
Tạp chí Phát triển Khoa học và Công nghệ, tập 20, số K3-2017 
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 

Abstract— Functionally graded material is of 

great importance in many engineering problems. 

Here the effect of multiple random inclusions in 

functionally graded material (FGM) is investigated 

in this paper. Since the geometry of entire model 

becomes complicated when many inclusions with 

different sizes appearing in the body, a methodology 

to model those inclusions without meshing the 

internal boundaries is proposed. The numerical 

method couples the level set method to the extended 

finite-element method (X-FEM). In the X-FEM, the 

finite-element approximation is enriched by 

additional functions through the notion of partition 

of unity. The level set method is used for 

representing the location of random inclusions. 

Numerical examples are presented to demonstrate 

the accuracy and potential of this technique. The 

obtained results are compared with available 

refered results and COMSOL, the finite element 

method software. 

 

Index Terms— Extended finite-element method; 

multiple; random; inclusions, functionally graded 

material.  
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1 INTRODUCTION 

omogeneous materials often find it difficult 

to meet complex requirements in important 

technical areas. This problem can be solved by 

using Functionally Graded Materials (FGM). 

FGM is a composite material whose mechanical 

properties change with a mathematical function. 

This function can contain a variable that is the 

coordinates of a point on an object. Because the 

material properties change throughout the body, 

FGM is of great interest in various technical 

fields. The main advantage of FGM is that there is 

no boundary between two different materials and 

therefore will not lead to discontinuous stress field 

in the body, despite the fact that the material 

properties may change drastically. In addition, the 

FGM can be created to optimize the stress 

distribution in the material. This is one of the new 

generation materials. In recent years, FGM has 

been used in most modern engineering disciplines, 

such as insulation in gas turbine engines, missile 

launchers, sensors, nanostructured materials and 

especially in space industry. 

Functionally graded materials were used as 

alternative materials in some applications. Their 

special feature makes them very useful in 

reducing stress concentration but the exist of 

inclusion may reduce its stiffness. So, modeling 

the inclusion in FGM play a greatly important role 

in practice because they may cause the failure. 

Most of the problem of discontinuous interfaces 

such as holes and inclusion is investigated with 

homogeneous material [1-3], [5] or the FGM 

structure contains only one defect such as void 

[4]. When modeling the interface problems by 

means of the finite element methods, the defect 

faces must be coincided with the edge of the 

elements and the FEM has encountered many 
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difficulties. To overcome these difficulties, the 

extended finite element method (XFEM) was 

developed to solve those problems. In this paper, 

we present the XFEM for modeling multiple 

random inclusions in a finite FGM plate with 

arbitrarily varying elastic properties in the 

transverse direction. Poisson’s ratio is held 

constant and Young’s modulus is considered to 

vary across the radius and x-axis 

2 EXTENED FINITE ELEMENT METHOD FOR 

MATERIAL DISCONTINUITY PROBLEMS 

When multiple inclusions appear in objects 

with random sizes and positions, traditional finite 

element grids need to follow the profile of these 

particles. In the XFEM, the presence of inclusion 

does not alter the original element mesh. XFEM 

allows particle boundaries to cut through the 

mesh. The behavior of particles will be described 

by the enrichment function. 

2.1 Level set method for inclusions detection 

In XFEM, the level set method is used to detect 

discontinuous boundaries. According to [3], a 

boundary of an inclusion can be considered a 

material interface. 

To calculate the normal level set function , 

consider Γ is the geometry of an inclusion. At any 

point x, we define the scattering point xΓ on the 

boundary so that the distance ||x - xΓ|| Is the 

smallest. The level set function  can be 

expressed as follows 

  min
x

x x x
 

  

  

(1) 

The appearance of inclusion with a particular 

boundary Γ can be detected by the level set value 

 as depicted in Fig. 1. In the whole body,  < 0 at 

any point located inside the domain bounded by  

and  > 0 at any point located outside the domain. 

 

Fig. 1. Signed distance function  

If the particle is in circular form, the value  

can be calculated as follows 

c c
x x r     (2) 

With xc and rc is the center and radius of the 

impurity particle. 

2.2 Enrichment functions for material 

discontinuities 

To describe the physical properties of a 

material discontinuities element, we will use the 

absolute enrichment function as depicted in Fig. 2. 

According to [3], this function can be defined as 

the absolute value of the signed distance function 

as follow 

  ( )x x   (3) 

 
Fig. 2. Jump function 

Within a certain element,  (x) can be obtained 

by interpolating the nodal signed distances using 

the partition of unity as 

 ( )
I I

I

x N x                                              (4) 

χ(x) can be calculated by interpolating the nodal 

signed distances within an element 

   ( )
I I

I

x N x x    (5) 

Where NI is shape function at node I 

Smoothing of χ away from the element layer 

containing the interface yields 

   I
x x   

  

(6) 

as shown in Fig. 3 

 
Fig. 3. Jump function after smoothing 

After smoothing, the absolute enrichment 

function takes the form 

     ( ) ( )
I I I I

I I

x N x x N x x    

 

(7) 
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The derivative of absolute enrichment function 

with respect to x is given as shown in Fig. 4 by 

 
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 (8) 

 
Fig. 4.  Jump function after smoothing 

2.3 XFEM for material interface 

According to [3], the displacement field of a 

two-dimensional element with material 

discontinuity will be of the following form 

     
1

r

n

j j j

j
j n

u N u a




 
  
 
 

x x x  (9) 

N is the total number of nodes and n is the 

number of nodes under the element; u is the 

transposing element at the nodes of the element as 

in the finite element method, a is the degree of 

freedom added at the enriched nodes and χ (x) is 

the enrichment function to describe the material 

discontinuity of the material boundary elements 

passing through. 

With the stiffness matrix K of the enriched 

elements will be computed according to the 

formula 

uu ua

ij ije

ij au aa

ij ij

K K
K

K K
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  
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As the FGM has the properties changing 

throughout the body, we need to divide the 

problem domain into a set of elements and 

obtained the information on node coordinates to 

take the Gaussian integral. Repeat on each Gauss 

point: compute the deformation matrix B at the 

Gauss point under consideration, compute the 

material matrix D at the point Gauss is 

considering, compute the element's stiffness 

matrix, assemble the element stiffness matrix into 

the global stiffness matrix. 

3 NUMERICAL EXAMPLES 

3.1 Square plate with one circular inclusion 

In the first example, a square plate with a 

circular inclusion is considered [1]. The model 

geometry and boundary conditions are described 

in Fig. 5. The plate side is L=5 m and the external 

load is q = 100 N/m. The lower edge of the plate 

is clamped. The matrix and inclusion materials are 

taken such as E1 = 3.107N/m2, ν1=0.3 and E2 = 

3.106N/m2, ν2=0.25. Plane stress state is 

investigated. The XFEM mesh and enriched nodes 

are presented for this example in Fig. 6 

 

Fig.5. Square plate with one circular inclusion 

 

Fig.6. XFEM mesh and enriched nodes 

We check the accuracy of the XFEM by 

comparing the obtained solutions with those given 

in previous work [1] as depicted in Fig. 7 and Fig. 

8. 
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The ux displacement comparison is performed 

for the points along the horizontal red solid line of 

Fig. 5 

 

Fig.7. ux displacement comparison 

The uy displacement comparison is performed 

for the points along vertical blue solid line of 

Fig.5. 

 

Fig.8. uy displacement comparison 

We can see that the displacement results 

obtained by the XFEM matches well with those 

refered results [1], using GDQFEM. 

3.2 FGM plate with material variation in the x-

direction with seven circular inclusions 

In the next example, we consider a rectangular 

isotropic FGM plate with material variation in the 

Cartesian x-direction, the dimensions and are 

depicted in Fig. 9. The external load is q = 1 

N/m2. The lower edge of the plate is clamped and 

plane strain state is assumed. The plate contains 

seven circular inclusions. All inclusions have 

different radius and different positions as depicted 

in table 1. The Poisson’s ratio of the matrix is 

assumed to be constant  = 0.3 and the elastic 

modulus E of the matrix varies exponentially from 

the left to the right edge as follow 

  3

0 0
 where 10 Pa and 2

x
E x E e E

   
 

The Poisson’s ratio of the inclusion is assumed 

to be constant  = 0.35 and the elastic modulus E 

of the matrix varies exponentially from the left to 

the right edge as follow 

  3

0 0
 where 2.10 Pa and 2

x
E x E e E

   
 

TABLE I 

POSITIONS OF INCLUSION 

Number X- position 

(m) 

Y- position 

(m) 

Radius 

(m) 

1 0.25 0.5 0.07 

2 0.5 0.5 0.085 

3 0.5 1 0.2 

4 0.75 0.5 0.12 

5 0.25 1.4 0.12 

6 0.5 1.8 0.08 

7 0.75 1.5 0.13 

 

 

Fig.9. FGM plate with material variation in the x-direction 

with seven circular inclusions. 

We compare the finite element method (FEM) 

solution to that obtained by XFEM. 
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Fig.10. Comparison of displacement results ux between XFEM 

and FEM 

 

Fig.11. Comparison of displacement results uy between XFEM 

and FEM 

 

Fig.12. Comparison of stress results yy between XFEM and 

FEM 

TABLE 2  

COMPARISON OF RESULTS BETWEEN XFEM AND 

FEM 

Displacement 

(m) 

XFEM  FEM %ERROR 

Max(uy) 0.001343 0.001344 0.07% 

Min(uy) 0 0 0% 

Max(ux) 0.001322 0.001325 0.22% 

Min(ux) -1.58.10-5 -1.59.10-5 0.62% 

 

The computed results obtained by the XFEM 

and the FEM are listed in Table 2 including the 

percentage errors. The minimum and the 

maximum displacement obtained by the XFEM 

matches well with those derived from the FEM. 

The stress and displacement field  of the plate are 

sketched in subsequent Fig. 10-12. 

4 CONCLUSION 

In this paper, an advanced of the XFEM is 

proposed for modeling multiple random 

inclusions in functionally graded material. It was 

observed that XFEM leads to very accurate results 

when compared with FEM and is suitable for 

solving discontinous problem when many 

inclusions with different sizes appear in the body. 
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It is convenient to treat those inclusions without 

meshing the internal boundaries because of the 

enrichment function. So the inclusion can be 

easily insert in the model regardless of the mesh 

generation. The presented approach has shown 

several advantages and it is promising to be 

extended to more complicated problems such as 

modeling the body containning different 

discontinuity boundaries such as crack, void and 

inclusion.  
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Tóm tắt— Vật liệu phân lớp chức năng (functionally graded material – FGM) là loại vật liệu tiên tiến, được ứng 

dụng nhiều trong các lĩnh vực kỹ thuật hiện đại. Sự xuất hiện của các hạt tạp chất sẽ ảnh hưởng phần nào tới độ bền 

và ứng xử của vật liệu. Bài báo này mô tả sự ảnh hưởng của các hạt tạp chất nằm lẫn trong tấm phẳng FGM. Biên 

hình học của vật thể sẽ trở nên phức tạp khi có nhiều tạp chất xuất hiện ngẫu nhiên. Phương pháp phần tử hữu hạn 

mở rộng được áp dụng để tránh việc phải xây dựng biên hình học khác nhau của những hạt tạp chất. Trong phương 

pháp số này, sự xấp xỉ phần tử hữu hạn sẽ được thêm vào các hàm làm giàu để mô tả tính chất vật lý của biên bất 

liên tục vật liệu. Một vài ví dụ mô phỏng số sẽ được đề cập để chứng tỏ ưu thế của phương pháp phần tử hữu hạn 

mở rộng khi áp dụng vào bài toán bất liên tục vật liệu. Các kết quả tính toán sẽ được so sánh với kết quả của bài báo 

khoa học uy tín khác và kết quả thu được từ phần mềm COMSOL, phần mềm dựa trên phương pháp phần tử hữu 

hạn. 

 

Từ khóa— Phương pháp phần tử hữu hạn mở rộng; ngẫu nhiên; tạp chất, vật liệu phân lớp chức năng  
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