simulate 2D linear elasto-static
problems  for isotropic and orthotropic
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functionally graded materials [FGM]. The
method is applied to find numerical solution of
several problems, the obtained results are
compared with either analytical solutions or
numerical solution form FEM that presented by
other authors in the literatures [5], [6].

2. MESHFREE RADIAL POINT
INTERPOLATION METHOD USING THIN
PLATE SPLINE WEIGHT FUNCTION.

To approximate the distribution functions
u(x; ] within a sub-domain £, =0, this function

can be interpolated based on all nodal values at x;
within this sub-domain (i = 1,.....,n and n is the
total number of nodes in the sub-domain). The

well-known RPIM uh{xf] ,

wx = 0, is frequently defined in the following
form

interpolation

W) = Ty Re@a; + X7 py GO by =
=RTa+ P'b=[RT P7] [;]
1)

Where u = [u(x1) u(x2) u(xn)]" is the
vector of nodal displacements; R;(r} is the radial
basis function; p; (x) is the monomial in the 2D
space coordinates =" =[x.¥], j = 1,...... ,m
where m is the number of polynomial basis
functions. The constants a; and b; are determined
to construct the shape function.

In this study, the radial basis functions used
to construct the RPIM shape function are Thin
Plate Spline (TPS) R;(r} = =™ with

1=l )+ O - )
parameter m =4.01 Enforcing (u)*(x) in
equation (1) to pass through all the nodal values
at n nodes surrounding the point of interest x, a
system of n linear equations are obtained, one for
each node, which can be written in the matrix

the shape

form as:

Ug =[ug 4z ~ up]™= Rpa+ Fyb (2)

The moment matrix of RBFs Ro and the
polynomial moment matrix Pm are as following

Rim) Ra(m) Ro(n)
Rg = Rl'?"::] RL'ET::] : RL'E'-"'::] (3)
Ry(m) Ry(m) Ry yn
1 1
E m An
Fs;; = J:l . .‘F‘_r! (4)
Fn (1) Pmxy) M

The vectors of coefficients for RBFs and the
vector of coefficients for polynomial are

a’ =[a; a3 ay]” ()

bT = [b; By by]” (6)

There are n+m variables in equation (2),
so the following m constraint conditions can be
used as additional equations.

TRy (ke =Pha=0, j=12..m (1)

Combining equations (2) and (7) yields the
following matrix form

U = [Uad] = [E;r: ng [:] = Gpay (8)

The vector of coefficients a y can be obtained
by multiplying the inverted of matrix Gy with
vector U4

ag = [:] = Gl Uy 9)

Substituting a  to equation (1) can yield

(u)*(x) = [R7

where the RPIM shape functions can be
express as:

&7(x) = [R7
[¢,0 ¢,

PFlept0,. =970, (10)

PT1Ggt =

6. 6.6 . ¢, @]

n+1 n+m

(11)
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The wvector of RPIM shape functions
corresponding to the nodal displacements can be
written as

T = [4,@ 4, .. 4] 12

Finally, equation (10) can be rewritten as follows

1

W) = T, = Z

=1

Fiug (13)

One of the most important factors in
meshless method is the concept of the influence
domain and the radius of this domain that used to
determine the number of field nodes within the
interpolated domain of interest. Often, the size of
support domain is computed with the following
formula

d, = ad, (14)
Where d. is the mean distance of the
scattered node and = is the scaling factor.

3. CONSTRUCTION  OF
FUNCTIONS

SHAPE

Let Q be a bounded domain in R2 and
consider the boundary value problem,

[—u;j.=f infl au_ _
u= u onlD, an q

on TN ( 15)

where f is a field function given in Q, i is a

Dirichlet condition given on I'D, g is a Neumann
condition given on I'N and 0J/on s
differentiation along the outer normal to I'N.

We assume that N field nodes,

X, . ... Xy, distributed in the problem domain
and on its boundary are given. Consider an
approximation of the solution u(x) represented as
follows:

u(x) = L u; 6 (%) (16)

where g.(x] is a shape function corresponding to

each field node x;. The purpose here is to

determine the unknown coefficients, w;, in (1), so
that the approximate solution satisfies the

boundary conditions. These coefficients can be
obtained as the solution of the linear system,

Ay e uy]" =y o wl¥ (17)

a;; = Jp Ve, (x). Vg (x) day; =
af(x)6,(x) dx + [ ¢, (x) at
(18)
After enforcement of the Dirichlet boundary

condition. In this section, we suggest a new
definition of the shape function in RPIM.

., R=dixdmax
b °

% *T* HTk— K] * *[_——support domain

|___node in support domain

% *¥ *[* *[ % *[_— center of element
@ [ )
. e xf | gauss point
* *]

o o—
Figure 1. Support domain for RPIM shape function

In Fig.1 describe RPIM method, each
domain supports constructed by a center and
made a gauss point radius, dmax is constant, di is
average cell size between the points, all of the
nodes located the radius will be used building
shape functions with gauss point that, so each
time building a form for a function, there will be
a loop is performed to determine the node point
within a radius of gauss point.

EL /—\/' R=dixdmax

O .

*  #]%7 #[x  ¥[* ] ___—supportdomain

* 7/ x  x|x x K,/node in support domain
* ta«- *[H___A[* | *

« s #lx  w|s/ s« 9gausspoint

* * *’i’)’* ]

*  * ¥ xlx o«

* * T *T% * * *]

* * [ * | * * | * *|
o o L.

Figure 2. Support domain for improve RPIM
shape function

In Fig.2 describe improving RPIM, we set
the midpoint between the elements, every
midpoint is used to determine a support region,
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each gauss point of element which will use the
identified node to build shape functions without
having to run additional loop, this work helped
reducing the loop as well as saving time.

4. Numerical examples

4.1 Perforated tensile specimen

Consider a plate with dimensions and boundary
conditions as shown in Fig.3. The plate is
subjected to a uniform tensile load at the top. The
young modulus and Poisson ratio are given as E =
1e3, v = 0.3. There are 210 nodes are used in this

model.

y
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X

Figure 3. Profiles of plates.
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Figure 4. Position at the top edge

The positions at the top edge are displayed
in Fig.4, the results obtained by improved RPIM
are compared with FEM results given by Ansys
and RPIM, indicating the error < 5% and results
is acceptable.
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Figure 5. Compare CPU time.

Charts in Fig.5 show the comparison of
CPU time in modified RPIM and traditional
RPIM. It can be seen that modified RPIM gives
result faster than RPIM. Especially in the case of
using 12 Gauss point, the duration of modified
RPIM faster 30s than RPIM.

4.2 Plane stress bracket
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Figure 6. Profiles of plates.
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Figure 7. RPIM stress result oyy.
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Figure 8. Improve RPIM stress result oyy.

Figure 7 and Figure 8 show the position and
stress oyy, results maximum stress in the y
direction, in this case the author uses 4 gauss
point for an element, and the error is 2.63%.

\:3\

o Max =6.5474
Yy

In this example, we consider a model with
dimensions and Boundary conditions as shown in
Fig.6. The plate is subjected to a uniform tensile
load at the position of below edge of the bigger
hole. The young modulus and Poisson ratio are
given as E = 1e3, v = 0.3. There are 1137 nodes
are used in this model.
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Figure 9. Position of below edge of the bigger
hole, in this case 4 gauss points were used.
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Figure 10. Position of below edge of the bigger
hole, in this case 8 gauss points were used.
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Figure 11. Position of below edge of the bigger
hole, in this case 12 gauss points were used.

Plots in Fig.9, Fig.10 and Fig.11 show the
position below edged of the bigger hole. It can be
seen that resulting in displacement of RPIM and
modified RPIM as asymptotic when gauss points
ascending score, in this case the author uses 4, 8,
12 gauss points, use cases 12 gauss point results
of the two methods for error close to zero.

4.3 Isotropic FGM link bar

The FG link bar, made of titanium/titanium
monoboride is subjected to a tensile load of 1 unit
at the right edge. Values assigned to material
parameters of titanium monoboride (TiB) and
titanium (Ti) are
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Epz = 375 Gpa,

Ey; = 107 Gpa, fy; = 0.34

These properties are assumed to vary . N
exponentially in the y-direction according to the In Fig.13 authors used modified RPIM to

following relations:

E(y) = Erie®®

— 1
rig = 0.14, Bs = 1;log (Prig [ Pr;) (23)
(19)

calculate the FGM, maximum stress in the
(20) directions x at location I and Il (5th row in Table
1 left) is compared with the results of other

N = B glay .
o0 = e (21) articles [10], [11], [12], error when using RPIM-
where the non-homogeneity parameters Sz modified with FGM were compared with RBF-
and fz are given by MLPGS5 at location | is 1.62% and 2.37% at
location I1.
Be =~ 10g (Eriz [ Er:) (22)
TiB \
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. —=to =1
Ti - H e
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Figure 12. Profiles of plates with functionally graded materials (FGM) was used.

O,

e

Figure 13. Improve RPIM stress result oxx with FGM.

Table 1. Comparison of normal stress in the direction x.
Method Material property Location | Location Il
FEM(Graded element) [10] Homogeneous 2.908 2.137
FGM 2.369 2.601
MLS-MLPG1 [11] Homogeneous 2.918 2.140
FGM 2.360 2.594
RBF-MLPGS5 [12] Homogeneous 2.901 2.131
FGM 2.403 2.607
RPIM-modified Homogeneous 2.937 2.153
FGM 2.364 2.669
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5. CONCLUSION

The work has now developed an effective
algorithm based on radial meshfree method of
interpolation points. In this method, the shape
functions are determined depending on the
subdomain is considered a part of a rectangle
bounds of the problem domain. The new
definition allows us to quickly assess the function
of the form from the matrix to assess functional

shape and form of their decomposition can be
calculated in advance of the pre-treatment
evaluation process. Our numerical results indicate
that the new definition of the shape functions
provide reliable solutions with low computational
cost. In addition, the results showed that the new
definition contributes to rapid assessment of the
approximate solution.

Cai thién phwong phap khéng lvéi RPIM

N\ V4

va ap dung phan tich &ng x& dan hoéi cho

N

e Phung Quéc Viét
e Nguyén Thanh Nha
e Trwong Tich Thién

Trwong Dai hoc Bach khoa, PHQG-HCM

TOM TAT:

Phuwong phap khéng Iwdi dwa trén
phuong phép néi suy diém qua tédm
(RPIM) gén day duoc phét trién nhu mét
cong cu hiéu qué dé giai phuong trinh vi
phan timg phén va duoc 4p dung réng
rai dé gidi quyét cac véan dé khéc nhau.
Ngoai nhiing wu diém vuoc trdi cda nod,
trong bai viét nay chang t6i gidi thiéu moét
chuong trinh tinh méi nhdm cai thién tc
do ciing nhw la thoi gian tinh toén, bang

vat liéu phan I&¢p chirc nang FGM.

viéc xay dung va thdm dinh lai cac mién
hé tro. Tir viéc phén tich hai chiéu cac
tdm mdng cé bién dang khéc nhau, cé
cdu tric vat liéu ddng hudéng théng
thuong va vat liéu phan 16p chirc nang
(FGM), két qud sé duoc so sanh véi
nhirng bai toan da thuc hién tridc day:
mét méat cho thdy tinh chinh xéc khi st
dung chuong trinh md&i, mat khac cho
thdy thoi gian tinh la tiét kiém hon.

T khéa: Phuong phap khéng Iwéi, Ham co sé hwéng kinh, Phép néi suy diém huéng

kinh, FGM.
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