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ABSTRACT:  
The purpose of this article is studied 

the application of isogeometric analysis 
(IGA) to two-dimensional steady state 
heat transfer problems in a heat sink. By 
using high order basis functions, NURBS 
basis functions, IGA is a high rate 

convergence approach in comparison to 
a traditional Finite Element Method. 
Moreover, the development of this 
method decreased the gaps between 
CAD and mathematical model and 
increased the continuity of mesh. 
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1. INTRODUCTION  

 Almost every technical operate process 
generate heat during activity duration; it can be 
active or inactive. In case of parts work in high 
temperature conditions, the size, material and 
other relative parameters must be optimized so 
that they can avoid destroying, and heat which 
generate unnecessary needed to effectively 
diffused [1, 2]. It is an importance and necessity 
for heat transfer problems in techniques and 
industries, and it is interested in science and 
engineering communities. The heat transfer 
problems have solved by many different methods, 
like Finite Element Method [3], meshless method 
[4], or Finite Pointset Method for simulating heat 
transfer involving a moving source [5], even 
Analytical Solution. In this study, we focus on the 
introduction of the basic concept of isogeometric 
analysis using B-spline basis functions for heat 
transfer problems and discuss the accuracy of this 
method also mentioned other. 

 Isogeometric analysis (IGA) was introduced 
in [6] and has developed since 2005. Because of 
the existing gaps between Computer Aided 
Design (CAD) and the Finite Element Analysis 
(FEA), IGA was coined. The predominance that 
is using No-Uniform Rational B-spline to 
represent the complex geometries, while the 
geometry is replaced by finite element meshes 
approximated of the geometry in FEA. To obtain 
a high accuracy result, a refinement mesh is used 
with a coherence level. In traditional FEA, the 
refinement requires communication with the 
CAD geometry during a process of analysis, 
while simplify mesh refinement is a dominance of 
IGA. It is approximately 80% of overall analysis 
time to generate the mesh in FEM [7]. Therefore, 
we will save much time and cost with IGA. The 
IGA has been applied to several physical 
problems and will be clearly described in this 
paper. 

2. BSPLINE AND NURBS 
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2.1 Knot vectors 

 A knot vector is a set of knots which are 
defined in the parameter space of a curve, that is 

1 2 1{ , , , }n p                                       (1) 

where i �  is the thi  knot, i  is the knot index, 

1, 2, , 1i n p    , p  is the polynomial order, 

and n  is the number of basis functions used to 
contruct the B-spline curve. If the knots are 
equally spaced in the parameter space, knot 
vectors may be uniform. 

2.2.  Basis functions 

 The B-spline basis functions are recursive 
functions [8]. For 0p  , they are defined by 
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where 1 i n   and 0/0 is considered as zero. 

Clearly, considering a B-spline basis function 
with p  degree, the interior knot can be a 

multiplicity p  in the knot vector. Furthermore, 

the first and last knots have multiplicity 1p   

that is open knot vector. Major properties of the 
B-spline basis functions involve non−negativity, 

partition of unity, local support and p kC   
continuty. An example of open knot vector 
Ξ={0,0,0,0.25,0.5,0.75,0.75,1,1,1} is presented in 
Figure 1. 

 
Figure 6. Quadratic basis functions for the open 

knot vector Ξ = {0,0,0,0.25,0.5,0.75,0.75,1,1,1} 

 There are several important features of 
NURBS geometry. The first is that the basis 
constitutes a partition of unity, that is 
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 The second, each basis function is pointwise 
nonnegative over the entire domain, that is  

, ( ) 0i pN   . The next feature is that each thp  

order function has 1p   continuous derivatives 

across the element boundary. And an important 
note is the support of the B-spline functions of 
order p  is always 1p   knot spans. 

2.3.  B-spline curves 

 A B-spline curve for a given direction has 
the form of 
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 NURBS are B-spline generalization and 
alow more control over local domain   
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 where the iP  are the control points, the iw  

are the weights, and the , ( )i uN u  are the pth-order 

B-spline basis functions defined on the 
nonperiodic (and nonuniform) knot vector 

1 1{ , , , , , , , , }p m pU a a u u b b        (7) 

 
Figure 7.  B-spline, piecewise quadratic curve in � . 
Basis function and knot vector as in Figure 1. Control 
point locations are denoted by ■ , and the knots, 
which define a mesh by partitioning the curve 
into elements, are denoted by ■ 

2.4.  B-spline surfaces 

 Given a control net ,{ }i jB , 1, 2, ,i n  , 

1,2, , ,j m   knot vectors 1 2 1{ , , , }n p        

and 1 2 1{ , , , }m q     H , a tensor product B-

spline surface is defined by 
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 where , ( )i pN   and , ( )j pM   are univariate 

B-spline basis functions of order p  and q , 

corresponding to knot vector   and H , 
respectively. 

3.  A TWO-DIMENSIONAL STATIC 
FORMULATION BASED ON NURBS 
APPROXIMATIONS 

 Using NURBS basis function, the 
temperature variable can be interpolated as  

1

n

i i
i

R


T T                             (9) 

where iR  are the NURBS basis 
functions, iT  are the temperature at control point 
i  and n  is the number of control points. 

 The governing equation of static analysis for 
a linear structural system in the form as  

   KT f                                       (10) 

 where K is the global left hand side matrix 
expressing the properties of the overall system, f 
is the global load vector, which is the assemblage 
of individual load vectors. 

 In addition, K matrix is presented by [9] 

T Td h d
 

   K B DB N N               (11) 

 where B is the derivative matrix, which 
relate the gradient of the field variable to the 
nodal values. And D matrix in form as 

0
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 where xk  and yk  is the thermal conductivity 

coefficients. 

4. RESULTS AND DISCUSSION 
4.1 Square plate with Dirichlet 
conditions 

 To demonstrate the accuracy and 
performance of the isogeometric in heat 
conduction problems, we consider to a square 
plate of unit thickness, is shown in Figure 8, size 
100 cm. At the top side, the plate is subjected to 
isothermal boundary conditions of 500 C , and 
100 C  at the other sides [9, 10]. Assume the 
thermal conductivity of the material is constant 
and equal to 10 /W m C . Determine the 
temperature at the center of the plate using 
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Isogeometric Analysis and compare that result 
with the analytical method and the Finite Element 
Method. 

 In order to obtain the exact solution of the 
steady state without heat generator, we shall use 
the Laplace equation and the analytical solution 
was calculated by Holman, 1989, [6], it is a 
Fourier sine series, and that solution is expressed 
in Equation (13). 

 
Figure 8. Square plate with boundary conditions 
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 (13) 

 where, 2T  is the temperature at the top side, 

and 1T  is at the other sides. 

 By apply the concrete boundary conditions 
and a range of n  value, the temperature at the 
center of the plate is determined following the 
Equation (13). The value of temperature is static 
at 200.000centerT C  . 

 First, we consider to the basis is choosen as 
quadratic, cubic and quartic NURBS, is shown in 
Figure 9. The number of elements is constant 
while the number of control points and the order 
of basis functions simultaneously increase. To 
clearly observe the advantage of IGA, we 
consider to the temperature in the center of square 
plate with array of degree of freedoms. 

 
Figure 9. Quadratic, cubic and quartic mesh 

 The convergence of the temperature at the 
center of square plate is show in the Figure 10. 
According to the figure, by increasing the order,  
p, of the basis functions, the results show higher 
accuracy. 

 
Figure 10. The comparisons of convergence of 

the temperature at the center of square plate 

 
Figure 11. The error value to the analytical 

solution of each case 

 Although, the cubic and quartic IGA gain 
uper-convergence with a very small error, about 
0.008 0.433% . By increasing the order, p , of 

the basis functions, the obtained results converge 
to the best reference value determined by the 
expression (13), [7]. By using more fine 
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discretization, there errors are reduces, as shown 
in Figure 11. 
 As shown in the Figure 10, the convergence 
rate of the FEA is slower than IGA, it mean, at 
the certain number of DOFs, the IGA result 
closer the analytical result than FEA. The 
temperature distribution in the square plate is 
shown in Figure 12. 

.  

 
Figure 12. The temperature distribution with 961 

DOFs in FEM and 361 DOFs in IGA 

4.2 Square plate  with both Dirichlet 
and Neumann conditions 

 As a second example, a two-dimensional 
domain is prescribed with Dirichlet and Neumann 
boundary conditions applied along the boundaries  

 

is show in Figure 13. Heat enter at the bottom of 
the plate is 500 C , and other sides entered 
Neumann conditions with the convection heat 

transfer coefficient 10h   2/W m K  and the 

temperature of the fluid is 100fT C  .  

 
Figure 13. Square plate with both Dirichlet and 

Neumann boundary conditions 

 The lowest temperature is at the top-left and 
right corner, 203T C   and the highest 
temperature certainly is at the bottom of square 
plate. The plot of temperature distribution is 
shown in the Figure 14. 

 The 

 

Figure 15 shows the convergence of the 
temperature at the center of the square plate. As 
increasing a number of control points, the 
obtained results converge to a value.  

Both of two method have similar temperature 
distribution in this problem, it is shown in Figure 
16. 
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Figure 14. The temperature distribution in the 

square plate with 961 DOFs base on FEM and 49 
DOFs base on cubic IGA 

 
Figure 15. The comparisons of convergence of 

the temperature at the center of square plate with 
component of Neumann and Dirichlet Conditions 

 
Figure 16. The temperature distribution on y 

direction 

4.3.  A quarter  of annular 

 In order to gain a better understanding of 
effect of IGA, we focus on a problems with circle 
boundaries, as show in Figure 17. It is a quarter 
of annular with r1 = 0.1 (m) and r2 = 0.2 (m). The 
boundaries conditions is similar to square plate 
with Dirichlet and Neumann conditions as 
expressed in the above: the temperature value at 
the bottom is 5000C and the convection 
conditions on other sides with the convection heat 

transfer coefficient 10h   2/W m K  and the 

temperature of the fluid is 100fT C  . 

 
Figure 17. A quarter of annular 

 We focus on the various of temperatures in 
the circle ri. In this study, we use 

1 2( ) / 2 0.15  ir r r (m). The coarse mesh is 

show in Figure 18, and h-Refinement technology 
was used to increase number of elements 
automatically, as show in Figure 19. 

ri 
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Figure 18. The coarse mesh of annular with only 

one element. 

 

 
Figure 19. The refined mesh with 3×6, 5×10, 

7×14 and 10×20 

 
Figure 20. The convergency of temperature 

of point at the end of line r0, located at 0.15r  
(m) and 90  . 

 As show in 

 

Figure 20, the convergence of IGA (p=2) is better 
than FEM clearly. The result of FEM really 
accurate when number of dofs have increased 
more than 1000 dofs, while IGA just need more 
than 100 dofs.  

 
Figure 21. The convergency of temperature in line r0 

for comparision of FEM with 360×180 elements. 

 We can recognize the various of 
temperatures is closed to FEM value while 
FEM’s number DOFs is much higher. 
Eventhough, the result with only coarse mesh 
also be better. 

 The temperature contour is shown in Figure 
22 and Figure 23. 
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Figure 22. The contour of temperatures using 

FEM with 16471 dofs 

 
Figure 23. The contour of temperature using IGA 

with 231 dofs  

4.4.  A practical problem 

 This is a practice problem expressing the 
effect of IGA in heat transfer. The electrical 
technical advancement need to decrease the size 
of them, and a important problem is effect heat 
diffusion, or we can optimize the shape and 
dimension of heat sink. This section simply 
describe a few of problems listed above. That is 
the temperature distribution in fins of the heat 
sink to optimize it's profile. Consider to a heat 
sink is shown in Figure 24, it's made by 

Aluminium alloy 6061, with the thermal 
conductivity values of 166 /W m K . Assume 
the thermal conductivity value do not depend on 
the body temperature. The air through the heat 
sink which have the convection coefficient value 

of the fin of 25 2/ ( )W m K . 

 
Figure 24.  The heat sink model presented by 

NURBS surfaces 

 The NURBS surfaces of the heat sink is also 
shown in Figure 24. With that number of 
elements, the number of degrees of freedom is 
1327, is shown in Figure 25. FEM solution with 
about 57000 degrees of freedoms is shown in 
Figure 26. 

 
Figure 25. The temperature distribution of 

isogeometric analysis with about 1327 degrees of 
freedom 

2.
1 

21
 

50
.0

5 

5 



SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 18, No.K4- 2015 

Trang 172 

 

Figure 26. The temperature distribution of finite 
element method with about 57000 degrees of freedom 

 Consider to the temperature distribution on 
the second-fin of heatsink is shown in Figure 27. 
The FEM result is express by the red curve on the 
graph, and the temperature at the top is 
489.96 C . The cubic-IGA result is express by 
the blue curve and obtain 490.26 C  at the top. 
The graph also show the result of both of two 
method are similar. Although, what is mentioning 
is that the degree of freedoms of IGA are less 
than FEM and it can decrease the memory 
capacity of computation. If we only interest in 
degree of freedoms in the second-fin, we can see 
an extremely different in number of them. In this 
study, the number of degree of freedoms of FEM 
are more than cubic-IGA 8 times, but in return, 
IGA base on high-order basis functions, and it 
can take a longer time. It can be a strong point 
and also a weak point.  

 
Figure 27. The temperature distribution in the fin 

6. CONCLUSION 

 An isogeometric analysis approach for two-
dimensional static heat transfer problem is 
expressed above. Applying IGA to numerical 
problems lead significant effective results, as 
represent on above. More important that it can 
refine the mesh without the connection to the 
CAD geometry, it called h-refinement and p-
refinement and k-refinement, it is very 
convenient and makes the problem easier. 
Furthermore, IGA is base on high order basis 
functions, i.e., cubic basis functions are more 
often. Quartic basis functions have to take more 
time and the error decrease inappreciably, but 
they get a high accuracy in comparison with 
quadratic and cubic basis functions. Although, 
with industrial problems, where the accuracy is 
not necessary, FEM still gain advantages over. 
Therefore, IGA should be applied to problems 
that have complex geometries. It will decrease the  

errors at the compound curve, surface, it 
contributes to the exact results. IGA also have 
some disadvantages because it is still be 
developing. To make up the accuracy results, 
IGA is with regards to computational time to 
achieve convergence. A particular reason is high 
order basis functions must be spent more time to 
calculate. Summary, there is a basic of IGA 
application. We hope some problems mentioned 
above was enough to demonstrate the effect 
results of this analysis.  
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Dùng xấp xỉ phân tích đẳng hình học cho 
các bài toán truyền nhiệt ổn định hai chiều 

 Lê Tuấn Em 
 Nguyễn Duy Khương 
 Vũ Công Hòa 

Trường Đại học Bách Khoa, ĐHQG-HCM 

TÓM TẮT: 

Mục đích của bài báo này là nghiên 
cứu áp dụng phân tích đẳng hình học 
cho bài toán tấm giải nhiệt qua cánh, 
một dạng bài toán truyền nhiệt ổn định 
hai chiều. Bằng cách sử dụng hàm dạng 
bậc cao như hàm NURBS, phân tích 

đẳng hình học đạt tốc độ hội tụ cao khi 
so sánh với phương pháp phần tử hữu 
hạn truyền thống. Việc phát triển phương 
pháp này nhằm mục đích giảm khoảng 
cách giữa mô hình và mô phỏng và tăng 
tính liên tục cho mô hình lưới bài toán.  

Từ khóa: iga, truyền nhiệt, nurbs. 
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