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Self-Monitoring system for diabetic individuals
based on 3-axis accelerometer

Hanh Ngoc Dang

Abstract— In this study, we aim to develop a
miniaturized stand-alone system that can detect a
wide range of daily activities based on a single
integrated consumer 3-axis accelerometer. A novel
k-means based classification algorithm was
constructed to interpret and translate signals from
accelerometer into a recognizable cluster of pre-
defined activities. The developed system has given
encouraging results with a 100% success rate of
classification of the three basic classes of activities
based on resting, walking and running, and an 84%
success rate for the lower level of different pace of
walking and running. The potential extension
towards self-monitoring systems for people suffering
from diabetes mellitus has been considered by
converting the activities into metabolic equivalents
that will help predict the associated energy
expenditure.

Index Terms— Classification algorithms, 3-axis
accelerometer, feature extraction, activity
recognition.

1 INTRODUCTION

ifestyle related chronical diseases have in part

been related to the lack of physical activity
combined with unhealthy diets. Combating
lifestyle related diseases have been based on both
diet and exercise, in which the latter have focused
on accelerometer based wearable devices as a tool
of self-monitoring.

The target user group of this study is the
growing number of people suffering from diabetes
mellitus in which physical activity is paramount
of maintaining a healthy glycemic control that
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reduce long term detrimental effects, as well as
preventing the onset of the disease in people
diagnosed with prediabetes and impaired glucose
tolerance. Diabetes is a metabolic disorder that
results in abnormally elevated or sup-pressed
blood glucose (BG) values due to the inability or
reduced ability of the body to metabolize glucose
[1]. Although diet plays an important role in
maintaining stable levels of BG, physical activity
has the added benefit of preventing an unwanted
rise in BG by burning off excess glucose available
in the blood stream [2-5]. Sophisticated motion
detectors that are able to distinguish between
different classes of activities in real time would
provide a much more comprehensive picture of
the activity which can be related to a given energy
consumption.

The first and popular tools of self-monitoring
are pedometers that were originally designed on
1-axis motion sensors named step counters [4-6]
or pedometers. These are on-body sensing devices
that typically measure the number of “steps” an
individual takes in a continuous manner, can only
record a limited set of activities (i.e.
distinguishing walking from resting) and estimate
the distance walked based on steps.

Micro - ElectroMechanical systems - MEMS
and BioMEMS have a prerogative for
miniaturization and automation to such an extent
that it can be integrated in wearable devices based
on watches and ultimately miniaturized
implantable sensor systems. Modern MEMS
accelerometers are an electromechanical device
designed to measure acceleration caused by
gravity or relative body movement, not only count
the steps taken, but also sense the force that is
applied to the respective motion [5-20]. Free-
living physical activities can be recorded using a
tri-axial accelerometer (or the combination of two
dual-axis accelerometers) that are able to measure
three degrees of freedom alone. This makes the
device less dependent on the orientation of the
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device with respect to the user. Some studies have
investigated the use of acceleration signals to
analyze and classify different subsets of the same
physical activity (e.g. walking along a corridor, as
well as up and down stairs) [8-9]. Others have
employed them for recognizing a wide set of daily
physical activities such as lying, sitting, standing,
walking, and running [10] as well as cycling [11]

Multiple accelerometers can be used in parallel
on different locations on a person’s body (e.g.,
wrist, ankle, thigh, knee, elbow and hip) [12] in
order to extend the range of physical activities
that is monitored. While this approach is known to
generate a high degree of accuracy such an 88.1%
rate of recognizing the 13 activity types which is
12.3% higher than using a hip accelerometer
alone, it is not feasible in everyday use because of
two or more sensor-attachment sites and the
associated cable connections that would interfere
with normal activities.

The acquired motion signals from the
accelerometer are then extracted to get the
features of signal-magnitude area (SMA) and tilt
angle (TA) [10] or parameters such as averages,
energy, entropy, standard deviation, or
correlations [13, 14]; and frequency spectrum
[15]. These features are then used in a pattern
recognition protocol that should decide which
movement is being performed. Some studies have
incorporated the idea of using simple heuristic
classifiers [16], whereas others have employed
more generic and automatic methods such as
advanced computational techniques from the
machine learning literature including decision
trees [11], k-means and Bayesian networks [17],
support vector machines (SVM) [12], artificial
neural networks (ANN) [10-11] etc.

Current methods used to evaluate the energy
expenditure (EE) includes the employment of
direct and indirect calorimeters that estimates the
energy production by measuring the oxygen
uptake and/or heart rate. However, these methods
require large supporting instrumentation that is
stationary and performed in a hospital or lab
setting, and are therefore not feasible for home
monitoring. By detecting the acceleration of each
stride, estimation has been shown to correlate well
with true energy expenditure [18]. One way of
using the metabolic equivalent of a task [19], will
be applied in our study to estimate the total EE.

In this study, we aim to develop a miniaturized
stand-alone system a system that can detect a
wide range of daily activities based on a single

integrated consumer 3-axis accelerometer. It also
offers a wireless protocol making it more
unobtrusive in nature. Considering the basic daily
activity, and based on the selected set of particular
features, the k- means gives a promising approach
for our system.

The remainder of the paper is presented as
follows. The materials and methodology are
discussed in Section 2. Section 3 presents the
experimental protocol that followed with results
in section 4. Section 5 concludes with
implications.

2 MATERIALS AND METHODOLOGY

2.1 Development Platform

This project will focus on using a single triaxial
accelerometer to develop a system that is capable
of recognizing a broad set of daily physical
activities. The motion detection system was based
on the Tl eZ430-Chronos (Texas Instruments,
US), development platform which is a highly
integrated, wearable wireless system contained in
a sports watch package that measures 48x33x16
mm? and weights 100g [20]. This development
tool features the CMAS3000 accelerometer, the
CC430F6137 microcontroller and the CC1101
sub-1-GHz RF transceiver used in this project
(eZ430-Chronos Development Tool User's Guide,
2009). It is supplied with a USB-based CC1111
wireless receiver that is connected to the PC. The
accelerometer data was sampled at 50 Hz, before
transmission to the receiver.

2.2 Motion classifier

Raw
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Data
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Data
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Fig 1. Block diagram for our proposed recognition technique.

The system will be used for unsupervised
monitoring of daily activities defined into 3 basic
motion classes of activities of resting, walking
and running. Resting includes the specific sub-
classes of sleeping, sitting, standing. Walking
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includes the sub-classes of slow, normal and brisk
walk, whereas running are selected into the sub-
classes of slow, normal and fast run at full speed.
The illustration of the system architecture for
monitoring basic daily movements can be seen in
Fig 1.

First, raw acceleration signals from eZ430-
Chronos are wirelessly collected and streamed it
into a binary file from the COM port of PC using
the “ez430 Acquire and Store” Labview
application. Three directions of acceleration of
human body were measured simultaneously with
X-axis for back forth direction, Y-axis for up and
down direction, and Z-axis for right and left
direction of the acceleration signals (see Fig 2.).
Next, at the terminal, Matlab is the language used
to analyze the signals. The inference method is
briefly divided into two steps of pre-processing
and classification. Some pre-processing steps
need to be applied to the measured acceleration
signals in order to improve the accuracy and
efficiency of the classification model, including
the process of removing or reducing noisy data,
and signal pre-conditioning where relevant feature
values are extracted from the acceleration signals
to form a set of features of each activity, that is
efficiency for classification. The classification
method of using k-means clustering algorithm is
then implemented to identify the activities during
time doing those activities.

2.3 Classification Algorithm

Cluster analysis is dividing groups of data
based on their similarity to patterns in a training
set [21]. K-means is a partitioned clustering
approach that divides data into non-overlapping
subsets. K-means is also known as center-based
clustering algorithm, means that each cluster is
associated with a centroid (or center point - the
average of all the points in the cluster) and each
point is assigned to the cluster with the minimum
distance from it to the centroid of that cluster.
When computing the distance from an unlabeled
pattern to training patterns, different distance
metrics can be used such as Euclidean distance,
cosine similarity, correlation, etc. The Euclidean
distance is most commonly used as in equation (1)
below.

d= VZin:l(Xi - Yi)2 (1)

where X; is the unlabeled point in an n-

dimensional feature space and Y, is the centroid

point.

The k-means algorithm requires one parameter,
k in the k-nearest neighbor, which is the number
of clusters taken into account when dividing data
points into clusters.

The basic k-means algorithm is very simple.
Begin with specifying the number of clusters Kk,
and then initial centroids are often chosen
randomly. Then each data point then finds out
which cluster it is closest to. Thus each cluster
“owns” a set of data points now. Each cluster
finds the new centroid of the points it owns.
Therefore, clusters produced vary from one run to
another. The k-means will converge for common
similarity measures (no move of all centroids).
Most of the convergence happens in the first few
iterations. And all points falling into the same cell
are assigned the same class label.

The high accuracy of the k-means classifier is
proven when training data are representative and
large enough. In the training phase of the basic k-
means algorithm, all training patterns are just
stored for comparison in the classification phase
and all computation is done during the
classification phase. The original k-means
algorithm has huge computation and the accuracy
of the resulting clusters heavily depends on the
selection of random initial centroids. One method
to improve the accuracy and efficiency of the k-
means algorithm is combining a systematic
method for finding initial centroids and an
efficient way for assigning data points to clusters
[22]. In this project, initial centroids can be
assigned by trained features sets from training
step. In the training stage, multidimensional
feature vectors were established in time-frequency
domain corresponds to a particular activity. For
each movement, some training cycles are
performed using different data of same activity.
The mean values of these ones are used as the
signature of that activity. In the classification
stage, activity signal points are divided into
clusters using the k-means algorithm. The
majority of data points in clusters which
correspond to a given class decide the label of that
cluster (resting, walking or running). The majority
is the highest percentage of data points have the
minimum distance to the features set represented
for that activity.
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3 EXPERIMENTAL PROTOCOL
3.1 Data Collection

Fig 2. Measurement setup: Test person with the activity sensor
around the waist and the recorded directions.

For the generation of data, measurements are
collected in the sport center using our device. The
device recorded the raw acceleration signals in
three directions with a sampling frequency of 50
Hz. The measurement setup can be shown in Fig
2. The characteristics of the five people are
chosen with large diversity in age, weight and
height which gave the generality in evaluating our
system.

Each person was equipped with our sensor
fastened around the waist, was asked to perform a
short list of walk and run on a treadmill. Different
twelve activities are recorded includes resting
(sitting down on an office chair, standing up,
lying down on a bed), walking and running at
different paces. The total duration of experiment
of approximately a half-hour gave total 20
collected data of each activity with a length of 1
minute per each data. Separate data of each
activity were segmented out into separate files so
that each file would contain the complete duration
of one particular movement or posture occurrence
only. Activities were also continuously recorded
for 20 minutes in a supervised setting for testing
the performance of system in long time
monitoring.

3.2 Classification Process

In general, data classification is a two-phase
process as follows.

Phase 1 - Training phase. A model that
describes a predetermined set of classes was built
by analyzing a set of training data (half of data
library). They were first segmented into 10s and

each segment were features calculated. All
features of all dataset were then analyzed some
were chosen for representing each classes of
activities. These mean values of features of each

class are the trained features vectors for
recognition stage.
Phase 2 - Classification phase. The

classification algorithm was implemented and
evaluated the performance using another half of
data library, known as test dataset. Each data of
test dataset annotated with name and speed of
activity is divided into intervals of every 10
seconds. Each interval then go through the
classification algorithm separately. The results of
classification process are respected to be type and
level of each activity in a certain time. The
classified result was compared to the annotation
of recording, then the sum of correct classification
time can be calculated. The correct rate of the
system was evaluated as percentage of total
annotated time of recording using formula (2).

correct time 2

Rate = - —— %100 %
annotated time of recording

3.3 Energy expenditure

The metabolic equivalent of a task (MET) is
expressed as the energy cost of physical activities
related to the resting metabolic rate (RMR). This
have by convention been set to 3.5 ml
O2-kg!-min! or the equivalent of 1 kcal-kg™'- h™!
or 4.184 kJ-kg!- h! [19]. Thus, one MET is
considered as the resting metabolic rate (RMR)
obtained during quiet sitting, and the total amount
of energy consumed by individuals depends on
the level of activity and on their body weight. The
more active and heavier a person is, the more
energy he/she requires. The compendium of
physical activities and their MET values was first
published in 1993 and updated later in 2000 as
can be seen on Table I.

By knowing the type of activity undertaken, the
MET can be derived and combined with a
person’s weight to yield the total EE as the
following formula.

EE (calories/ minute) =0.0175 x MET x weight (in kilograms)

©)

4 EXPERIMENTAL RESULTS

This section contains the experimental results
obtained using the methodology and experimental
protocol based on the motion detection device
described in section 2 and 3 with the use of
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TABLE 1
METABOLIC EQUIVALENT OF A TASK (MET) RELATED TO A
SPECIFIC ACTIVITY [19].

Physical Activity MET
Light Intensity Activities <3
sleeping 0.9
At rest (RMR) 1.0
walking, 1.7 mph (2.7 km/h), level ground, 2.3
strolling, very slow
walking, 2.5 mph (4 km/h) 29
Moderate Intensity Activities 3t06
bicycling, stationary, 50 watts, very light effort 3.0
walking 3.0 mph (4.8 km/h) 33
calisthenics, home exercise, light or moderate 35
effort, general
walking 3.4 mph (5.5 km/h) 3.6
bicycling, <10 mph (16 km/h), leisure, to work 4.0
or for pleasure
bicycling, stationary, 100 watts, light effort 55
Vigorous Intensity Activities >6
jogging, general 7.0
calisthenics (e.g. pushups, sit-ups, pullups, 8.0
jumping jacks), heavy, vigorous effort
running jogging, in place 8.0
rope jumping 10.0

Energy expenditure: 1.0 MET = 4.184x103J kg h!

Matlab test bench. K-means are available in the
Matlab bioinformatics and statistics toolboxes and
Euclidean distance was chosen as the distance
metric for classification processes.

The pre-processing includes calibration step
creates a reference data file for further calibration

Science and Technology Development Journal, vol 20, no.K3- 2017

the activity associated acceleration signals in three
axis of accelerometer; and for the noise reduction,
a 6-order Butterworth band-pass filter of 0.1 to 5
Hz have been developed and applied on
acceleration signals. The DC values and high
frequencies have been clear out of the acceleration
signals.

4.1 Features Selection

From each interval of acceleration signals (ax,
ay and a;), some particular features need to be
interpreted into a feature vector as the input for
the classification system. The challenge in this
stage is to find the features of the acceleration
signals which describe and discriminate each
activity the best. At first attempt, several features
of 3 axes signals have been investigated. Using
the training data set, the 23-dimensional
considered features vectors of each activity have
been calculated. These features are mean value,
standard deviation, SMA, TA, fundamental
frequency, Fast Fourier Transform (FFT)
magnitude, spectral energy/entropy, cross-axis
correlation, peak counts, and net acceleration of
each direction.

Based on visual and statistical analysis using
the distribution of each feature to show how it
changes between different activities, the good
features were selected. The more the distribution
moves between activities and the less the
distributions overlap, the better it is for
discrimination of activities. If the distributions
show considerable overlap with one another,
means that it is not an easy task to construct a
classifier to distinguish the activities.

Distribution of Standard dewvation - y
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run 9.1 ?—D:'—( 1
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rest - H( -
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Distribution of Fundamental frequency - y
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Fig 3. Distributions of the standard deviation (above) and the fundamental frequency (bottom) of back-forth acceleration for 3

classes of activity (at different paces).

The above plots of Fig 3. are the distribution of
standard deviation; and the distribution of
fundamental frequency. The plots have the red
line at median value while the box has lines at
lower and upper quartile; the whiskers show the
extent of the rest of the data, and outliers for data
beyond the ends of the whiskers. The distribution
of standard deviation plotted in the Fig 3. shows
that it can be used to determine whether the user
is moving. Combining with other 4 features of
fundamental frequency, spectral energy, entropy
and the tilt angle, walking and running can be
separated.

4.2 Classification of motion

4.2.1Trial system 1-classify three basic classes of
activities

This system aims to classify three basic classes
of activities using five features above.

Before going through the k-means algorithm,
the acceleration signals need to be divided into the
segment of t=10s and interpreted to get the five
features. Three clusters of data points have been
divided with the k- means algorithm (see Fig 4.).
The decision of labelling the cluster as
resting/walking or running was made based on the
highest percentage of data points in that cluster
belong to which class of activity when calculate
the distance to trained features set of those
classes.
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Fig 4. Plot of example three clusters after applying k-means on
the 20 minutes acceleration signals of person 2. The same
colored points were grouped in the same cluster. The red ones
were the centroids of these clusters.

This trial system has been evaluated through
the test dataset as well as 20 minutes signals of
test people. The test results achieved the high
accuracy at 100% of classifying 3 basic classes of
activity.
4.2.2Trial system 2-classify different pace of

walking and running

With the successful rate in identifying three
basic classes of activity of trial system 1, this trial
system takes a look deep inside the pace of
walking/running. At first sight, the standard
deviation, the dominant frequency, spectral
energy and entropy are considerable to be used for
determining the pace of running/walking.
However, when we took a look at the distributions
of some considerable features, we found that the
distributions are overlapped between each pace of
walking/running; especially in the running the
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features have large diversity. That means it was
not an easy task to construct a classifier to
distinguish them.

Following Fig 5. shows the distributions of
features for determining pace of walking with
standard deviation, peak frequency in vertical
direction, its FFT magnitude, spectral energy and
spectral entropy; while the distribution of features
for determining pace of running is presented in
Fig. 6 with standard deviation in vertical and
dosoventral directions, frequency and spectral
energy in vertical direction, counts of peak and
net acceleration. The plots have the red line at
median value, the box have lines at lower and
upper quartile, while the whiskers show the extent
of the rest of the data, and outliers for data beyond
the ends of the whiskers.

Using considered features for determining the
pace of walking and running, this system got the
high success rate of 100% for classifying three
pace of walking; whereas only 73% accurate rate
obtained for determine the pace of running. The
system gave a total rate of 84% for classifying the
pace of walking and running. Details of result can
be seen in Table 2.
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TABLE 2
CLASSIFICATION RESULTS ACCORDING TO
DIFERENT PACE OF WALKING AND RUNNING

Classification Rate

Physical Activity Task

%)

Level walking at 3.5 km/h 100%

Level walking at 4.8 km/h 100%

Level walking at 7 km/h 100%

Level running at 7 km/h 100%

Level running at 9.1 km/h 52%

Level running at 11 km/h 60%

Level running at 13-18 km/h 79%
Average rate 84%

4.3 Estimated Energy Consumption

The MET was estimated using the classified
activity levels. The outputs of the classification
system are the type and level of activities and also
the total time during doing these activities. These
outputs was used to estimate the energy
expenditure using the MET conversion model
(presented in section 3.3). Based on the result, one
person can easily monitor their daily activities
with the awareness of how much energy they
spent during these activities.

Distribution of freq y
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Fig 5. Distributions of features for determining pace of walking with standard deviation in vertical direction (top-left), peak
frequency in vertical direction (top-right) and its FFT magnitude (centre-left), and spectral energy (centre-right) and spectral

entropy (bottom-left).
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Distribution of std-y
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Fig 6. Distribution of features for determining pace of running with standard deviation in vertical and dosoventral directions (top),
the frequency in vertical direction (center-left) and counts of peak (center-right), spectral energy in vertical direction (bottom-left)

and net acceleration (bottom right).

To evaluate the method of using the MET
model combined with classified activities to
calculate the energy expenditure, the estimated
MET values should be compared with the values
measured directly along with the resting
metabolic rate measurement. However, due to the
lack of respiratory gas exchange system, the
evaluation of estimated energy consumption is
only based on the evaluation of the classification
of motion. The higher the success rate in
identifying the correct type and level of activity
together with the related time, the more accurate
the energy expenditure assessment will be.

5 CONCLUSION

In this paper, practical methods for the
automatic recognition of physical activities using
data from a single wearable activity sensor were
studied. A signals interpretation and classification
method was developed based on annotated data
libraries collected under controlled laboratory
conditions. The performance of this method was
evaluated with the collected data and encouraging
results were obtained.

The single 3-axis based system located at the
waist was able to accurately distinguish between
activity and rest. It could also distinguish between
different postures of resting and detect a different
pace of walking with a high degree of accuracy.
The classification of different pace of running was
not good and it will be a challenge for future
studies to investigate this further.
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Hé thong giam sat tu dong cho nguodi bénh tiéu
duong dua trén may do gia toc 3 truc

biang Ngoc Hanh

Tém tit— Trong nghién ctru ndy, ching t6i mong mudn phat trién mot hé théng thu nhé doc 1ap dugce thu nho co
thé phat hién mot loat cac hoat dong hang ngay dua trén may do gia toc 3 truc dung cho ¢4 nhan. Mot thuat toan
phan loai méi duwa trén k-means méi dugc xay dung dé giai thich va chuyen dbi cac tin hleu tir may gia tbc vao
trong mot may nhén dang cia cac hoat dong dugc dinh nghia trudc. Hé thong dugc phat trién da mang lai Két qua
dang khich 18 vé6i ty 18 thanh cong 100% v& ti 18 phén loai ba 16p co ban ciia hoat dong co ban dua trén gdm nghi
ngoi, di b va chay b, va ty 1¢ thanh cong 84% dbi véi cac mirctde d6 di bo va chay khac nhau. Sy mé rong tiém
ning dbi voi cac hé théng ty gidm sat cho nhimg ngudi mic bénh dai thao dudng di dwoc xem xét bang cach
chuyén cac hoat dong nay thanh cac thong s twong duong trong qua trinh trao déi chit s& giup du doan dugc lwong

nang lugng tiéu hao.

Tir khéa— Giai thuat phan loai, Gia téc ké 3 truc, trich déc trung, nhan dang hoat dong.



