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ABSTRACT: This paper investigates the application of proposed neural MIMO NARX model to
a nonlinear 2-axes pneumatic artificial muscle (PAM) robot arm as to improve its performance in
modeling and identification. The contact force variations and nonlinear coupling effects of both joints of
the 2-axes PAM robot arm are modeled thoroughly through the novel dynamic inverse neural MIMO
NARX model exploiting experimental input-output training data. For the first time, the dynamic neural
inverse MIMO NARX Model of the 2-axes PAM robot arm has been investigated. The results show that
this proposed dynamic intelligent model trained by Back Propagation learning algorithm yields both of
good performance and accuracy. The novel dynamic neural MIMO NARX model proves efficient for
modeling and identification not only the 2-axes PAM robot arm but also other nonlinear dynamic

systems.

Keywords: dynamic modeling, pneumatic artificial muscle (PAM), 2-axes PAM robot arm,

inverse identification, neural MIMO NARX model, back propagation (BP) algorithm

1. INTRODUCTION et al. [3] added different constant external

Rehabilitation robots up to now begin to be loads, by a robot in torque control mode.

applied for treatment of patients suffering from Pneumatic  Artificial Muscle (PAM)
trauma or stroke. Since the number of patients actuators are now used in the various fields of
is large and the treatment is time consuming, it medical robots. The modern robotics toward

is a big advantage if rehabilitation robots can applications requires greater friendliness

assist in performing treatment. Noritsugu et al.
[1] designed an arm-like robot for treating
patients with trauma, and developed four
modes of linear motion with impedance control
to control the force during the movement.
Krebs et al. [2] designed a planar robot with
impedance control for guiding patients to make

movements along the specified trajectories. Ju

between robot actuator and human operator.
PAM actuator has achieved increasing belief to
the ability of providing advantages such as high
power/weight ratio, full of hygiene, easiness in
preservation and especially the capacity of
human compliance which is the most important
requirement in medical and human welfare

field. Therefore PAM has been regarded during
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the recent decades as an interesting alternative
to hydraulic and electric  actuators.
Consequently, PAM-based applications have
been published increasingly. Caldwell et al.
(2003) in [4] have developed and controlled of
a PAM-based Soft-Actuated Exoskeleton for
use in physiotherapy and training. Kobayashi et
al. (2003) in [5] have applied PAM as to
develop a Muscle suit for Upper Body.
Noritsugu et al. (2005) in [6] have used PAM
for developing an Active Support Splint among

them.

Unfortunately, up to now principal
difficulty inherent in PAM actuators is the
problem of modeling and controlling them
efficiently and precisely. This is because they
are highly nonlinear and time varying. Since
the rubber tube and plastic sheath are
continually in contact with each other and the
PAM shape is continually changing, the PAM
temperature varies with use, changing the
properties of the actuator over time.
Approaches to PAM modeling and control
have included PID control, adaptive control
(Lilly, 2003)[7], nonlinear optimal predictive
control [8], variable structure control [9], and
various soft computing approaches including
intelligent model + phase plane switching
control (Ahn et al., 2006)[10], neuro-fuzzy
model and genetic control in (Carbonell et al.,
2001)[11], (Lilly and Chang, 2003)[12] and so

on.

Among such advanced modeling and
control schemes, as to guarantee a good

tracking performance, robust adaptive control

approaches combining conventional methods
with new learning techniques are required (Lin
and Lee, 1991)[13]. Thanks to their universal
approximation capabilities, neural networks
provide the implementation tool for modeling
the complex input-output relations of the
multiple n DOF PAM manipulator which is
able to solve dynamic problems like variable-
coupling complexity and state-dependency.
During the last decade several neural network
models and learning schemes have been
applied to offline learning of manipulator
dynamics (Karakasoglu et al., 1993)[14],
(Katic et al.,, 1995)[15], (Lewis et al.,
1999)[16], (Boerlage et al., 2003)[17]. In
(Pham et al., 2005)[18], authors applied neuro-
fuzzy modeling and control of robot
manipulators for trajectory tracking. Ahn and
Anh in [19] have optimized successfully a
pseudo-linear ARX model of the PAM
manipulator using genetic algorithm. These
authors in (Anh et al., 2007)[20] have
identified the highly nonlinear 2-axes PAM
manipulator based on recurrent neural
networks. Nevertheless, the drawback of all
these results is considered the n-DOF
manipulator as n independent decoupling
joints. Consequently, all intrinsic coupling
features of the n-DOF manipulator have not

represented in its NN model respectively.

To overcome this disadvantage, in this
paper, a new approach of neural networks,
proposed dynamic inverse neural MIMO
NARX model, firstly utilized in simultaneous

modeling and identification of the nonlinear 2-
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axes PAM robot arm system. The experiment
results have demonstrated the feasibility and
good performance of the proposed intelligent
inverse model which overcomes successfully
external and internal disturbances such as
contact force variations and highly nonlinear
coupling effects of both joints of the 2-axes
PAM robot arm.

The outline of this paper composes of the
section 1 for introducing related works in PAM
robot arm modeling and identification. The
section 2 presents identification procedure of
an inverse neural MIMO NARX model using
back propagation learning algorithm. The
section 3 proves and analyses experimental
studies and results considering the contact
force variations and highly nonlinear coupling
effects of both joints of the nonlinear dynamic
system. Finally, the conclusion belongs to the

section 4.

2. IDENTIFICATION USING DYNAMIC
INVERSE NEURAL MIMO NARX
MODEL

2.1. Dynamic Neural MIMO NARX Model
Inverse Neural MIMO NARX model used

in this paper is a combination between the
Multi-Layer Perceptron Neural Networks
(MLPNN) structure and the ARX model. Due
to this combination, Inverse MIMO NARX
model possesses both of powerful universal
approximating feature from MLPNN structure
and strong predictive feature from nonlinear
ARX model.

A fully connected 3-layer feed-forward

MLP-network with n inputs, g hidden units

(also called “nodes” or “neurons”), and m

outputs units is shown in Fig. 1.

Figure 1. Structure of feed-forward MLPNN

In Fig.1, Wio,.., Wgo and Wi,..,Wno are
weighting values of Bias neurons of Input
Layer and Hidden Layer respectively.

Consider an ARX model with noisy input,

which can be described as

A@™)Y(®) = B@ ut-T)+C(a e
1)

with — Ag)=l+aq’ +aq’

B(qil) = bl + sz’l

Ca)=c+ca"+cq”

where e(t) is the white noise sequence with
zero mean and unit variance; u(t) and y(t) are
input and output of system respectively; q is

the shift operator and T is the time delay.

From equation (1), not consider noise
component e(t), we have the general form of
the discrete ARX model in domain z (with the

time delay T=n,=1)

y(z') bzl +bz 4. +b, 2™

@

-1y -1 -2 -n,
u@zw) 1l+az +a,z”" +..+a,z

in which n, and n, are the order of output

y(z*) and input u(z™®) respectively.
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This paper investigates the potentiality of
various simple MIMO NARX models in order
to exploit them in modeling, identification and
control as well. Thus, by embedding a 3-layer
MLPNN (with number of neurons of hidden
layer = 5) in a 2" order ARX model with its
characteristic equation derived from (2) as

follows:

Y1 (K) = by,u; (K) +loy,u, (K) — &y, Y (K —1) — a,y, (k —1) 3)

Y2 (K) = byl (K) + By50, (K) — 85, Yy (k —1) — @y, y,(k—1)
We will design the proposed inverse
MIMO Neural NARX11 model (n, =1, n, = 1,
n, =1) with 6 inputs (including u4(t) and us,(t)
identical to input value uy(t), ux(t) and ux(t)
identical to input value u,(t), and recurrent
delayed values y;(t-1), y»(t-1)), 2 output values
(Y1nat(t), Yana(t)). Its structure is shown in Fig. 2.

¥2(t-1)
u2z2t)

w1z

¥1(t-13
u21
utd @)

Figure 2. Structure of MIMO Neural NARX11
model

By this way, the parameters aj;, ai», b,
b, of linear ARX model now become
nonlinear and will be determined from the
weighting values W;; and wj of the nonlinear
MIMO Neural NARX model. This feature
makes MIMO Neural NARX model very
powerful in modeling, identification and in

model-based advanced control as well.

The class of MLPNN-networks considered

in this paper is furthermore confined to those

2y hatit)

having only one hidden layer and using

sigmoid activation functions. From Fig.1,
predictive output value Y(t) is calculated as

follows:

fEn

q n
E(Z\Nu-f{ZWuZu +chj+WiOJ
=1 I=1

i

5 (ww)=ﬁ(i\/vi,-oj (w)+vva=
@

The weights are the adjustable parameters
of the network, and they are determined from a
set of examples through the process called
training. The examples, or the training data as
they are usually called, are a set of inputs, u(t),

and corresponding desired outputs, y(t).

Specify the training set by:
z" ={u@),y®lt=1...N} ©

The objective of training is then to

determine a mapping from the set of training

data to the set of possible weights: Z N é
so that the network will produce
predictions y(t), which in some sense are
“closest” to the true joint angle outputs y(t) of
PAM robot arm.

The prediction error approach, which is the
strategy applied here, is based on the
introduction of a measure of closeness in terms
of a mean sum of square error (MSSE)

criterion:

E,(0,.2")=

. o )
Ntl[y(t) -y o] [yo - 9 0)]
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Based on the conventional error Back-
Propagation (BP) training algorithms, the
weighting value is calculated as follows:
dEW (k)

Wk +1) =W (k) - 20 @)

™

with k is k™ iterative step of calculation and
A, is learning rate which is often chosen as a
small constant value.

Concretely, the weights W;; and wj of
neural NARX structure are then updated as:
Wik +1)=w, (k)+Aaw, (k +1)
AW, (k+1)= 2.5,.0, ®
6 = yi(l_ inyi - yu)

with &, is search direction value of i
neuron of output layer (i=[1— m]); Oj is the
output value of j neuron of hidden layer
(i=[1— dql); v and Y, are truly real output
and predicted output of i"™ neuron of output
layer (i=[1— m]), and
wy(k+1)=w,(k)+Aw, (k +1)
Aw (k+1)= 2.8, ©)

m
6;= 0,-(1—0,-)2 oW,

i=1

i

in which 5j is search direction value of |

neuron of hidden layer (j=[1 — q]); O; is the
output value of j neuron of hidden layer
(=[1— q]); u is input of I neuron of input
layer (I=[1— n]).

These results of equations (8) and (9) are
demonstrated as follow in case of sigmoid
being activate function of hidden and output

layer. Consider in case of output layer:

Error to be minimized:

S(F-v.) (10)
1

E:

N |-

Using chain rule method, we have:

0E  0E 8y, a8,
oW, 0y, 0S, oW,

1

11

From equation (10), the following equation

is derived.

GE .
—=(V. —V. 12
5 Vi-v)) (@@

q
with S, =Z:Wij .Oj +bias; as sum
j=1

calculation at i"™ node of output layer

~ 1
andy; = m , it gives

—=0, (14)

Replace (12), (13), (14) to (11) and then
put all to (7), the following equation is derived.
Wik +1)=w, (k)+Aaw, (k +1)
AW, (k +1)=2.5,.0, (15)
§=9:0-9)yi-9:)

Equation (8) has been demonstrated.

The same way for updating the weights of

hidden layer, using the chain rule method, we

have:
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OE _ E 90, 5,

= (16)
ow; 00, 8S; ow;,
Then
OB P E DS
00, T 0S; 90;
m i q
> E o > W,0, +bias, { |=
) _88, o0, | =
m _aE m
—W. [=> |-6W
; aSI Ijj| ;[ I I]]
7

n
with S; = ijl U, +bias; as sum
=)

calculation at j™ node of hidden layer and

1
Oj =5, .itgives
1+e ™
O e¥4+1-1 1 (1+ -1 j_
%, (1+e’5‘)2 bee ™ U 2ve™
0,(-0,)
ow =U, (19)

Replace (17), (18), (19) to (16) and then

put all to (7), the following equation is derived.
wy (k+1)=w, (k)+Aw, (k +1)
Aw, (k +l)= A.5j.u, (20)

6;=0; (1_01 )Zﬂ:SiWi,—

Equation (9) has been demonstrated.
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2.2. Experiment Set Up
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Figure 3. Block diagram for working principle of
the 2-axes PAM robot arm.

A general configuration of the investigated
2-axes PAM robot arm shown through the
schematic diagram of the 2-axes PAM robot
arm and the photograph of the experimental
apparatus are shown in Fig.3 and Fig.4,
respectively. Both of joints of the 2-axes PAM
robot arm are modeled and identified
simultaneously  through  proposed neural
MIMO NARX model.

The hardware includes an IBM compatible
PC (Pentium 1.7 GHz) which sends the voltage
signals uy(t) and u,(t) to control the two
proportional valves (FESTO, MPYE-5-1/8HF-
710B), through a D/A board (ADVANTECH,
PCI 1720 card) which changes digital signals
from PC to analog voltage u;(t) and u(t)
respectively. The rotating torque is generated
by the pneumatic pressure difference supplied
from air-compressor between the antagonistic

artificial muscles. Consequently, the both of
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joints of the 2-axes PAM robot arm will be
rotated to follow the desired joint angle
references (Yrer1(K) and Ygera(K)) respectively.
The joint angles, 6i[deg] and &[deg], are
detected by two rotary encoders (METRONIX,
H40-8-3600Z0) and fed back to the computer
through a 32-bit counter board (COMPUTING
MEASUREMENT, PCI QUAD-4 card) which
changes digital pulse signals to joint angle
values y;(t) and y,(t). Simultaneously, through
an A/D board (ADVANTECH, PCI 1710 card)
which will send to PC the external force value
which is detected by a force sensor CBFS-10.
The pneumatic line is conducted under the
pressure of 5[bar] and the software control
algorithm of the closed-loop system is coded in
C-mex program code run in Real-Time
Windows Target of MATLAB-SIMULINK
environment.  Table 1 presents the
configuration of the hardware set-up installed

from Fig.3, and Fig.4.

i [

Proportional
Valve

Wonder Box Encoder

Controller Kit Encoder

Figure 4. Photograph of the experimental 2-axes
PAM robot arm.

Table 1. The lists of experimental hardware

M, W Model name Company
] Proportional valve MPTE-3-1RHE-TI0B FESTO
2| Poevmatic atficial muscle MAS-10-H-220-AA-MCFE FETO
()
3 Dill board I ADVANTECH
4 A board I ADVANTECH
;] Counter board FCIQUADA COMPUTING
MEASTRENENT
6 Rotary encoder $40-8-360000 METRONIK
] Fome Sensor CRES-10 ONGEN

Sensor |

3. IDENTIFICATION USING DYNAMIC
INVERSE NEURAL MIMO NARX
MODEL

In general, the procedure which must be
identify a
dynamical system consists of four basic steps
(see Fig.5)

executed when attempting to

e STEP 1 (Getting Training Data)
e STEP 2 (Select Model Structure)
e STEP 3 (Estimate Model)

e STEP 4 (Validate Model:

EXPERIMENT I
(getting training data)

SELECT
MODEL STRUCTURE

-

ESTIMATE
MODEL

VALIDATE
MODEL

Met Accepted

Accepted

Figure 5. Neural MIMO NARX Model

Identification procedure
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To realize Step 1, Fig.6 presents the PRBS
input applied simultaneously to the 2 joints of
the tested 2-axes PAM robot arm and the
responding end-effector external force and joint
angle outputs collected from force sensor and
PRBS
input-output data is used for training and
validating the Inverse neural MIMO NARX

rotary encoders. This experimental

model of the whole dynamic two-joint structure
of the 2-axes PAM robot arm as illustrated in
Fig.7.

JOINT 1- PRBS TRAINING DATA JOINT 2 - PRBS TRAINING DATA

-”_i i_”-_“ n [ ﬂ—PRBSmput'E': |_| |_| ” —PRBSmput”
188181 0 1 R
0 0 2 30 4 5 G’O 7‘0 80 .0 0 2 3 49 5‘0 G‘G 7‘0 80
" —— JONT ANGLE output
40

. . . . . . ) . . . . . .
1 2 3 4 5 60 70 8 1 2 3 4 50 60

70

based on the hardware set-up using
proportional valve to control rotating joint
angle of both of PAM antagonistic pair. The
experiment results of 2-axes PAM robot arm
force/position control prove that experimental
control voltages uy(t) and u(t) applied to both
of PAM antagonistic pairs of the 2-axes PAM
robot arm is to function well in these ranges.
Likewise, the chosen frequency of PRBS-1(2)
signals is also chosen carefully based on the
working frequency of the 2-axes PAM robot

arm will be used as an elbow and wrist 2-axes

PAM-based rehabilitation robot in the range of
(0.025-0.2) [Hz].

JOINT1 - INVERSE PRBS TRAINING DATA

JOINT 2 - INVERSE PRBS TRAINING DATA

----- JOINT ANGLE 2 input

=]

External FORCE
— Filtered FORCE
14

External FORCE
— Filtered FORCE

Figure 6. Input-Output training data obtained by

experiment

PRBS-1(2) inputs and Force/Joint Angle
outputs during (40-80)[s] will be used for
PRBS-1(2)

Force/Joint Angle outputs in the lapse of time

training, while inputs  and
(0-40)[s] will be used for validation purpose.
The range (4.4 — 5.6) [V] and the shape of
PRBS-1 voltage input applied to the 1% joint as
well as the range (4.5 — 5.5) [V] and the shape
of PRBS-2 voltage input applied to rotate the
2" joint of the 2-axes PAM robot arm is

chosen carefully from practical experience

i
il E
bl i 0
NP0 R i i i M ot s

[ —FORCE INPUT[

‘ —FORCE INPUT[

0 8

N 0 40 5 60 70 80 0 10 20 30 4 5
A PRBST output 1 55

i —— PRBS2 output

45rH--Ed L i ek |

|

0 10 2 30 4 5 6 70 8 0 110 2 30 40 5
t [secl t Isecl

Figure 7. Inverse Neural MIMO NARX Model

Training data obtained by experiment

The 2" step relates to select model
structure. A nonlinear neural NARX model
structure is attempted. The full connected
Multi-Layer Perceptron (MLPNN) network
architecture composes of 3 layers with 5
neurons in hidden layer is selected (results
derived from Ahn et al., 2007 [24]). The final

structure of proposed Inverse neural MIMO
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NARX11 used in proposed neural MIMO
NARX FNN-PID hybrid force/position control

scheme is shown in Fig.8.

The proposed neural MIMO NARX11
model structure is defined as a nonlinear neural
MLPNN integrated a 1% order ARX model
(with na=1; ng=1 and nx=1) possessed 5
neurons in hidden layer. The activating
function applied in neurons of hidden Layer
and of output layer is hyperbolic tangent
function and linear function respectively. Fig.9
represents the experiment block diagram for
modeling and identifying the Inverse neural
MIMO NARX11 model of the 2-axes PAM

robot arm.

2-AXES PAM ROBOT ARM - NEURAL MIMO INVERSE NARXMODEL

u23(t)
u22(t)

u21(t)

y2(t-1)
ul3(t)

ul2(t)

ull(t)

Y1)

Figure 8. Structure of proposed Inverse neural
MIMO NARX11 models of 2-axes PAM robot arm

In Fig.8, input values Uy1(t)/ uxi(t), us(t)/
Ux(t), ugs(t) un3(t) and recurrent delayed input
values yi(t-1), y»(t-1) in neural structure of
proposed neural Inverse MIMO NARX11
model will be identical to input values Joint-1
Angle y;(k), Joint-2 Angle y,(k), Force value

ye(k) and desired recurrent delayed control

voltage values u;(k-1), uy(k-1) respectively of
experimental modeling block diagram depicted

in Fig.9.

Yi(k)
HAH 2-Axes PAM m)
Robot Arm
Ul{k) Y1(k)
" Tik)
) + T2(k)
- ( ) Inverse Neural Y1)
MIMO
) NARX11
Uh2(k) Model -
L S AU T U2 Ihi
BPLearning f———
Algorithm REL)

Figure 9. Block diagram for modeling of Inverse
Neural MIMO NARX model of the 2-Axes PAM

robot arm

B ESTIMATION of NEURAL INVERSE MIMO NARX
10 T

} —%— FITNESS CONVERGENCE |-

10

FITNESS

3

10

0 10 20 30 40 50 60 70 80 90
Iteration

Figure 10. The fitness convergence of proposed
Neural Inverse MIMO NARX11 Model

The 3™ step estimates trained Inverse
neural MIMO NARX11 model. A good
minimized convergence is shown in Fig.10
with the minimized Mean Sum of Scaled Error
(MSSE) value is equal to 0.002659 after
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number of training 100 iterations with the
proposed Inverse neural MIMO NARX11. An
excellent estimating result, which proves the
perfect performance of resulted Inverse Neural

MIMO NARX model, is also shown in Fig.11.

ESTIMATION of INVERSE NEURAL MIMO NARX - JOINT 1 ESTIMATION of INVERSE NEURAL MIMO NARX - JOINT2

;
ki : . . . . . .
4 0 5 0 5 30 35 4
} —— FORCE input L 1 —— FORCE input }»
A A A
ATy wATY
u W - W Y
5 1 2 Kl 35 4 5 5 30 5 4
6 ‘ PRBSL reference } 6 PRBS? reference
~~~~ Unl output ===~ Un2 output
5 PR T e s 5
45 L) biood S
0 0 5 5 K 35 40 0 5 10 15 20 5 30 35 40
1 ‘ ‘ ‘ ‘ \[ *ERRORl} 1 ‘ ‘ ‘ { *ERRORQ}
b L T ]
0 5 10 15 20 2 0 35 00 5 0 15 20 5 30 35 40

t [sec] t[seq]

Figure 11. Estimation of 2-axes PAM robot arm
Inverse neural MIMO NARX11 Model

VALIDATION of INVERSE NEURAL MIMO NARX- JONT 1 VALIDATION of INVERSE NEURAL MMO NARX - JOINT 2

T T T T

1 2% Kl 3 4 55 5 5 N ¥ 4
PRBS1 reference PRBS? reference
| ===~ Unl output - U ouput i
R S M UCRSNN, gy e 5
5 5
R L= N L T
1 5 35 A 0 U 0 5 0 B4
| I | I [ [—
1 ‘ ‘ ‘ ‘ Enorl|q 1 ‘ ‘ ‘ ‘ | Enor 1’»
I o o T
AN I N
0 5 10 15 20 2% 0 3% 0 0 5 0 15 20 23 3 B L

t [sec] 1t [seq]

Figure 12. Validation of 2-axes PAM robot arm
Inverse neural MIMO NARX11 Model

The last step relates to validate resulting
nonlinear neural Inverse MIMO NARX
models. Applying the same experimental
diagram in Fig.6, an excellent validating result,
which proves the performance of resulted
Inverse Neural MIMO NARX model, is shown
in Fig.12. The experimental results of the
minimized errors demonstrate the good
performance of the Inverse neural MIMO
NARX11 Model (the excellent error < 0.01[V]
for both of Uhl1/Uh2 control voltage values
respectively applied to 2 joints of the 2-axes
PAM robot arm).

Finally, Table 2 tabulates the resulting
weighting values of proposed Inverse neural
MIMO NARX model which can be used not
only in modeling identification and simulation
offline but also can be applied effectively
online in model-based advanced control
algorithms (Ahn and Anh, 2011)[21]. The final
designed structure of proposed Inverse MIMO
NARX11 model is shown in Fig.8.

6. CONCLUSIONS

In this study, a new approach of recurrent
neural networks, proposed neural Inverse
MIMO NARX model firstly utilized in
modeling and identification of the highly
nonlinear 2-axes pneumatic artificial muscle
(PAM) system, has successfully overcome the
contact force variations, coupled effect and
nonlinear characteristic of the 2-axes PAM
robot arm system. The 2-axes PAM robot
arm’s coupled dynamics was taken into
account. Results of training and testing on the

complex dynamic systems such as 2-axes PAM
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robot arm show that the newly proposed neural Acknowledgment

Inverse MIMO NARX model presented in this This research was partially supported by
study is quite suitable to be applied for the the NAFOSTED and the DCSELAB of Viet
modeling and identification not only the 2-axes Nam.

PAM robot arm but also other nonlinear

dynamic systems.

Table 2. Resulted weights of Inverse neural MIMO NARX11 — Total Number of weighting values = 57

W= | Wy- WQn- Wi - Wu-
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TOM TAT: Bai béo khdo sdt img dung mé hinh neural MIMO NARX dé cdi thién chdt lwong
nhédn dang hé tay may phi tuyén 2 bic dung bap thit khi nén nhan tao (PAM). Cdc yéu té nhu bién dong
ciia lyc tiép xiic hay cdc anh huong ghép cdp phi tuyén cia 2 khép néi cia tay may sé dwoc nhdn dang
ddy di béi mé hinh neural MIMO NARX nguoc théng qua bé dit liéu hudn luyén thuc nghiém dau vao —
dau ra. Lan dau tién, md hinh déng hoc no ron MIMO NARX nguoc cia tay mdy 2 bédc dung bap thit khi
nén nhan tao (PAM) duoc khdo sdat hodn chinh. Cac két qua cho théy mé hinh dong hoc thong minh
dwoc dé xudt, dwpc hudn luyén bang thudt toan Lan Truyén Nguoc (BP learning algorithm) cho chat

lwong 16t véi dé chinh xdc khi nhdn dang rat cao. Mé hinh dong hoc no ron MIMO NARX nguoc cho
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thdy chiing cé thé dung hiéu qua trong nhdn dang khong chi hé tay mday PAM 2-bdc ma cho cd cdc hé

co dpng hoc phi tuyén da bién khac.

Keywords: md hinh déng hoc, bdp thit khi nén nhdn tao (PAM), tay may PAM 2 bdc, nhdn dang

md hinh ngueoc, mé hinh no rén MIMO NARX ngueoc, thudt todn lan truyén nguwegc (BP).
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