
SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 17, No.K2- 2014 

Trang 60 

Dynamic model identification of IPMC 

actuator using fuzzy NARX model optimized 

by MPSO 

• Ho Pham Huy Anh 

FEEE, University of Technology, VNU-HCM 

• Nguyen Thanh Nam 

DCSELAB, University of Technology, VNU-HCM 

(Manuscript Received on December 11th, 2013; Manuscript Revised September 12th, 2014) 

 

 

  ABSTRACT: 

 In this paper, a novel inverse dynamic 

fuzzy NARX model is used for modeling 

and identifying the IPMC-based actuator’s 

inverse dynamic model. The contact force 

variation and highly nonlinear cross effect 

of the IPMC-based actuator are thoroughly 

modeled based on the inverse fuzzy NARX 

model-based identification process using 

experiment input-output training data. This 

paper proposes the novel use of a 

modified particle swarm optimization 

(MPSO) to generate the inverse fuzzy 

NARX (IFN) model for a highly nonlinear 

IPMC actuator system. The results show 

that the novel inverse dynamic fuzzy 

NARX model trained by MPSO  algorithm 

yields outstanding performance and 

perfect accuracy. 

  Keywords: IPMC-based actuator, modified particle swarm optimization (MPSO), fuzzy 

NARX model, inverse dynamic identification 

1. INTRODUCTION 

The nonlinear IPMC-based actuator is belonged 

to highly nonlinear systems where perfect 

knowledge of their parameters is unattainable by 

conventional modeling techniques because of the 

time-varying inertia, external force variation and 

other nonlinear uncertainties. To guarantee a good 

position tracking performance, lots of researches 

have been carried on. During the last decade, 

Sadeghipour et al., Shahinpoor et al., Oguru et al., 

and Tadokoro et al. investigated the bending 

characteristics of Ionic Polymer Metal Composite 

(IPMC) [1–4]. Bar-Cohen et al. characterized the 

electromechanical properties of IPMC [5]. An 

empirical control model by Kanno et al. was 

developed and optimized with curve-fit routines 

based on open-loop step responses with three 

stages, i.e., electrical, stress generation, and 

mechanical stages [6–8]. Feedback compensators 

were designed using a similar model in a 

cantilever configuration to study its open-loop and 

closed-loop behaviors [9–10].  
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Damping of the ionic polymer actuator in air is 

much lower than that in water. Feedback control is 

necessary to decrease the response time of an 

ionic-polymer actuator to a step change in the 

applied electric field and to reduce overshoot. The 

position control of the IPMC was investigated by 

using a linear quadratic regulator (LQR) [12], a 

PID controller with impedance control [11], and a 

lead-lag compensator [9–10]. Lots of advanced 

control algorithms have been developed for IPMC 

actuator in order to apply them in variety of the 

industrial and marine applications [13-19]. 

Up to now, the robust-adaptive control 

approaches combining conventional methods with 

new learning techniques are realized. During the 

last decade several neural network models and 

learning schemes have been applied to offline and 

online learning of actuator dynamics. Ahn and 

Anh in [20] have successfully optimized a NARX 

fuzzy model of the highly nonlinear actuator using 

genetic algorithm. These authors in [21] have 

identified the nonlinear actuator based on recurrent 

neural networks. The drawback of all these results 

is related to consider the actuator as an 

independent decoupling system and the external 

force variation like negligible effect. 

Consequently, all intrinsic cross-effect features of 

the IPMC-based actuator has not represented in its 

intelligent model. Recently, D.N.C. Nam et al. has 

modeled the IPMC actuator using fuzzy model 

optimized by traditional PSO [22-23]. The 

drawback of this research lied in the resulting 

fuzzy model optimized by the traditional PSO 

susceptible to premature convergence and then 

easy to be fallen in local optimal trap. 

In order to overcome this disadvantage, this 

paper proposes the novel use of a modified particle 

swarm optimization (MPSO) to generate the 

inverse fuzzy NARX (IFN) model for a highly 

nonlinear IPMC actuator system. The MPSO is 

used to process the experimental input-output data 

that is measured from the IPMC system to 

optimize all nonlinear and dynamic features of this 

system. Thus, the MPSO algorithm optimally 

generates the appropriate fuzzy if-then rules to 

perfectly characterize the dynamic features of the 

IPMC actuator system. These good results are due 

to proposed IFN model combines the 

extraordinary approximating capability of the 

fuzzy system with the powerful predictive and 

adaptive potentiality of the nonlinear NARX 

structure that is implied in the proposed IFN 

model. Consequently, the proposed MPSO-based 

IPMC inverse fuzzy NARX model identification 

approach has successfully modeled the nonlinear 

dynamic IPMC system with better performance 

then other identification methods. 

This paper makes the following contributions: 

first, the novel proposed MPSO-based IPMC 

inverse fuzzy NARX model for modeling and 

identifying dynamic features of the highly 

nonlinear IPMC system has been realized; second, 

the modified particle swarm optimization (MPSO) 

has been applied for optimizing the IPMC IFN 

model’s parameters; finally, the excellent results 

of proposed IPMC inverse fuzzy NARX model 

optimized by MPSO were obtained. 

The rest of the paper is organized as follows. 
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Section 2 introduces the novel proposed inverse 

fuzzy NARX model. Section 3 presents the 

experimental set-up configuration for the proposed 

IPMC IFN model identification. Section 4 

describes concisely the modified particle swarm 

optimization (MPSO) used to identify the IPMC 

IFN model. Section 5 is dedicated to the 

techniques of MPSO-based IFN model 

identification. The results from the proposed 

IPMC IFN model identification are presented in 

Section 6. Section 7 contains the concluding 

remarks. 

2. PROPOSED INVERSE FUZZY NARX 

MODEL OF NONLINEAR IPMC SYSTEM 

2.1. Proposed inverse fuzzy NARX model of 

the IPMC actuator system 

The proposed IFN model of the highly nonlinear 

IPMC system presented in this paper is improved 

by combining the approximating capability of the 

fuzzy system with the powerful predictive and 

adaptive potentiality of the nonlinear NARX 

structure. The resulting model establishes a 

nonlinear relationship between the past inputs and 

outputs and the predicted output, while the system 

prediction output is a combination of the system 

output produced by the real inputs and the 

historical behaviors of the system. This can be 

expressed as: 

( ) ( ) ( ) ( ) ( )( )dbda nnkunkunkykyfky −−−−−= ,...,,,...,1ˆ
  (1) 

Here, na and nb are the maximum lag 

considered for the output and input terms, 

respectively, nd is the discrete dead time, and f 

represents the mapping of the fuzzy model. 

The structure of the proposed IPMC IFN model 

interpolates between the local linear, time-

invariant (LTI) ARX models as: 

Rule j: if  z1(k) is  A1,j  and … and zn(k) is  
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where zi(k), i=1...n is the element of the Z(k) 

“scheduling vector” which is usually a subset of 

the X(k) regressor that contains the variables 

relevant to the nonlinear behaviors of the system. 

In this paper, X(k) regressor contains all of the 

inputs of the inverse fuzzy NARX model 

( ) ( ) ( ) ( ) ( ) dbda nnkunkunkykykXkZ −−−−−= ,...,,,...,1)(
 (3) 

The fj(q(k)) consequent function contains all the 

regressors  q(k)=[X(k) 1], 
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In the simplest case, the NARX type zero-order 

fuzzy model (singleton or Sugeno fuzzy model 

which isn’t applied in this paper) is formulated by 

the simple rule consequents: 

Rule j : if  z1(k) is A1, j  and…and  zn(k) is  

An,j then 

( ) jcky =ˆ
                      (5) 

with zi(k), i=1...n is the element of the Z(k) 

regressor containing all of the inputs of the IPMC 

IFN model: 

( ) ( ) ( ) ( ) ( ) ( ) dbda nnkunkunkykykXkZ −−−−−== ,...,,,...,1
 (6) 

Thus the difference between the fuzzy NARX 

model and the classic TS Fuzzy model method is 

that the output from the TS fuzzy model is linear 

and constant, and the output from the NARX 
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fuzzy model is the NARX function. However, 

both of these methods have the same fuzzy 

inference structure (FIS). 

2.2. MPSO-based IPMC IFN Model 

Identification 

The problem of modeling the nonlinear and 

dynamic system always attracts the attention of 

researcher. Some research has been published 

using a fuzzy model based on expert knowledge 

[24-30]. Unfortunately the resulting fuzzy model 

was often too complex to be applied in practice 

and thus only simulation was carried out. Figure 

1a and 1b initially presents the block scheme for 

the modeling and identification of a MPSO-based 

inverse fuzzy NARX11 and inverse fuzzy 

NARX22 models using experimental input-output 

training data. MPSO stands for Modified Particle 

Swarm Optimization and will be described later in 

the section 4.1. 

This proposed approach can help to simplify the 

modeling procedure for nonlinear systems. Particle 

swarm optimization (PSO) is applied to optimize 

the FIS structure and other parameters of proposed 

fuzzy model. However the poor experimental 

result proves that the PSO-based TS fuzzy model 

is incapable of modeling all nonlinear, dynamic 

features of the dynamic system. Recently the 

fuzzy/neural NARX model has been successfully 

applied to identify nonlinear, dynamic system 

[20],[27]. 

 

Fig.1. Block diagram of the MPSO-based IPMC 

inverse fuzzy NARX11 model identification 

The block diagram presented in Fig.1 and 2 

illustrate the MPSO-based IPMC IFN model 

identification. The error e(k)=U(k)-Uh(k) is used 

by the MPSO algorithm to calculate the Fitness 

value (see Equation (7)) in order to identify and 

optimize parameters of the proposed IPMC IFN 

model. 

1

1

24 )))(ˆ)((
1

.(10 −

=

 −=
M

k

jj kyky
M

F

   (7) 

 

Fig.2. Block diagram of the MPSO-based IPMC 

inverse fuzzy NARX22 model identification 

3. EXPERIMENT CONFIGURATION OF 

THE IPMC IFN MODEL IDENTIFICATION 

A general configuration and the schematic 

diagram of the IPMC-based actuator and the 
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photograph of the experimental apparatus are 

shown in Fig.3. 
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Fig.3. Block diagram for working principle of IPMC 

actuator inverse fuzzy NARX model identification 

The hardware includes an IBM compatible PC 

(Pentium 1.7 GHz) which sends the voltage 

signals u(t) to control the proportional valve 

(FESTO, MPYE-5-1/8HF-710B), through a D/A 

board (ADVANTECH, PCI 1720 card) which 

changes digital signals from PC to analog voltage 

u(t) respectively. The rotating torque is generated 

by the pneumatic pressure difference supplied 

from air-compressor between the antagonistic 

artificial muscles. Consequently, the both of joints 

of the IPMC-based intelligent valve will be rotated 

to follow the desired joint angle references 

(YREF1(k) and YREF2(k)) respectively. 

4. PSO ALGORITHM FOR NARX FUZZY 

MODEL IDENTIFICATION 

PSO is a population-based optimization method 

first proposed by Eberhart and colleagues [32]. 

Some of the attractive features of PSO include the 

ease of implementation and the fact that no 

gradient information is required. It can be used to 

solve a wide array of different optimization 

problems. Like evolutionary algorithms, PSO 

technique conducts search using a population of 

particles, corresponding to individuals. Each 

particle represents a candidate solution to the 

problem at hand. In a PSO system, particles 

change their positions by flying around in a 

multidimensional search space until computational 

limitations are exceeded. Concept of modification 

of a searching point by PSO is shown in Fig. 4. 

 

Fig. 4. Searching Concept of PSO 

With: 

Xk: current position, Xk+1: modified position, 

Vk: current velocity, Vk+1: modified velocity, 

VPbest: velocity based on Pbest, VGbest: velocity 

based on Gbest. 

The PSO technique is an evolutionary 

computation technique, but it differs from other 

well-known evolutionary computation algorithms 

such as the genetic algorithms. Although a 

population is used for searching the search space, 

there are no operators inspired by the human DNA 

procedures applied on the population. Instead, in 

PSO, the population dynamics simulates a ‘bird 

flock’s’ behavior, where social sharing of 

information takes place and individuals can profit 

from the discoveries and previous experience of all 

the other companions during the search for food. 

Thus, each companion, called particle, in the 

population, which is called swarm, is assumed to 

‘fly’ over the search space in order to find 
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promising regions of the landscape. For example, 

in the minimization case, such regions possess 

lower function values than other, visited 

previously. In this context, each particle is treated 

as a point in a d-dimensional space, which adjusts 

its own ‘flying’ according to its flying experience 

as well as the flying experience of other particles 

(companions). 

In PSO, a particle is defined as a moving point 

in hyperspace. For each particle, at the current 

time step, a record is kept of the position, velocity, 

and the best position found in the search space so 

far. The assumption is a basic concept of PSO 

[32]. In the PSO algorithm, instead of using 

evolutionary operators such as mutation and 

crossover, to manipulate algorithms, for a d-

variable optimization problem, a flock of particles 

are put into the d-dimensional search space with 

randomly chosen velocities and positions knowing 

their best values so far (Pbest) and the position in 

the d-dimensional space. The velocity of each 

particle, adjusted according to its own flying 

experience and the other particle’s flying 

experience. For example, the i-th particle is 

represented as xi = (xi,1 ,xi,2 ,…, xi,d) in the d-

dimensional space. The best previous position of 

the i-th particle is recorded and represented as: 

Pbesti = (Pbesti,1 , Pbesti,2 ,..., Pbesti,d).    (8) 

The index of best particle among all of the 

particles in the group in the d-dimensional space is 

gbestd. The velocity for particle i is represented as 

vi = (vi,1 ,vi,2 ,…, vi,d). The modified velocity 

and position of each particle can be calculated 

using the current velocity and the distance from 

Pbesti,d to gbestd as shown in the following 

formulas [37]: 

( 1) ( ) ( ) ( )

, , 1 , , 2 ,(). ().t t t t

i m i m i m i m m i mv wv c Rand Pbest x c Rand gbest x+    = + − + −   

            (9) 

( 1) ( ) ( 1)

, , , , 1,2,..., ; 1,2,...,t t t

i m i m i mx x v i n m d+ += + = =
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where 

n - Number of particles in the group, 

d – Dimension of search space of PSO, 

t - Pointer of iterations (generations), 

( )

,

t

i mv
-Velocity of particle i at iteration t,  

w - Inertia weight factor, 

c1, c2 - Acceleration constant, 

rand() - Random number between 0 and 1, 

( )

,

t

i dx
- Current position of particle i at iteration t, 

Pbesti - Best previous position of the i-th 

particle, 

Gbest-Best particle among all the particles in the 

population 

The evolution procedure of PSO Algorithms is 

shown in Fig. 5. Producing initial populations is 

the first step of PSO. The population is composed 

of the chromosomes that are real codes. The 

corresponding evaluation of a population is called 

the “fitness function”. It is the performance index 

of a population. The fitness value is bigger, and 

the performance is better. The fitness function is 

defined as equation (7). 

After the fitness function has been calculated, 

the fitness value and the number of the generation 

determine whether or not the evolution procedure 

is stopped (Maximum iteration number reached?). 
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In the following, calculate the Pbest of each 

particle and Gbest of population (the best 

movement of all particles). The update the 

velocity, position, gbest and pbest of particles give 

a new best position.  

In recent years, the PSO has continued to be 

improved upon and has been applied successfully 

to identify and optimize different nonlinear, 

dynamic systems [33-34]. However the 

inappropriate choice of operators and parameters 

used in PSO process makes the PSO susceptible to 

premature convergence. 

 

Fig. 5. Evolutionary Procedure of PSO Algorithms 

The focus of this paper is to attempts to 

simultaneously apply two improved strategies as a 

means to overcome these problems. 

Extinction strategy: This technique prevents the 

searching process from being trapped at a local 

optimum. Based on this concept, after Le 

generations, if no further increase in the fitness 

value has been detected; i.e., variance equal to 

zero, then the best q% of particles survive 

according to their better fitness values. The others 

are randomly generated to fill out the population. 

For those surviving particles, they are allowed to 

mate as usual to form the next generation. 

Elitist strategy: When creating a new population 

by crossover and mutation, it may cause to lose the 

best particles. The advanced elitist strategy 

guarantees not only the survival of the best particle 

in a generation but also assures that the search 

space is widely modified by mutating the worst 

particle with a higher mutation rate. Thus, this 

strategy ensures the continuous increase of the 

maximum fitness value from generation to 

generation. Consequently, proposed advanced 

elitism can rapidly increase the performance of the 

PSO, because it prevents loss of the best solution 

and asserts the higher probability in searching for 

the global optimum.  

The proposed Modified Particle Swarm 

Optimization (MPSO) adopts all of the advanced 

strategies that were used to modify the classic 

PSO. The elitist strategy ensures a steady increase 

in the maximum fitness value. The extinction 

strategy prevents the searching process from 

becoming trapped in local optima. Consequently, 

the overall efficiency and the optimum solution are 

greatly improved when these modifications are 

used. 

5. MPSO-BASED INVERSE FUZZY NARX 

MODEL IDENTIFICATION TECHNIQUE 

5.1. Assumptions and Constraints  

The first assumption is  that  symmetrical  

membership functions  about  the  y-axis will  
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provide  a  valid  fuzzy model. A symmetrical 

rule-base is also assumed. Other constraints are 

also introduced to design the Inverse NARX 

Fuzzy (IMNF) Model. 

* All universes of discourses are normalized to 

lie between –1 and 1 with scaling factors external 

to the IDNFM which is used to assign appropriate 

values to the input and output variables. 

* It is assumed that the first and last 

membership functions have their apexes at –1 and 

1, respectively. This can be justified by the fact 

that changing the external scaling would have a 

similar effect to changing these positions. 

* Only triangular membership functions are to 

be used. 

* The number of fuzzy sets is constrained to be 

an odd integer that is greater than unity. In 

combination with the symmetry requirement, this 

means that the central membership function for all 

variables will have an apex at zero. 

* The  base  vertices  of the membership  

functions  are  coincident with  the  apex  of  the 

adjacent membership  functions. This ensures that 

the value of any input variable is a member of at 

most two fuzzy sets, which is an intuitively 

sensible situation. It also ensures that when a 

variable’s membership of any set is certain, i.e. 

unity, it is a member of no other sets. 

Using  these  constraints  the  design  of  the 

IMNF model’s input and output membership  

functions  can  be  described using two parameters 

which include the number of membership 

functions and the positioning of the triangle 

apexes. 

5.2. Spacing parameter 

The second parameter specifies how the centers 

are spaced out across the universe of discourse.  A  

value  of  one  indicates  even  spacing,  while  a  

value  larger  than  unity indicates  that  the 

membership functions are closer together in the 

center of the range and more  spaced  out  at  the  

extremes  as  shown  in  Fig.6. The  position  of  

each center  is  calculated  by  taking  the  position 

of where the  center would  be  if  the  spacing 

were even  and  by  raising  this  to  the  power  of  

the  spacing  parameter. For example, in the case 

where there are five sets, with even spacing (p =1) 

the center of one set would be at 0.5.  If  p  is  

modified  to  two,  the  position  of  this  center 

moves  to  0.25.  If the spacing parameter is set to 

0.5, this center moves to (0.5)0.5 = 0.707 in the 

normalized universe of discourse. Fig.6 shows the 

triangle input membership function with spacing 

factor = 0.5. 
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Fig.6. Triangle input membership function with 

spacing factor of 0.5. 

5.3. Designing the rule base 

In addition to  specifying  the  membership  

functions,  the  rule-base  also  needs  to  be 

designed. Cheong’s idea was applied [34]. In 

specifying a rule base, both the characteristic 
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spacing parameters for each variable and the 

characteristic angle for each output variable were 

used to construct the rule-base.   

Certain characteristics of the rule-base are 

assumed when the proposed construction method 

is used:  

* Extreme outputs usually occur more often 

when the inputs have extreme values while the 

mid-range outputs are generally generated when 

the input values are also mid-range.  

* Similar combinations of input linguistic 

values lead to similar output values. 

Using  these  assumptions  the  output  space  is  

partitioned  into  different  regions corresponding  

to  different  output  linguistic  values. How the 

space is partitioned is determined by the 

characteristic spacing parameters and the 

characteristic angle. The angle  determines  the  

slope  of  a  line that goes through  the  origin  on  

which  seed  points  are placed. The positioning of 

the seed points is determined by a similar spacing 

method that is used to determine the center of the 

membership function. 

Grid  points  are  also  placed  in  the  output  

space and represent all the  possible combination  

of  input  linguistic  values. These are spaced in the 

same way as described previously. The  rule-base  

is  determined  by  calculating which  seed-point  

is  closest  to  each  grid point. The output 

linguistic value representing the seed-point is set 

as the consequent of the antecedent represented by 

the grid point. 

  

Fig.7. Seed points and grid points for rule-base 

construction 

 

Fig.8. Derived rule base 

This is illustrated in Fig.7, which is a graph 

showing both the seed points (blue circles) and the 

grid-points (red circles). Fig.8 shows the derived 

rule base with the output as the control voltage 

variable. The lines on the graph delineate the 

different regions corresponding to the different 

consequents. The parameters for this example are 

0.9 for both input spacing parameters, 1 for the 

output spacing parameter and a 45° angle theta 

parameter. 

5.4. Parameter encoding 

To run a MPSO, suitable encoding needs to be 

carefully completed for each of the parameters and 

bounds.  For  this  task  the  parameters  given  in 

Table 1 are  used with  the  ranges  and  precision 

parameters that are shown. Binary encoding is 

used because it allows the MPSO more flexibility 

in searching the solution space thoroughly. The  

number of  membership  functions  is  limited  to 

odd  integers, which are  inclusive between (3–9) 
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when using the MPSO-based IPMC inverse fuzzy 

NARX11 model and between (3–5) when the 

MPSO-based IPMC inverse fuzzy NARX22 

model identification is used. Experimentally, this 

was considered to be a reasonable constraint to 

apply. The advantage of doing this is that this 

parameter can be captured in just one to two bits 

per variable. 

Two separate parameters are used for the 

spacing parameters. The  first is  within  the range 

of [0.1– 1.0],  which determines  the magnitude  

and  the  second,  which  takes  only  the values –1 

or 1, is the power by which the magnitude is to be 

raised. This determines whether  the  membership  

functions  compress  in  the  center  or  at  the  

extremes. Consequently, each spacing parameter 

can achieve a range of [0.1 – 10]. The precision 

required for the magnitude is 0.01, which means 

that 8 bits are used in total for each spacing 

parameter. The scaling for the input variables is 

allowed to vary in the range of [0 – 100], while 

that of the output variable is given a range of [0 – 

1000]. 

Table 1. MPSO-based inverse fuzzy NARX model parameters used for encoding 

Parameter Range Precision No. of Bits 

Number of Membership Functions 3-9 2 2 

Membership Function Scaling 0.1 – 1.0 0.01 7 

Membership Function Spacing -1 - 1 2 1 

Rule-Base Scaling 0.1 – 1.0 0.01 7 

Rule-Base Spacing -1 - 1 2 1 

Input Scaling 0 - 100 0.1 10 

Output Scaling 0 - 1000 0.1 14 

Rule-Base Angle 0 - 2π π/512 11 

6. IDENTIFICATION RESULTS 

In general, the procedure which must be 

executed when attempting to identify a dynamical 

system consists of four basic steps. 

STEP 1 (Getting Training Data)  

STEP 2 (Select Model Structure )  

STEP 3 (Estimate Model)  

STEP 4 (Validate Model) 

 In Step 1, the identification procedure is based 

on the experimental input-output data values 

measured from the IPMC actuator system. The 

excitation input signal u(t) is chosen as a pseudo 

random binary sequence (PRBS). The PRBS 

signal proves to be the best efficient signal for 

identifying a highly nonlinear system. Figure 10 

presents the PRBS inputs applied to the tested 

IPMC actuator system and the corresponding 

IPMC position output [mm]. 
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Fig.9. IPMC Actuator Inverse Fuzzy NARX Model Training data 
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Fig. 10. Estimation and Validation Training data 

This experimental PRBS input-output data is 

used for training and validating the Inverse fuzzy 

NARX model. The PRBS input and the IPMC 

actuator position output from (0–50) [s] being 

used for training, while PRBS input and the IPMC 

actuator position output from (50–100)[s] are used 

for validation purpose (see Figure 10). 

The second step relates to select model 

structure. The proposed inverse fuzzy NARX11 

(IFN11) and inverse fuzzy NARX22 (IFN22) 

model structures are attempted. Table 1 tabulates 

the IMNF model parameters that were used to 

encode the optimized input values of the PSO-

based identification and optimization algorithm. 

The block diagrams in Fig.1 and Fig.2 illustrate 

the identification scheme of two different IFN 

models. 

The third step estimates values for the trained 

Inverse NARX11 model. The optimal fitness value 

to use for the MPSO-based optimization and 

identification process is calculated maximally 

based on Equation (7). 
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The estimation result is presented in Fig.11 and 

12 (with population = 20 and generation = 100). 

These figures represent the fitness convergence 

values of the proposed IPMC IFN system which 

correspond to two different IFN models (Inverse 

fuzzy NARX11 and Inverse fuzzy NARX22 

models) and all two were identified and optimized 

with MPSO identification method. 

The fitness value of the proposed IPMC IFN 

model produces an excellent global optimal value 

(equal to 133200 with IFN11 and 164200 with 

IFN22 model).  

These good results are due to the proposed IFN 

model combines the extraordinary approximating 

capability of the fuzzy system with the powerful 

predictive and adaptive potentiality of the 

nonlinear NARX structure that is implied in the 

IFN model. Consequently, the MPSO-based IPMC 

IFN model addresses all of the nonlinear features 

of the IPMC actuator system that are implied in 

the input signals PRBS(z)[v] and position Y(z-1) 

[mm]. 
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Fig.11. Fitness convergence of IPMC inverse fuzzy NARX11 model 
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Fig.12. Fitness convergence of IPMC inverse fuzzy NARX22 model 
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The last step relates to validate the resulting 

nonlinear IFN models. An excellent validating 

result demonstrates the performance of the 

resulting Inverse NARX Fuzzy model. The results 

of the MPSO-based IPMC actuator’s NARX fuzzy 

model presented in Fig.14a and 14b obtain a very 

good range of error (error ranges are < [ ][1.0 V ] 

for both of the IFN11 and IFN22 models).  

The results show that with the same initial 

parameters for the MPSO-based identification 

method (including the population = 20 and the 

generation=100), the proposed Inverse NARX 

Fuzzy model produces a very good fitness value 

(equal to 133200 with the inverse fuzzy NARX11 

(IFN11) model and 164200 with IFN22 model). 

The compact structure of the Inverse fuzzy 

NARX11 model (with the number of membership 

functions (MF) of the two inputs and the one 

output equal to [7-9-5] is available to be applied in 

industrial practice. Consequently these results 

confirm the proposed Inverse NARX fuzzy model 

for use not only in modeling and identification but 

also in advanced control applications [20]. 
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Fig.13. Estimation of proposed IPMC inverse fuzzy NARX22 Model 
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Fig.14a. Validation of IPMC inverse fuzzy NARX11 Model 
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Fig.14b. Validation of IPMC inverse fuzzy NARX22 Model 
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Fig.15. Inputs and Output IPMC fuzzy NARX11 MF 

Figure 15 presents the two Inputs and the 

Output of the IPMC fuzzy NARX11 membership 

functions (MFs). Figures 16a and 16b introduce 

the surf-viewer of IPMC inverse fuzzy NARX11 

and fuzzy NARX22 models’ FIS structure.
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Fig.16a. Surf-viewer of IPMC inverse fuzzy NARX11 model FIS structure 
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Fig.16b. Surf-viewer of IPMC inverse fuzzy NARX22 model FIS structure 

Table 2. IPMC actuator inverse fuzzy NARX11 model rule-base 

 1 2 3 4 5 6 7 

1 1 1 1 1 1 1 1 

2 2 2 2 2 2 2 2 

3 2 2 2 2 2 2 2 

4 3 3 3 3 3 3 3 

5 3 3 3 3 3 3 3 

6 3 3 3 3 3 3 3 

7 4 4 4 4 4 4 4 

8 4 4 4 4 4 4 4 

9 5 5 5 5 5 5 5 

  



TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 17, SOÁ K2- 2014 

 Trang 75 

Finally, Table 2 tabulated the resulting 

identified fuzzy rule-bases of the IPMC actuator 

inverse fuzzy NARX11 model.  

7. CONCLUSIONS 

In this paper a new approach of inverse dynamic 

fuzzy NARX model firstly utilized in modeling 

and identification of the IPMC actuator. Training 

and testing results show that the newly proposed 

inverse dynamic fuzzy NARX model optimized by 

the novel MPSO algorithm presented in this study 

can be used in online control with better dynamic 

property and strong robustness. This resulting 

proposed intelligent model is quite suitable to be 

applied for the modeling, identification and control 

of various complex plants, including linear and 

nonlinear process without regard greatly change of 

external environments. 
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Nhận dạng mô hình động học của bộ truyền 

động IPMC dùng mô hình mờ fuzzy NARX 

được tối ưu bằng PSO 

• Hồ Phạm Huy Anh 

FEEE, Trường Đại học Bách khoa, ĐHQG-HCM 

• Nguyễn Thanh Nam 

DCSELAB, Trường Đại học Bách khoa, ĐHQG-HCM 

 

 

TÓM TẮT: 

 Bài báo giới thiệu mô hình mờ fuzzy 

NARX lần đầu được dùng để nhận dạng 

động học ngược bộ truyền động IPMC. 

Các biến động do lực tiếp xúc cũng như 

các hiệu ứng chéo phi tuyến của IPMC sẽ 

được nhận dạng đầy đủ bởi mô hình mờ 

fuzzy NARX thong qua dữ liệu huấn luyện 

lấy từ thực nghiệm. Bài báo cũng trình bày 

cách khai thác thuật toán bầy đàn nâng 

cao (modified particle swarm optimization -

MPSO) để tối ưu thông số của mô hình mờ 

fuzzy NARX dùng nhận dạng hệ truyền 

động IPMC phi tuyến. Kết quả cho thấy mô 

hình mờ fuzzy NARX model được tối ưu 

bởi thuật toán bầy đàn nâng cao (MPSO) 

cho tính năng và độ chính xác vượt trội so 

với các mô hình nhận dạng đã có. 

Từ Khóa: bộ truyền động IPMC, thuật toán tối ưu bầy đàn nâng cao (modified particle 

swarm optimization - MPSO), mô hình mờ fuzzy NARX, nhận dạng động học ngược. 
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