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ABSTRACT:

In  this study, a Faraday type
MagnetoHydroDynamic (MHD) generator is
studied to consider the effect of electrical
characteristics to the thermal efficiency. The
generator performance is specified by
optimizing the cycle efficiency with respect to
the load parameter and by optimizing output
power density with respect to seed fraction
and operating pressure. As the calculation
results, the value of load parameter, which

maximizes the thermodynamic
efficiency, is independent of the
regenerator efficiency, but dependent on
Mach number and the compressor
efficiency. It can also be seen that there
is no need for a high entrance Mach
number more than 5 because the
increases in thermal efficiency are
insignificant.

Keywords: MHD generator, thermal efficiency, electrical characteristic, load parameter,

output power density.
1. INTRODUCTION

Techniques  of  Magnetohydrodynamic
(MHD) power generation are being studied with
increasing interest for the development of high
temperature materials and high field strength
magnets progresses. Devices using these
techniques are to take the place of the turbo
generator in a conventional power generation
cycle. Several studies have been proposed that
combine Rankine, Brayton, or hybrid cycles
with liquids, vapors, and mixtures of these two
as proposed working fluids [1-4]. Some of these
studies may be used in a Brayton cycle where
the working fluid is an alkali metal vapor seeded
in a noble gas. These studies utilize the induced
electric field of the plasma to increase the

electron temperature. Each of these studies
considers a particular noble gas and seed for
which high conductivity was attained. In these
studies, however, no attempt has been made to
consider the effect of electrical characteristics
such as load parameter, electrical conductivity
of MHD generator for a specified generator
operating under conditions appropriate for
maximizing the thermal efficiency.

In this study a constant area linear duct with
segmented electrodes operating as a Faraday
type MHD generator is studied to consider the
effect of electrical characteristics to the thermal
efficiency. The magnetic field is constant and
unaffected by the fluid. The current through
each pair of electrodes is adjusted so that the
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generated voltage is constant. The working fluid
is a noble gas seeded with cesium, and the
effects of viscosity and heat conduction are
neglected. The comparison between different
seeded noble gas working fluids will be
examined for the optimum conditions to be
obtained.

2. THERMODYNAMIC CYCLE
EFIFICIENCY

A Brayton cycle is considered with
temperatures defined as shown in figure 1. The
compressor efficiency, generator (isentropic)
efficiency, and the generator efficiency are
defined as follows:

T2 _Tl = ncomp (TZ _Tl) (1)
s (T4 _Ts):T4 =Ty 2
T=T, =Ty —Tg = ey (TS’ _Tz') (3)

where the primed subscripts denote actual state
points in figure 1. It is of interest to relate the
generator efficiency to the variables defined in
the text and to discuss some of the implications
of the concept. The efficiency #xs can be
expressed in terms of the solution to the
generator equations as follows: From the
definition of #s:
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be expressed in terms of the generator variables.
The ratio of total pressures p./pw is expressed in
terms of the dimensionless exit static pressure P,
the exit gas velocity U, and the total temperature
ratio Ts/Ta:
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Figure 1. Brayton cycle temperature definitions

It should be noted that this isentropic
efficiency is based on total properties. An
isentropic change in total enthalpy that is not
zero can occur if the work is being done. This
can be illustrated as follows.

The momentum and energy equations of the
MHD generator are

du dp .

—+—+jB=0 7
A T (7

dh ,du .

— ——jE = 8
PUdX+PU X JE, (8)

Multiplying equation (7) by u and subtracting
from the equation (8) yield

dh 1dp) . i’
— =L |=j(E, +uB)=" 9
pu[dx pdxj J(E. +uB)=- ©)
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From the Second Law of Thermodynamics,
however, the left side of this equation can be
written as
i2
puTE:J_ (10)
dx

o

so that a constant entropy process can occur if o
approaches infinity. Hence, for an MHD
generator, the isentropic efficiency compares the
actual generator to a generator using an
infinitely conducting working fluid.

The parameters Y and Z (Y, Z <1) are defined as

(r-1/r T
Yy = [&j Z=22 (11)
pH T4

The thermodynamic efficiency for zero pressure
drops through the heater, regenerator, and cooler
may be expressed in terms of these parameters
as

. (75770omp =2 J2-Y) (12)
th ) _{Z(l_meg 11—(1_77c0mp)YJ+}

+ MregMcomp [1_ (1_ Y )’75 ]

If the cycle is to be used in the space
environment, then it is desirable to minimize
radiator area. The temperature ratio Z, which
minimizes the area, can now be determined. The
heat radiated per unit electric power developed
can be expressed as

Qrad — 1_ nth (13)
Wi T

where Wy, is thermodynamic work delivered by
cycle,

Qrad =& Osp A‘rTaz\‘/e (14)
and
T 3T 3
4 3 6 "1 (15)

T TZ LT 4TS

The area A (radiator area), required for a fixed
maximum temperature T4 can be obtained from

4
AL [T_4] (16)
Wi Tn \T

ave

where e is effective emissivity of radiator, osg
is the Stefan-Boltzmann constant. Equation (15)
is rewritten in terms of

a=(1—77reg Il_(l_Y)Us]

= Mg [Yncomp + (1_Y )] (17)

b

comp

by using equation (15) to evaluate (T4/Tawe)* and
equation (2) to eliminate the temperature terms.
Here, a, b are machine efficiency parameters,
then the area per unit power output becomes

Eeft O s ArT44 _ 1-n, 1
W,, 37, a+(b-Y)Z’

(18)
I

1Y°Z2® (a+bz)

Differentiation with respect to Z produces the

following equation for Z, which minimizes A,
in equation (15):

{4_ ay?z®

= 3757 com 19
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The solution to this fifth-degree polynomial can
be obtained in two special cases. The parameters
o and v are defined as

YZ

1-(1-Y s

V= 3Y’757700mp
1-(1-Y s

Equation (16) then becomes

w =

(20)
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It may be seen that when #reg=1
v
=— 22

=7 (22)
and when #re=0 (and b=0),

ola-o)=v (23)

These two solutions, which are plotted in figure
2, are nearly the same for v<2. As a matter of
fact, there is a condition for which the solutions
will all be the same, namely, when the second
term in the brackets of the equation (16) is small
compared to 4. It can be shown that if

1= 1reg = Tleony

775 = nconv + (24)
77comp 1+ 77reg

where Us (l_Y): Meonv (25)

then the second term will be less than 0.4. If
nreg=1, the inequality is always true. For the
remainder of the analysis, it will be assumed
that the parameters are chosen such that this
inequality is satisfied. Then, the value of Z that
minimizes Ar is

3
Z= Z’]S Ucomp (26)

and the thermodynamic cycle efficiency may be
written as
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Figure 2. Effect of regenerator efficiency #reg

3. ANALYSIS OF GENERATOR

CHARACTERISTICS

A linear MHD generator is analyzed using
the fluid flow equations. The fluid is considered
to be a perfect gas, and the effects of heat
conduction and viscosity are neglected. The
electrical conductivity is to be calculated using
the concept of magnetically induced ionization
[5,6], which implies an elevated electron
temperature. This elevated temperature is the
result of an energy balance between the energy
added to the electrons by the induced electric
field and the energy lost by the electrons upon
collision with the other particles.

3.1. Development of MHD Equations

The continuity, momentum, energy, and
state equations for the MHD generator are the
following [7]:

d

il =0 28
o ) (28)
pud—u+d—p+jB=0 (29)

dx dx

dh ,du .

— ——jE, = 30
pu IR (30)
h=_V_P (31)

r=1p
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where p is density, u is fluid velocity, p is
pressure, j is current density, B is magnetic field
strength, h is enthalpy, y is ratio of specific heat,
E. is the transverse component of electric field.

The restriction imposed by Maxwell's
equation, curl E=-0B/¢t, for a constant magnetic
field and a one-dimensional problem require
that be a constant, equal to -V/w (V is voltage
and w is the distance between -electrodes),
throughout the channel. This constant can be
expressed as some fraction of the entrance open-
circuit field uoB as

(32)

where K will be called the load parameter.

The generator is assumed to be segmented,
and the segments are assumed to be infinitely
thin, so that no axial currents flow. The proper
Ohm's Law is

j= G(UB —%j (33)

where ¢ is electrical conductivity includes Hall
effects and ion slip, and j is parallel to uxB. The
restriction that K is a constant places a
restriction on the load resistance Ry: (A¢f)RL =
(A¢j)oRL0 = constant

where A. is the electrode area, R. is load
resistance, and the subscript zero denotes
entrance values. If all electrodes are given the
same area Ae, the current can be eliminated as
follows:

o i—K
Ro ] Uy
0 _J_ 2 J (34)

To solve the system of equations (28) to (31),
the enthalpy h can be eliminated by using

equation (31) and the momentum and energy
equations. The resulting expression can be
integrated to obtain the following relation
between the pressure and velocity:

(0% + p)-(ppuZ + po )= E\;/—W

(39)
W up e 22 ) [ 2y g, 4 P
y-1 2 y-1°7°" 2

At this point, it is convenient to introduce
the following non-dimensional variables and
parameters:

-1
u=-— , k. ==k , p=-Pt_ |
Uy v Polp

2
MLzl_L(l_izj VYO
y+1 Mg Mo

7’ 2(1_ KLXML - KL)

where U is non-dimensional fluid velocity, K is
load voltage parameter, P is non-dimensional
pressure, M. is Mach number parameter, Mo is
entrance Mach number, 7 is a parameter.

Equation (35) may then be expressed as

2

T
o KLJ (36)

P =U —%l(u —K, -

Equation (36) represents the relation between
pressure and velocity. Since the duct is
segmented with infinitely thin segments, the
power developed in the generator can be
obtained by integrating the product of voltage
and current VjHdx over the length of the
generator:

2
0

= J:Vdex = ppUSKwH Hu ;4\; J—(u + P)} (37)

where H is the height of electrodes.
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This power can be compared to the total
enthalpy flux entering the generator:

Total enthalpy flux = pyu,wH {ypo +1u§] (38)
7=1py 2
The ratio of these terms is called the
conversion efficiency #conv and may be written
as

_K(-u)u-m,)

KL
UCOHV (39)
(U - KL) M L

The power output of a generator with a
specified inlet condition can now be determined.
In order to calculate the output power density,
however, a relation between velocity and
generator length must be determined. The two
variables, non-dimensional conductivity Q=c/og
and dimensionless interaction length &, defined

by
B o,B*x

Polg

(40)

are introduced. Equation (29) can then be
written as

d
E(U+P)+Q(U—K)=o (41)

which can be expressed as

g={—-Y _du (42)

Equation (42) provides a relation between U and
the interaction length. An expression for 0P/0U
can be obtained by differentiating equation (36):

2
KCLSE S 4 P 43)
0 y 2y U-K,

so that equation (42) becomes

1- T
_7"‘11 (U_KLJ
£= 27/[[ UK du (44)

It is noticed that if the conductivity is constant
(©=), equation (44) can be integrated:

T E)

A +[£)2 .n[ij_ (45)

2y K
(Y K(_1 1
KJ) y1-K, U-K,

which is in agreement with the results of other
investigations [8,9].

By using equation (44) for interaction length, it
is possible to express the output power density
¢ as follows:

I 2g2 KL(7+1)(1_U)(U_ML) (46)

O whL oo 2(y -1YU — K, )

This is the power density for a constant-area
generator. It is of interest to gage the effect of
velocity variation as well as conductivity
variation. The power density at the entrance to
the generator is

0 = O_oungK(l_ K) (47)
The ratio of equation (46) to equation (47)

p _(r+1a-ulu-m,) 48)

o - 27§(U _KL)(]-_ K)

will be used for comparison. This ratio will be
calculated for the constant conductivity case,
where Eonst IS given by equation (45), and for &
as determined from equation (44) by use of the
non-equilibrium conductivity.

The cycle thermodynamic efficiency may be
conveniently expressed in terms of a generator
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(isentropic) efficiency. This efficiency, which is
defined as the actual change in total enthalpy of
the working fluid in the generator compared to
the change in total enthalpy for an isentropic
process between the same total pressure
conditions, is derived in section 2 above. The
thermodynamic cycle efficiency for the Brayton
cycle under conditions appropriate for space
application is also calculated in section 2.
Certain limiting values for #conv, however, can
be obtained without specifying the conductivity.

3.2. Limiting Case

From equation (42) it can be seen that, as U
approaches K, ¢ will approach infinity;
obviously, this is a limiting value for U. This
situation represents the maximum interaction
length and, consequently, the maximum amount
of energy that can be taken from the fluid. In
some cases, however, the interaction length
cannot become indefinitely large. It is limited by
the phenomenon called “choking”, which can be
characterized by the criterion that the local
Mach number reaches 1. In the dimensionless
symbols defined previously, this condition is
equivalent to

U= (49)
This condition, when substituted into the

equation (36), leads to the following

specification of U at choking:

U, =K +7 (50)

It is noticed that this is the value of the
velocity for which the integrand in equation (44)
is zero; that is, Uen is the condition that makes
0&/0U= 0.
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Figure 3. Load parameters K (ratio of voltage to
open-circuit voltage) for maximum thermal efficiency
and infinite choking length for initial compressor
efficiency of 0.8
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Figure 4. Thermal efficiency for limiting solution
with compressor efficiency of 0.8

Two different operation limits have been
described: first, when U=K and the duct is
infinitely long, and second, when U=Ug, and the
duct is choked. For any generator operation the
proper limiting value can be determined by
considering the case where the duct is choked at
infinity. Formally, this occurs when Ug=K. This
condition can be substituted into equation (50)
and the K for which this occurs (call it K,) can
be determined from the following:

K =LY 4; (1)
¥

which may be written as

(=fa-mf o r-2)aem,)
4 : 2 (52)
1-(r-1f

The criterion for distinguishing between the
two limiting cases may therefore be stated as
follows: For K>K., the duct will not choke and
U will approach K, while for K<K., the duct
will be choked and U will approach Uch. The
duct is infinitely long and choked for K=K..
When y=5/3, K, is as shown in figure 3. It is
noted that for Mo<1 the duct will always choke,
if sufficiently long, since K must be less than 1;
whereas, as shown in equation (52) K., must be
greater than unity.

The quantity #conv Can be calculated from
equation (39) and xs from section 2 for a
specified y and Mach number as a function of K.
Therefore, the thermal efficiency nm can be
calculated by means of equation (27) for a
specified compressor efficiency and regenerator
efficiency. In figure 4(a) this efficiency is
plotted for y=5/3, My=2.0, and #comp=0.8 with
regenerator efficiency as a parameter. Two
items should be noted: first, the efficiency has a
maximum at some values of K, and second, this
value of K is independent of neg €ven though
the efficiency varies with neg (this is true for all
supersonic Mach numbers). The value of K also
depends on mcemp but that dependency will not
be investigated.

In figure 4(b), the efficiency is plotted again as a
function of K with y=5/3 and #¢mp=0.8, but with
nreg=0 and Mach number as the parameter. It can
be seen that the K for the optimum efficiency
does depend on the Mach number. The value of
K for which the thermodynamic efficiency is
optimized is called Kmax and is shown in figure 3.

In figure 4(c), the efficiency at K=Kmax and
necomp=0.8 is plotted as a function of Mach
number with regenerator efficiency as a
parameter. It can be seen that when My>5, the
increases in thermal efficiency are insignificant.
Therefore, there is no need for a high entrance
Mach number more than 5.

For the limiting values of U, #conv in equation
(39) becomes

-1
Neonv = 7|/v| (1_ Kmax)(Kmax -M L)K>K°c (53)
L

or

n _ KL(l_UchXUch_ML)
o (Uch - KL)M L

K<K.. (54)
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4. CONCLUSIONS

In conclusion, it may be stated that a value
of the load parameter which maximizes the
thermodynamic efficiency of the limiting
solution has been calculated. This value is
independent of the regenerator efficiency, but
dependent on Mach number, and the compressor
efficiency (assumed to be 0.8 for all calculations
presented herein).

For the limiting solutions the efficiency is
independent of the form of the electrical
conductivity. Of course, the electrical
conductivity of the plasma is of great practical
importance in that it largely determines the
generator length required to extract power,
which in turn determines the output power
density of the generator. It is natural, then, to
use the generator output power density as a
means of comparing the usefulness of various
working fluids (the larger the better, of course).

It is concluded that, if the duct is sufficiently
long, for the entrance Mach numbers smaller
than 1, the duct will always choke. The thermal
efficiency has a maximum at some values of

load parameter, but this value of load parameter
is independent of the regenerator efficiency
even though the thermal efficiency varies with
the regenerator efficiency. From the calculations,
the load parameter for the optimum thermal
efficiency clearly depends on the Mach number.

When the entrance Mach number is more
than 5, the increases in thermal efficiency are
insignificant. Therefore, there is no need for a
high entrance Mach number.

The conductivity to be used in the calculation
of output power density is that which is
determined on the basis of the theory of
magnetically  induced  ionization.  This
conductivity depends on the velocity as well as
the usual parameters. All results obtained from
this study will be much more significant for
optimizing the efficiency of the MHD generator
in the future works.

Phan tich cac Qéc tinh dién cua [néy phat
tr thuy déng dé cwc dai hiéu suat nhiét

e Lé Chi Kién

Trwdng Dai hoc Sw pham Ky thuat TP.HCM

TOM TAT

Bai bao nay nghién ctru may phat Tr

thdy déng loai Faraday va xem xét anh
huéng cla céc thuéc tinh dién dén hiéu suét

nhiét cda hé thdng. Hoat déng cua may
phét Tir thdy doéng duoc chi ré bang
céch téi wu héa hiéu suét nhiét cé xét
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dén tham sé tai va téi wu héa mat d6 cong
Suét phat ra cé xét dén ti 1é chét cay va ép
sudt lam viéc. Theo két qua phan tich, gia tri
tham sé tdi ma lam cuwe dai hiéu suét nhiét,
khéng phu thudc vao hiéu suét bé tai sinh

nhiét nhung lai phu thudc vao sé Mach
va hiéu suat may nén khi. Két qué ciing
cho thay rdng khéng can thiét sé Mach &
clra vao Ién hon 5 vi khi d6 hiéu suét
nhiét tdng khéng déng ké.

Torkhéa: May phat MHD, hiéu suét nhiét, d&c tinh dién, tham sé tai, mat dé céng suét.
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