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ABSTRACT: 

In this study, a Faraday type 

MagnetoHydroDynamic (MHD) generator is 

studied to consider the effect of electrical 

characteristics to the thermal efficiency. The 

generator performance is specified by 

optimizing the cycle efficiency with respect to 

the load parameter and by optimizing output 

power density with respect to seed fraction 

and operating pressure. As the calculation 

results, the value of load parameter, which 

maximizes the thermodynamic 

efficiency, is independent of the 

regenerator efficiency, but dependent on 

Mach number and the compressor 

efficiency. It can also be seen that there 

is no need for a high entrance Mach 

number more than 5 because the 

increases in thermal efficiency are 

insignificant. 

Keywords: MHD generator, thermal efficiency, electrical characteristic, load parameter, 

output power density. 

1.  INTRODUCTION 

Techniques of Magnetohydrodynamic 

(MHD) power generation are being studied with 

increasing interest for the development of high 

temperature materials and high field strength 

magnets progresses. Devices using these 

techniques are to take the place of the turbo 

generator in a conventional power generation 

cycle. Several studies have been proposed that 

combine Rankine, Brayton, or hybrid cycles 

with liquids, vapors, and mixtures of these two 

as proposed working fluids [1-4]. Some of these 

studies may be used in a Brayton cycle where 

the working fluid is an alkali metal vapor seeded 

in a noble gas. These studies utilize the induced 

electric field of the plasma to increase the 

electron temperature. Each of these studies 

considers a particular noble gas and seed for 

which high conductivity was attained. In these 

studies, however, no attempt has been made to 

consider the effect of electrical characteristics 

such as load parameter, electrical conductivity 

of MHD generator for a specified generator 

operating under conditions appropriate for 

maximizing the thermal efficiency. 

In this study a constant area linear duct with 

segmented electrodes operating as a Faraday 

type MHD generator is studied to consider the 

effect of electrical characteristics to the thermal 

efficiency. The magnetic field is constant and 

unaffected by the fluid. The current through 

each pair of electrodes is adjusted so that the 
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generated voltage is constant. The working fluid 

is a noble gas seeded with cesium, and the 

effects of viscosity and heat conduction are 

neglected. The comparison between different 

seeded noble gas working fluids will be 

examined for the optimum conditions to be 

obtained. 

2.  THERMODYNAMIC CYCLE 

EFIFICIENCY 

A Brayton cycle is considered with 

temperatures defined as shown in figure 1. The 

compressor efficiency, generator (isentropic) 

efficiency, and the generator efficiency are 

defined as follows: 

( )1212 TTTT comp −=−        (1) 

( ) 5454 −=− TTTTS       (2) 

( )256523  −=−=− TTTTTT reg     (3) 

where the primed subscripts denote actual state 

points in figure 1. It is of interest to relate the 

generator efficiency to the variables defined in 

the text and to discuss some of the implications 

of the concept. The efficiency ηS can be 

expressed in terms of the solution to the 

generator equations as follows: From the 

definition of ηS: 
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However, Y=(T5/T4)=(pL/pH)(γ-1)/γ must also 

be expressed in terms of the generator variables. 

The ratio of total pressures pL/pH is expressed in 

terms of the dimensionless exit static pressure P, 

the exit gas velocity U, and the total temperature 

ratio T5'/T4: 
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Figure 1. Brayton cycle temperature definitions 

It should be noted that this isentropic 

efficiency is based on total properties. An 

isentropic change in total enthalpy that is not 

zero can occur if the work is being done. This 

can be illustrated as follows. 

The momentum and energy equations of the 

MHD generator are 

0
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Multiplying equation (7) by u and subtracting 

from the equation (8) yield 
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From the Second Law of Thermodynamics, 

however, the left side of this equation can be 

written as 




2

d

d j
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s
uT =             (10) 

so that a constant entropy process can occur if σ 

approaches infinity. Hence, for an MHD 

generator, the isentropic efficiency compares the 

actual generator to a generator using an 

infinitely conducting working fluid. 

The parameters Y and Z (Y, Z ≤1) are defined as 
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The thermodynamic efficiency for zero pressure 

drops through the heater, regenerator, and cooler 

may be expressed in terms of these parameters 

as 
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If the cycle is to be used in the space 

environment, then it is desirable to minimize 

radiator area. The temperature ratio Z, which 

minimizes the area, can now be determined. The 

heat radiated per unit electric power developed 

can be expressed as 
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where Wth is thermodynamic work delivered by 

cycle,  
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The area Ar (radiator area), required for a fixed 

maximum temperature T4 can be obtained from 
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where εeff is effective emissivity of radiator, σSB 

is the Stefan-Boltzmann constant. Equation (15) 

is rewritten in terms of 
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by using equation (15) to evaluate (T4/Tave)4 and 

equation (2) to eliminate the temperature terms. 

Here, a, b are machine efficiency parameters, 

then the area per unit power output becomes 
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Differentiation with respect to Z produces the 

following equation for Z, which minimizes Ar, 

in equation (15): 
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The solution to this fifth-degree polynomial can 

be obtained in two special cases. The parameters 

ω and v are defined as 
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Equation (16) then becomes 
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It may be seen that when ηreg=1  

4

v
=             (22) 

and when ηreg=0 (and b=0), 

( ) v=− 34              (23) 

These two solutions, which are plotted in figure 

2, are nearly the same for v≤2. As a matter of 

fact, there is a condition for which the solutions 

will all be the same, namely, when the second 

term in the brackets of the equation (16) is small 

compared to 4. It can be shown that if 
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where ( ) convS Y  =−1           (25) 

then the second term will be less than 0.4. If 

ηreg=1, the inequality is always true. For the 

remainder of the analysis, it will be assumed 

that the parameters are chosen such that this 

inequality is satisfied. Then, the value of Z that 

minimizes Ar is 

compSZ 
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3
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and the thermodynamic cycle efficiency may be 

written as 
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Figure 2. Effect of regenerator efficiency ηreg 

3.  ANALYSIS OF GENERATOR 

CHARACTERISTICS 

A linear MHD generator is analyzed using 

the fluid flow equations. The fluid is considered 

to be a perfect gas, and the effects of heat 

conduction and viscosity are neglected. The 

electrical conductivity is to be calculated using 

the concept of magnetically induced ionization 

[5,6], which implies an elevated electron 

temperature. This elevated temperature is the 

result of an energy balance between the energy 

added to the electrons by the induced electric 

field and the energy lost by the electrons upon 

collision with the other particles. 

3.1. Development of MHD Equations 

The continuity, momentum, energy, and 

state equations for the MHD generator are the 

following [7]: 
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where ρ is density, u is fluid velocity, p is 

pressure, j is current density, B is magnetic field 

strength, h is enthalpy, γ is ratio of specific heat, 

E⊥ is the transverse component of electric field. 

The restriction imposed by Maxwell's 

equation, curl E=-∂B/∂t, for a constant magnetic 

field and a one-dimensional problem require 

that be a constant, equal to -V/w (V is voltage 

and w is the distance between electrodes), 

throughout the channel. This constant can be 

expressed as some fraction of the entrance open-

circuit field u0B as 

Bwu

V
K
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where K will be called the load parameter. 

The generator is assumed to be segmented, 

and the segments are assumed to be infinitely 

thin, so that no axial currents flow. The proper 

Ohm's Law is 
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where σ is electrical conductivity includes Hall 

effects and ion slip, and j is parallel to u×B. The 

restriction that K is a constant places a 

restriction on the load resistance RL: (Aej)RL = 

(Aej)0RL,0 = constant 

where Ae is the electrode area, RL is load 

resistance, and the subscript zero denotes 

entrance values. If all electrodes are given the 

same area Ae, the current can be eliminated as 

follows: 
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To solve the system of equations (28) to (31), 

the enthalpy h can be eliminated by using 

equation (31) and the momentum and energy 

equations. The resulting expression can be 

integrated to obtain the following relation 

between the pressure and velocity: 
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At this point, it is convenient to introduce 

the following non-dimensional variables and 

parameters: 
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where U is non-dimensional fluid velocity, KL is 

load voltage parameter, P is non-dimensional 

pressure, ML is Mach number parameter, M0 is 

entrance Mach number, τ is a parameter. 

Equation (35) may then be expressed as 















−
−−

+
−=

L

L
KU

KUUP
2

2

1 
        (36) 

Equation (36) represents the relation between 

pressure and velocity. Since the duct is 

segmented with infinitely thin segments, the 

power developed in the generator can be 

obtained by integrating the product of voltage 

and current VjHdx over the length of the 

generator: 
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where H is the height of electrodes. 
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This power can be compared to the total 

enthalpy flux entering the generator: 
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The ratio of these terms is called the 

conversion efficiency ηconv and may be written 

as 
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The power output of a generator with a 

specified inlet condition can now be determined. 

In order to calculate the output power density, 

however, a relation between velocity and 

generator length must be determined. The two 

variables, non-dimensional conductivity Ω=σ/σ0 

and dimensionless interaction length ξ, defined 

by 
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are introduced. Equation (29) can then be 

written as 
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which can be expressed as 
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Equation (42) provides a relation between U and 

the interaction length. An expression for ∂P/∂U 

can be obtained by differentiating equation (36): 
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so that equation (42) becomes 
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It is noticed that if the conductivity is constant 

(Ω=l), equation (44) can be integrated: 















































−
−

−








−

−













−

−








+

+








−

−






















−

+
=

LL

L

L

KUK

K

K

KU

K

K

KU

K

K

1

1

1

1
ln

1
ln1

2

1

2

2

2














 (45) 

which is in agreement with the results of other 

investigations [8,9].  

By using equation (44) for interaction length, it 

is possible to express the output power density 

 as follows: 
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This is the power density for a constant-area 

generator. It is of interest to gage the effect of 

velocity variation as well as conductivity 

variation. The power density at the entrance to 

the generator is 
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The ratio of equation (46) to equation (47) 
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will be used for comparison. This ratio will be 

calculated for the constant conductivity case, 

where ξconst is given by equation (45), and for ξ 

as determined from equation (44) by use of the 

non-equilibrium conductivity. 

The cycle thermodynamic efficiency may be 

conveniently expressed in terms of a generator 
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(isentropic) efficiency. This efficiency, which is 

defined as the actual change in total enthalpy of 

the working fluid in the generator compared to 

the change in total enthalpy for an isentropic 

process between the same total pressure 

conditions, is derived in section 2 above. The 

thermodynamic cycle efficiency for the Brayton 

cycle under conditions appropriate for space 

application is also calculated in section 2. 

Certain limiting values for ηconv, however, can 

be obtained without specifying the conductivity. 

3.2. Limiting Case 

From equation (42) it can be seen that, as U 

approaches K, ξ will approach infinity; 

obviously, this is a limiting value for U. This 

situation represents the maximum interaction 

length and, consequently, the maximum amount 

of energy that can be taken from the fluid. In 

some cases, however, the interaction length 

cannot become indefinitely large. It is limited by 

the phenomenon called “choking”, which can be 

characterized by the criterion that the local 

Mach number reaches 1. In the dimensionless 

symbols defined previously, this condition is 

equivalent to 

PU =             (49) 

This condition, when substituted into the 

equation (36), leads to the following 

specification of U at choking: 

+= Lch KU            (50) 

It is noticed that this is the value of the 

velocity for which the integrand in equation (44) 

is zero; that is, Uch is the condition that makes 

∂ξ/∂U= 0. 
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Figure 4. Thermal efficiency for limiting solution 

with compressor efficiency of 0.8 

Two different operation limits have been 

described: first, when U=K and the duct is 

infinitely long, and second, when U=Uch and the 

duct is choked. For any generator operation the 

proper limiting value can be determined by 

considering the case where the duct is choked at 

infinity. Formally, this occurs when Uch=K. This 

condition can be substituted into equation (50) 

and the K for which this occurs (call it K∞) can 

be determined from the following: 





+

−
=  KK

1
          (51) 

which may be written as 
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 (52) 

The criterion for distinguishing between the 

two limiting cases may therefore be stated as 

follows: For K>K∞, the duct will not choke and 

U will approach K, while for K<K∞, the duct 

will be choked and U will approach Uch. The 

duct is infinitely long and choked for K=K∞. 

When γ=5/3, K∞, is as shown in figure 3. It is 

noted that for M0<1 the duct will always choke, 

if sufficiently long, since K must be less than 1; 

whereas, as shown in equation (52) K∞, must be 

greater than unity. 

The quantity ηconv can be calculated from 

equation (39) and ηS from section 2 for a 

specified γ and Mach number as a function of K. 

Therefore, the thermal efficiency ηth can be 

calculated by means of equation (27) for a 

specified compressor efficiency and regenerator 

efficiency. In figure 4(a) this efficiency is 

plotted for γ=5/3, M0=2.0, and ηcomp=0.8 with 

regenerator efficiency as a parameter. Two 

items should be noted: first, the efficiency has a 

maximum at some values of K, and second, this 

value of K is independent of ηreg even though 

the efficiency varies with ηreg (this is true for all 

supersonic Mach numbers). The value of K also 

depends on ηcomp but that dependency will not 

be investigated. 

In figure 4(b), the efficiency is plotted again as a 

function of K with γ=5/3 and ηcomp=0.8, but with 

ηreg=0 and Mach number as the parameter. It can 

be seen that the K for the optimum efficiency 

does depend on the Mach number. The value of 

K for which the thermodynamic efficiency is 

optimized is called Kmax and is shown in figure 3. 

In figure 4(c), the efficiency at K=Kmax and 

ηcomp=0.8 is plotted as a function of Mach 

number with regenerator efficiency as a 

parameter. It can be seen that when M0>5, the 

increases in thermal efficiency are insignificant. 

Therefore, there is no need for a high entrance 

Mach number more than 5. 

For the limiting values of U, ηconv in equation 

(39) becomes 

( )( )L

L

conv MKK
M

−−
−

= maxmax1
1

 K>K∞      (53) 

or 

( )( )
( ) LLch

LchchL
conv

MKU

MUUK

−

−−
=

1
  K<K∞         (54) 
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4. CONCLUSIONS 

In conclusion, it may be stated that a value 

of the load parameter which maximizes the 

thermodynamic efficiency of the limiting 

solution has been calculated. This value is 

independent of the regenerator efficiency, but 

dependent on Mach number, and the compressor 

efficiency (assumed to be 0.8 for all calculations 

presented herein).  

For the limiting solutions the efficiency is 

independent of the form of the electrical 

conductivity. Of course, the electrical 

conductivity of the plasma is of great practical 

importance in that it largely determines the 

generator length required to extract power, 

which in turn determines the output power 

density of the generator. It is natural, then, to 

use the generator output power density as a 

means of comparing the usefulness of various 

working fluids (the larger the better, of course). 

 

It is concluded that, if the duct is sufficiently 

long, for the entrance Mach numbers smaller 

than 1, the duct will always choke. The thermal 

efficiency has a maximum at some values of 

load parameter, but this value of load parameter 

is independent of the regenerator efficiency 

even though the thermal efficiency varies with 

the regenerator efficiency. From the calculations, 

the load parameter for the optimum thermal 

efficiency clearly depends on the Mach number. 

When the entrance Mach number is more 

than 5, the increases in thermal efficiency are 

insignificant. Therefore, there is no need for a 

high entrance Mach number. 

The conductivity to be used in the calculation 

of output power density is that which is 

determined on the basis of the theory of 

magnetically induced ionization. This 

conductivity depends on the velocity as well as 

the usual parameters. All results obtained from 

this study will be much more significant for 

optimizing the efficiency of the MHD generator 

in the future works. 

 

 

Phân tích các đặc tính điện của máy phát 

từ thủy động để cực đại hiệu suất nhiệt 

• Lê Chí Kiên 

Trường Đại học Sư phạm Kỹ thuật TP.HCM 

TÓM TẮT 

Bài báo này nghiên cứu máy phát Từ 

thủy động loại Faraday và xem xét ảnh 

hưởng của các thuộc tính điện đến hiệu suất 

nhiệt của hệ thống. Hoạt động của máy 

phát Từ thủy động được chỉ rõ bằng 

cách tối ưu hóa hiệu suất nhiệt có xét 
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đến tham số tải và tối ưu hóa mật độ công 

suất phát ra có xét đến tỉ lệ chất cấy và áp 

suất làm việc. Theo kết quả phân tích, giá trị 

tham số tải mà làm cực đại hiệu suất nhiệt, 

không phụ thuộc vào hiệu suất bộ tái sinh 

nhiệt nhưng lại phụ thuộc vào số Mach 

và hiệu suất máy nén khí. Kết quả cũng 

cho thấy rằng không cần thiết số Mach ở 

cửa vào lớn hơn 5 vì khi đó hiệu suất 

nhiệt tăng không đáng kể. 

Từ khóa: Máy phát MHD, hiệu suất nhiệt, đặc tính điện, tham số tải, mật độ công suất. 
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