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Extended finite-element method for modeling
the mechanical behavior of functionally graded
material plates with multiple random inclusions

Kim Bang Tran, The Huy Tran, Quoc Tinh Bui and Tich Thien Truong

Abstract— Functionally graded material is of
great importance in many engineering problems.
Here the effect of multiple random inclusions in
functionally graded material (FGM) is investigated
in this paper. Since the geometry of entire model
becomes complicated when many inclusions with
different sizes appearing in the body, a methodology
to model those inclusions without meshing the
internal boundaries is proposed. The numerical
method couples the level set method to the extended
finite-element method (X-FEM). In the X-FEM, the
finite-element approximation is enriched by
additional functions through the notion of partition
of unity. The level set method is used for
representing the location of random inclusions.
Numerical examples are presented to demonstrate
the accuracy and potential of this technique. The
obtained results are compared with available
refered results and COMSOL, the finite element
method software.

Index Terms— Extended finite-element method;
multiple; random; inclusions, functionally graded
material.
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1 INTRODUCTION

omogeneous materials often find it difficult

to meet complex requirements in important
technical areas. This problem can be solved by
using Functionally Graded Materials (FGM).
FGM is a composite material whose mechanical
properties change with a mathematical function.
This function can contain a variable that is the
coordinates of a point on an object. Because the
material properties change throughout the body,
FGM is of great interest in various technical
fields. The main advantage of FGM is that there is
no boundary between two different materials and
therefore will not lead to discontinuous stress field
in the body, despite the fact that the material
properties may change drastically. In addition, the
FGM can be created to optimize the stress
distribution in the material. This is one of the new
generation materials. In recent years, FGM has
been used in most modern engineering disciplines,
such as insulation in gas turbine engines, missile
launchers, sensors, nanostructured materials and
especially in space industry.

Functionally graded materials were used as
alternative materials in some applications. Their
special feature makes them wvery useful in
reducing stress concentration but the exist of
inclusion may reduce its stiffness. So, modeling
the inclusion in FGM play a greatly important role
in practice because they may cause the failure.

Most of the problem of discontinuous interfaces
such as holes and inclusion is investigated with
homogeneous material [1-3], [5] or the FGM
structure contains only one defect such as void
[4]. When modeling the interface problems by
means of the finite element methods, the defect
faces must be coincided with the edge of the
elements and the FEM has encountered many
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difficulties. To overcome these difficulties, the
extended finite element method (XFEM) was
developed to solve those problems. In this paper,
we present the XFEM for modeling multiple
random inclusions in a finite FGM plate with
arbitrarily varying elastic properties in the
transverse direction. Poisson’s ratio is held
constant and Young’s modulus is considered to
vary across the radius and x-axis

2 EXTENED FINITE ELEMENT METHOD FOR
MATERIAL DISCONTINUITY PROBLEMS

When multiple inclusions appear in objects
with random sizes and positions, traditional finite
element grids need to follow the profile of these
particles. In the XFEM, the presence of inclusion
does not alter the original element mesh. XFEM
allows particle boundaries to cut through the
mesh. The behavior of particles will be described
by the enrichment function.

2.1 Level set method for inclusions detection

In XFEM, the level set method is used to detect
discontinuous boundaries. According to [3], a
boundary of an inclusion can be considered a
material interface.

To calculate the normal level set function ¢,
consider I is the geometry of an inclusion. At any
point x, we define the scattering point x, on the
boundary so that the distance |x - x| Is the
smallest. The level set function ¢ can be
expressed as follows

$(x)=+min, o X = x| 1)

The appearance of inclusion with a particular
boundary I'" can be detected by the level set value
¢ as depicted in Fig. 1. In the whole body, ¢ <0 at
any point located inside the domain bounded by T’
and ¢ > 0 at any point located outside the domain.
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Fig. 1. Signed distance function ¢

If the particle is in circular form, the value ¢

can be calculated as follows
p=[x—x]-r, @)

With x. and r¢ is the center and radius of the
impurity particle.

2.2 Enrichment functions for material
discontinuities

To describe the physical properties of a
material discontinuities element, we will use the
absolute enrichment function as depicted in Fig. 2.
According to [3], this function can be defined as
the absolute value of the signed distance function
as follow

2 (%) =|p(x)| 3)
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Fig. 2. Jump function

Within a certain element, ¢ (x) can be obtained
by interpolating the nodal signed distances using
the partition of unity as

¢(X)=ZN|¢| (X) (4)

x(x) can be calculated by interpolating the nodal
signed distances within an element

z(x)—‘Z N, (x)¢, (x) 5)

Where N; is shape function at node |
Smoothing of y away from the element layer
containing the interface yields

2=x(X)=2(x) (6)
as shown in Fig. 3
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Fig. 3. Jump function after smoothing

After smoothing,
function takes the form

the absolute enrichment

z(x>=zw.<x>|¢.(x>|-\;N|<x>¢,(x) @)
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The derivative of absolute enrichment function
with respect to x is given as shown in Fig. 4 by

700, =2 B, ()

ZNI(X)¢I(X) aN,(X)
B x 0 (x) 8
‘Z N, (0, (x)] ®)
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Fig. 4. Jump function after smoothing

2.3 XFEM for material interface

According to [3], the displacement field of a
two-dimensional element  with material
discontinuity will be of the following form

u(x)—gwx){uj +z(x>a,-] ©)

jen,

N is the total number of nodes and n is the
number of nodes under the element; u is the
transposing element at the nodes of the element as
in the finite element method, a is the degree of
freedom added at the enriched nodes and y (x) is
the enrichment function to describe the material
discontinuity of the material boundary elements
passing through.

With the stiffness matrix K of the enriched
elements will be computed according to the
formula

KS = Ky Ky (10)

Ki?u Ki?a
T

Ki=[(B') DBjdQ (11)
e

r,S=u,a
(Niz),x 0

B = 0 (Ni;()vy (12)

(Nil),y (Nil),x

As the FGM has the properties changing
throughout the body, we need to divide the
problem domain into a set of elements and
obtained the information on node coordinates to
take the Gaussian integral. Repeat on each Gauss
point: compute the deformation matrix B at the
Gauss point under consideration, compute the

material matrix D at the point Gauss is
considering, compute the element's stiffness
matrix, assemble the element stiffness matrix into
the global stiffness matrix.

3 NUMERICAL EXAMPLES

3.1 Square plate with one circular inclusion

In the first example, a square plate with a
circular inclusion is considered [1]. The model
geometry and boundary conditions are described
in Fig. 5. The plate side is L=5 m and the external
load is g = 100 N/m. The lower edge of the plate
is clamped. The matrix and inclusion materials are
taken such as E; = 3.10’N/m?, v,=0.3 and E; =
3.10°N/m?, v,=0.25. Plane stress state is
investigated. The XFEM mesh and enriched nodes
are presented for this example in Fig. 6
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Fig.5. Square plate with one circular inclusion

Enriched nodes

Fig.6. XFEM mesh and enriched nodes

We check the accuracy of the XFEM by
comparing the obtained solutions with those given
in previous work [1] as depicted in Fig. 7 and Fig.
8.
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The uy displacement comparison is performed
for the points along the horizontal red solid line of
Fig. 5

—— GDQFEM (Reference[1])
---={ — XFEM (Matlab)
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Fig.7. uy displacement comparison

The uy displacement comparison is performed
for the points along vertical blue solid line of
Fig.5.

x10°
35

—— GDQFEM (Reference[1])
—— XFEM (Matlab)

1
25 3 35 4 45 5 55
y axis

Fig.8. uy displacement comparison

We can see that the displacement results
obtained by the XFEM matches well with those
refered results [1], using GDQFEM.

3.2 FGM plate with material variation in the x-
direction with seven circular inclusions

In the next example, we consider a rectangular
isotropic FGM plate with material variation in the
Cartesian x-direction, the dimensions and are
depicted in Fig. 9. The external load is g = 1
N/m2. The lower edge of the plate is clamped and
plane strain state is assumed. The plate contains
seven circular inclusions. All inclusions have
different radius and different positions as depicted
in table 1. The Poisson’s ratio of the matrix is
assumed to be constant v = 0.3 and the elastic
modulus E of the matrix varies exponentially from
the left to the right edge as follow

E(x) = E,e” where E, =10°Paand 3 =2

The Poisson’s ratio of the inclusion is assumed
to be constant v = 0.35 and the elastic modulus E
of the matrix varies exponentially from the left to
the right edge as follow

E(x)=E,e”™ where E, =2.10°Paand g =2

TABLE |
POSITIONS OF INCLUSION

Number  X- position Y- position Radius
(m) (m) (m)
1 0.25 05 0.07
2 0.5 0.5 0.085
3 0.5 1 0.2
4 0.75 05 0.12
5 0.25 14 0.12
6 0.5 1.8 0.08
7 0.75 15 0.13
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Fig.9. FGM plate with material variation in the x-direction
with seven circular inclusions.

We compare the finite element method (FEM)
solution to that obtained by XFEM.
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Fig.10. Comparison of displacement results uy between XFEM
and FEM
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Fig.11. Comparison of displacement results uy between XFEM
and FEM
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Fig.12. Comparison of stress results o,y between XFEM and
FEM

TABLE 2
COMPARISON OF RESULTS BETWEEN XFEM AND
FEM
Displacement XFEM FEM %ERROR
(m)

Max(uy) 0.001343 0.001344 0.07%
Min(uy) 0 0 0%
Max(ux) 0.001322 0.001325 0.22%
Min(ux) -1.58.10° -1.59.10° 0.62%

The computed results obtained by the XFEM
and the FEM are listed in Table 2 including the
percentage errors. The minimum and the
maximum displacement obtained by the XFEM
matches well with those derived from the FEM.
The stress and displacement field of the plate are
sketched in subsequent Fig. 10-12.

4 CONCLUSION

In this paper, an advanced of the XFEM s
proposed for modeling multiple random
inclusions in functionally graded material. It was
observed that XFEM leads to very accurate results
when compared with FEM and is suitable for
solving discontinous problem when many
inclusions with different sizes appear in the body.
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It is convenient to treat those inclusions without
meshing the internal boundaries because of the
enrichment function. So the inclusion can be
easily insert in the model regardless of the mesh
generation. The presented approach has shown
several advantages and it is promising to be
extended to more complicated problems such as
modeling the body containning different
discontinuity boundaries such as crack, void and
inclusion.
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Phuong phéap phan ttr hitu han mé rong
trong mo phong tng xur co hoc cua
tam vt liéu phan bo chire nang
c6 tap chat phan bo ngau nhién

Tran Kim Bang, Tran Thé Huy, Bui Qudc Tinh, Truong Tich Thién

Tém tit— Vit liéu phan 16p chirc nang (functionally graded material — FGM) 1a loai vat ligu tién tién, dugc tmg
dung nhiéu trong céac linh vuc k¥ thuat hién dai. Sy xuét hién cua cac hat tap chét s& anh hudng phﬁn nao t¢i do bén
va mg xr ctia vat liéu. Bai bao ndy mo ta sy anh hudng ctia cic hat tap chit ndm I4n trong tim phing FGM. Bién
hinh hoc ciia vat thé s& trd nén phuc tap khi ¢6 nhiéu tap chét xut hién ngiu nhién. Phuong phap phn tir hitu han
mé rong dugc ap dung dé tranh viéc phai xay dung bién hinh hoc khac nhau cia nhiing hat tap chit. Trong phuong
phap s nay, su xdp xi phén tir hitu han s& duac thém vao cac ham lam giau dé mo ta tinh chat vat ly clia bién bét
lién tyc vat liéu. Mot vai vi dy mo phong s6 s& dugc dé cap dé ching t6 wu thé cua phuong phap phin tir hiru han
mé rong khi ap dung vao bai toan bt lién tuc vét liéu. Cac két qua tinh toan s¢ duoc so sanh véi két qua ciia bai bao
khoa hoc uy tin khac va két qua thu dugc tir phdn mém COMSOL, phan mém dua trén phuong phap phan tir hitu
han.

Tir khéa— Phuong phép phan tir hitu han mé rong; ngu nhién; tap chét, vat lidu phén 16p chirc ning



