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ABSTRACT: This paper investigates the application of proposed neural MIMO NARX model to 

a nonlinear 2-axes pneumatic artificial muscle (PAM) robot arm as to improve its performance in 

modeling and identification. The contact force variations and nonlinear coupling effects of both joints of 

the 2-axes PAM robot arm are modeled thoroughly through the novel dynamic inverse neural MIMO 

NARX model exploiting experimental input-output training data. For the first time, the dynamic neural 

inverse MIMO NARX Model of the 2-axes PAM robot arm has been investigated. The results show that 

this proposed dynamic intelligent model trained by Back Propagation learning algorithm yields both of 

good performance and accuracy. The novel dynamic neural MIMO NARX model proves efficient for 

modeling and identification not only the 2-axes PAM robot arm but also other nonlinear dynamic 

systems. 

Keywords: dynamic modeling, pneumatic artificial muscle (PAM), 2-axes PAM robot arm, 

inverse identification, neural MIMO NARX model, back propagation (BP) algorithm 

1. INTRODUCTION 

Rehabilitation robots up to now begin to be 

applied for treatment of patients suffering from 

trauma or stroke. Since the number of patients 

is large and the treatment is time consuming, it 

is a big advantage if rehabilitation robots can 

assist in performing treatment. Noritsugu et al. 

[1] designed an arm-like robot for treating 

patients with trauma, and developed four 

modes of linear motion with impedance control 

to control the force during the movement. 

Krebs et al. [2] designed a planar robot with 

impedance control for guiding patients to make 

movements along the specified trajectories. Ju 

et al. [3] added different constant external 

loads, by a robot in torque control mode.  

Pneumatic Artificial Muscle (PAM) 

actuators are now used in the various fields of 

medical robots. The modern robotics toward 

applications requires greater friendliness 

between robot actuator and human operator. 

PAM actuator has achieved increasing belief to 

the ability of providing advantages such as high 

power/weight ratio, full of hygiene, easiness in 

preservation and especially the capacity of 

human compliance which is the most important 

requirement in medical and human welfare 

field. Therefore PAM has been regarded during 
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the recent decades as an interesting alternative 

to hydraulic and electric actuators. 

Consequently, PAM-based applications have 

been published increasingly. Caldwell et al. 

(2003) in [4] have developed and controlled of 

a PAM-based Soft-Actuated Exoskeleton for 

use in physiotherapy and training. Kobayashi et 

al. (2003) in [5] have applied PAM as to 

develop a Muscle suit for Upper Body. 

Noritsugu et al. (2005) in [6] have used PAM 

for developing an Active Support Splint among 

them. 

Unfortunately, up to now principal 

difficulty inherent in PAM actuators is the 

problem of modeling and controlling them 

efficiently and precisely. This is because they 

are highly nonlinear and time varying. Since 

the rubber tube and plastic sheath are 

continually in contact with each other and the 

PAM shape is continually changing, the PAM 

temperature varies with use, changing the 

properties of the actuator over time. 

Approaches to PAM modeling and control 

have included PID control, adaptive control 

(Lilly, 2003)[7], nonlinear optimal predictive 

control [8], variable structure control [9], and 

various soft computing approaches including 

intelligent model + phase plane switching 

control (Ahn et al., 2006)[10], neuro-fuzzy 

model and genetic control in (Carbonell et al., 

2001)[11], (Lilly and Chang, 2003)[12] and so 

on. 

Among such advanced modeling and 

control schemes, as to guarantee a good 

tracking performance, robust adaptive control 

approaches combining conventional methods 

with new learning techniques are required (Lin 

and Lee, 1991)[13]. Thanks to their universal 

approximation capabilities, neural networks 

provide the implementation tool for modeling 

the complex input-output relations of the 

multiple n DOF PAM manipulator which is 

able to solve dynamic problems like variable-

coupling complexity and state-dependency. 

During the last decade several neural network 

models and learning schemes have been 

applied to offline learning of manipulator 

dynamics (Karakasoglu et al., 1993)[14], 

(Katic et al., 1995)[15], (Lewis et al., 

1999)[16], (Boerlage et al., 2003)[17]. In 

(Pham et al., 2005)[18], authors applied neuro-

fuzzy modeling and control of robot 

manipulators for trajectory tracking. Ahn and 

Anh in [19] have optimized successfully a 

pseudo-linear ARX model of the PAM 

manipulator using genetic algorithm. These 

authors in (Anh et al., 2007)[20] have 

identified the highly nonlinear 2-axes PAM 

manipulator based on recurrent neural 

networks. Nevertheless, the drawback of all 

these results is considered the n-DOF 

manipulator as n independent decoupling 

joints. Consequently, all intrinsic coupling 

features of the n-DOF manipulator have not 

represented in its NN model respectively. 

To overcome this disadvantage, in this 

paper, a new approach of neural networks, 

proposed dynamic inverse neural MIMO 

NARX model, firstly utilized in simultaneous 

modeling and identification of the nonlinear 2-
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axes PAM robot arm system. The experiment 

results have demonstrated the feasibility and 

good performance of the proposed intelligent 

inverse model which overcomes successfully 

external and internal disturbances such as 

contact force variations and highly nonlinear 

coupling effects of both joints of the 2-axes 

PAM robot arm. 

The outline of this paper composes of the 

section 1 for introducing related works in PAM 

robot arm modeling and identification. The 

section 2 presents identification procedure of 

an inverse neural MIMO NARX model using 

back propagation learning algorithm. The 

section 3 proves and analyses experimental 

studies and results considering the contact 

force variations and highly nonlinear coupling 

effects of both joints of the nonlinear dynamic 

system. Finally, the conclusion belongs to the 

section 4. 

2. IDENTIFICATION USING DYNAMIC 

INVERSE NEURAL MIMO NARX 

MODEL 

2.1. Dynamic Neural MIMO NARX Model 

Inverse Neural MIMO NARX model used 

in this paper is a combination between the 

Multi-Layer Perceptron Neural Networks 

(MLPNN) structure and the ARX model. Due 

to this combination, Inverse MIMO NARX 

model possesses both of powerful universal 

approximating feature from MLPNN structure 

and strong predictive feature from nonlinear 

ARX model. 

A fully connected 3-layer feed-forward 

MLP-network with n inputs, q hidden units 

(also called “nodes” or “neurons”), and m 

outputs units is shown in Fig. 1. 

 
Figure 1. Structure of feed-forward MLPNN 

In Fig.1, w10,.., wq0 and W10,..,Wm0 are 

weighting values of Bias neurons of Input 

Layer and Hidden Layer respectively. 

Consider an ARX model with noisy input, 

which can be described as 

)()()()()()( 111 teqCTtuqBtyqA  
 (1) 

with 2
2

1
1

1 1)(   qaqaqA  

1
21

1)(   qbbqB  

2
3

1
21

1)(   qcqccqC  

where e(t) is the white noise sequence with 

zero mean and unit variance; u(t) and y(t) are 

input and output of system respectively; q is 

the shift operator and T is the time delay. 

From equation (1), not consider noise 

component e(t), we have the general form of 

the discrete ARX model in domain z (with the 

time delay T=nk=1) 
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in which na and nb are the order of output 

y(z-1) and input u(z-1)  respectively. 
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This paper investigates the potentiality of 

various simple MIMO NARX models in order 

to exploit them in modeling, identification and 

control as well. Thus, by embedding a 3-layer 

MLPNN (with number of neurons of hidden 

layer = 5) in a 2nd order ARX model with its 

characteristic equation derived from (2) as 

follows: 

)1()1()()()(
)1()1()()()(

2221212221212

2121112121111


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kyakyakubkubky
kyakyakubkubky  (3) 

We will design the proposed inverse 

MIMO Neural NARX11 model (na = 1, nb = 1, 

nk =1) with 6 inputs (including u11(t) and u12(t) 

identical to input value u1(t), u21(t) and u22(t) 

identical to input value u2(t), and recurrent 

delayed values y1(t-1), y2(t-1)), 2 output values 

(y1hat(t), y2hat(t)). Its structure is shown in Fig. 2. 

 
Figure 2. Structure of MIMO Neural NARX11 

model 

By this way, the parameters a11, a12, b11, 

b12 of linear ARX model now become 

nonlinear and will be determined from the 

weighting values Wij and wjl of the nonlinear 

MIMO Neural NARX model. This feature 

makes MIMO Neural NARX model very 

powerful in modeling, identification and in 

model-based advanced control as well. 

The class of MLPNN-networks considered 

in this paper is furthermore confined to those 

having only one hidden layer and using 

sigmoid activation functions. From Fig.1, 

predictive output value )(ˆ ty  is calculated as 

follows: 
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The weights are the adjustable parameters 

of the network, and they are determined from a 

set of examples through the process called 

training. The examples, or the training data as 

they are usually called, are a set of inputs, u(t), 

and corresponding desired outputs, y(t).  

Specify the training set by: 
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The objective of training is then to 

determine a mapping from the set of training 

data to the set of possible weights: ̂NZ  

so that the network will produce 

predictions )(ˆ ty , which in some sense are 

“closest” to the true joint angle outputs y(t) of 

PAM robot arm. 

The prediction error approach, which is the 

strategy applied here, is based on the 

introduction of a measure of closeness in terms 

of a mean sum of square error (MSSE) 

criterion: 
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Based on the conventional error Back-

Propagation (BP) training algorithms, the 

weighting value is calculated as follows: 

 
 kW

kWEkWkW


 )()()1(      (7) 

with k is kth iterative step of calculation and 

 is learning rate which is often chosen as a 

small constant value. 

Concretely, the weights Wij and wjl of 

neural NARX structure are then updated as: 
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with i  is search direction value of ith 

neuron of output layer (i=[1  m]); Oj is the 

output value of jth neuron of hidden layer 

(j=[1  q]); yi and iŷ are truly real output 

and predicted output of ith neuron of output 

layer (i=[1  m]), and 
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in which j  is search direction value of jth 

neuron of hidden layer (j=[1  q]); Oj is the 

output value of jth neuron of hidden layer 

(j=[1  q]); ul is input of lth neuron of input 

layer (l=[1  n]). 

These results of equations (8) and (9) are 

demonstrated as follow in case of sigmoid 

being activate function of hidden and output 

layer. Consider in case of output layer: 

Error to be minimized: 

  



m

i
ii yyE

1

2ˆ
2
1

     (10) 

Using chain rule method, we have: 
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From equation (10), the following equation 

is derived. 
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Replace (12), (13), (14) to (11) and then 

put all to (7), the following equation is derived. 
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Equation (8) has been demonstrated. 

The same way for updating the weights of 

hidden layer, using the chain rule method, we 

have: 
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Replace (17), (18), (19) to (16) and then 

put all to (7), the following equation is derived. 
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Equation (9) has been demonstrated. 

 

 

2.2. Experiment Set Up 

 
 

Figure 3. Block diagram for working principle of 

the 2-axes PAM robot arm. 

 

A general configuration of the investigated 

2-axes PAM robot arm shown through the 

schematic diagram of the 2-axes PAM robot 

arm and the photograph of the experimental 

apparatus are shown in Fig.3 and Fig.4, 

respectively. Both of joints of the 2-axes PAM 

robot arm are modeled and identified 

simultaneously through proposed neural 

MIMO NARX model. 

The hardware includes an IBM compatible 

PC (Pentium 1.7 GHz) which sends the voltage 

signals u1(t) and u2(t) to control the two 

proportional valves (FESTO, MPYE-5-1/8HF-

710B), through a D/A board (ADVANTECH, 

PCI 1720 card) which changes digital signals 

from PC to analog voltage u1(t) and u2(t) 

respectively. The rotating torque is generated 

by the pneumatic pressure difference supplied 

from air-compressor between the antagonistic 

artificial muscles. Consequently, the both of 
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joints of the 2-axes PAM robot arm will be 

rotated to follow the desired joint angle 

references (YREF1(k) and YREF2(k)) respectively. 

The joint angles, 1[deg] and 2[deg], are 

detected by two rotary encoders (METRONIX, 

H40-8-3600ZO) and fed back to the computer 

through a 32-bit counter board (COMPUTING 

MEASUREMENT, PCI QUAD-4 card) which 

changes digital pulse signals to joint angle 

values y1(t) and y2(t). Simultaneously, through 

an A/D board (ADVANTECH, PCI 1710 card) 

which will send to PC the external force value 

which is detected by a force sensor CBFS-10. 

The pneumatic line is conducted under the 

pressure of 5[bar] and the software control 

algorithm of the closed-loop system is coded in 

C-mex program code run in Real-Time 

Windows Target of MATLAB-SIMULINK 

environment. Table 1 presents the 

configuration of the hardware set-up installed 

from Fig.3, and Fig.4. 

 

Figure 4. Photograph of the experimental 2-axes 

PAM robot arm. 

Table 1. The lists of experimental hardware 

 
 
3. IDENTIFICATION USING DYNAMIC 

INVERSE NEURAL MIMO NARX 

MODEL 

In general, the procedure which must be 

executed when attempting to identify a 

dynamical system consists of four basic steps 

(see Fig.5) 

 STEP 1 (Getting Training Data)  

 STEP 2 (Select Model Structure)  

 STEP 3 (Estimate Model)  

 STEP 4 (Validate Model:  

 

Figure 5.  Neural MIMO NARX Model 

Identification procedure 

Force 
Sensor 
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To realize Step 1, Fig.6 presents the PRBS 

input applied simultaneously to the 2 joints of 

the tested 2-axes PAM robot arm and the 

responding end-effector external force and joint 

angle outputs collected from force sensor and 

rotary encoders. This experimental PRBS 

input-output data is used for training and 

validating the Inverse neural MIMO NARX 

model of the whole dynamic two-joint structure 

of the 2-axes PAM robot arm as illustrated in 

Fig.7. 

0 10 20 30 40 50 60 70 80

4.5
5

5.5

[V
]

JOINT 1 - PRBS TRAINING DATA

0 10 20 30 40 50 60 70 80
4.5

5

5.5

JOINT 2 - PRBS TRAINING DATA

0 10 20 30 40 50 60 70 80

-40

-20

0

20

40

[d
eg

]

0 10 20 30 40 50 60 70 80
-40

-20

0

20

40

60

0 10 20 30 40 50 60 70 80
0

20

40

60

F
O

R
C

E
  

[N
]

0 10 20 30 40 50 60 70 80
0

20

40

60

JOINT  ANGLE output

External FORCE
Filtered  FORCE

JOINT  ANGLE output

PRBS input

External FORCE
Filtered  FORCE

PRBS input

 
Figure 6. Input-Output training data obtained by 

experiment 

PRBS-1(2) inputs and Force/Joint Angle 

outputs during (40–80)[s] will be used for 

training, while PRBS-1(2) inputs and 

Force/Joint Angle outputs in the lapse of time 

(0–40)[s] will be used for validation purpose. 

The range (4.4 – 5.6) [V] and the shape of 

PRBS-1 voltage input applied to the 1st joint as 

well as the range (4.5 – 5.5) [V] and the shape 

of PRBS-2 voltage input applied to rotate the 

2nd joint of the 2-axes PAM robot arm is 

chosen carefully from practical experience 

based on the hardware set-up using 

proportional valve to control rotating joint 

angle of both of PAM antagonistic pair. The 

experiment results of 2-axes PAM robot arm 

force/position control prove that experimental 

control voltages u1(t) and u2(t) applied to both 

of PAM antagonistic pairs of the 2-axes PAM 

robot arm is to function well in these ranges. 

Likewise, the chosen frequency of PRBS-1(2) 

signals is also chosen carefully based on the 

working frequency of the 2-axes PAM robot 

arm will be used as an elbow and wrist 2-axes 

PAM-based rehabilitation robot in the range of 

(0.025 – 0.2) [Hz]. 
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Figure 7. Inverse Neural MIMO NARX Model 

Training data obtained by experiment 

The 2nd step relates to select model 

structure. A nonlinear neural NARX model 

structure is attempted. The full connected 

Multi-Layer Perceptron (MLPNN) network 

architecture composes of 3 layers with 5 

neurons in hidden layer is selected (results 

derived from Ahn et al., 2007 [24]). The final 

structure of proposed Inverse neural MIMO 
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NARX11 used in proposed neural MIMO 

NARX FNN-PID hybrid force/position control 

scheme is shown in Fig.8. 

The proposed neural MIMO NARX11 

model structure is defined as a nonlinear neural 

MLPNN integrated a 1st order ARX model 

(with nA=1; nB=1 and nK=1) possessed 5 

neurons in hidden layer. The activating 

function applied in neurons of hidden Layer 

and of output layer is hyperbolic tangent 

function and linear function respectively. Fig.9 

represents the experiment block diagram for 

modeling and identifying the Inverse neural 

MIMO NARX11 model of the 2-axes PAM 

robot arm. 

2-AXES PAM ROBOT ARM - NEURAL MIMO INVERSE NARX MODEL

y1(t-1)

u11(t)

u12(t)

u13(t)

y2(t-1)

u21(t)

u22(t)

u23(t)

yhat1(t)

yhat2(t)

 
Figure 8. Structure of proposed Inverse neural 

MIMO NARX11 models of 2-axes PAM robot arm 

In Fig.8, input values u11(t)/ u21(t), u12(t)/ 

u22(t), u13(t)/ u23(t) and recurrent delayed input 

values y1(t-1), y2(t-1) in neural structure of 

proposed neural Inverse MIMO NARX11 

model will be identical to input values Joint-1 

Angle y1(k), Joint-2 Angle y2(k), Force value 

yF(k) and desired recurrent delayed control 

voltage values u1(k-1), u2(k-1) respectively of 

experimental modeling block diagram depicted 

in Fig.9. 

 
Figure 9. Block diagram for modeling of Inverse 

Neural MIMO NARX model of the 2-Axes PAM 

robot arm 
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Figure 10. The fitness convergence of proposed 

Neural Inverse MIMO NARX11 Model 

The 3rd step estimates trained Inverse 

neural MIMO NARX11 model. A good 

minimized convergence is shown in Fig.10 

with the minimized Mean Sum of Scaled Error 

(MSSE) value is equal to 0.002659 after 
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number of training 100 iterations with the 

proposed Inverse neural MIMO NARX11. An 

excellent estimating result, which proves the 

perfect performance of resulted Inverse Neural 

MIMO NARX model, is also shown in Fig.11. 
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Figure 11. Estimation of 2-axes PAM robot arm 

Inverse neural MIMO NARX11 Model 
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Figure 12. Validation of 2-axes PAM robot arm 

Inverse neural MIMO NARX11 Model  

 

The last step relates to validate resulting 

nonlinear neural Inverse MIMO NARX 

models. Applying the same experimental 

diagram in Fig.6, an excellent validating result, 

which proves the performance of resulted 

Inverse Neural MIMO NARX model, is shown 

in Fig.12. The experimental results of the 

minimized errors demonstrate the good 

performance of the Inverse neural MIMO 

NARX11 Model (the excellent error < 0.01[V] 

for both of Uh1/Uh2 control voltage values 

respectively applied to 2 joints of the 2-axes 

PAM robot arm). 
 

Finally, Table 2 tabulates the resulting 

weighting values of proposed Inverse neural 

MIMO NARX model which can be used not 

only in modeling identification and simulation 

offline but also can be applied effectively 

online in model-based advanced control 

algorithms (Ahn and Anh, 2011)[21]. The final 

designed structure of proposed Inverse MIMO 

NARX11 model is shown in Fig.8. 

6. CONCLUSIONS 

In this study, a new approach of recurrent 

neural networks, proposed neural Inverse 

MIMO NARX model firstly utilized in 

modeling and identification of the highly 

nonlinear 2-axes pneumatic artificial muscle 

(PAM) system, has successfully overcome the 

contact force variations, coupled effect and 

nonlinear characteristic of the 2-axes PAM 

robot arm system. The 2-axes PAM robot 

arm’s coupled dynamics was taken into 

account. Results of training and testing on the 

complex dynamic systems such as 2-axes PAM 
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robot arm show that the newly proposed neural 

Inverse MIMO NARX model presented in this 

study is quite suitable to be applied for the 

modeling and identification not only the 2-axes 

PAM robot arm but also other nonlinear 

dynamic systems. 
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Table 2. Resulted weights of Inverse neural MIMO NARX11 – Total Number of weighting values = 57 

 

NHẬN DẠNG HỆ ĐỘNG HỌC MIMO                                                                                

SỬ DỤNG MÔ HÌNH MIMO NEURAL NARX NGƯỢC 

Hồ Phạm Huy Ánh(1), Nguyễn Thanh Nam(2) 
(1) Trường Đại học Bách Khoa, ĐHQG-HCM 

(2) ĐHQG-HCM 

 

TÓM TẮT: Bài báo khảo sát ứng dụng mô hình neural MIMO NARX để cải thiện chất lượng 

nhận dạng hệ tay máy phi tuyến 2 bậc dùng bắp thịt khí nén nhân tạo (PAM). Các yếu tố như biến động 

của lực tiếp xúc hay các ảnh hưởng ghép cặp phi tuyến của 2 khớp nối của tay máy sẽ được nhận dạng 

đầy đủ bởi mô hình neural MIMO NARX ngược thông qua bộ dữ liệu huấn luyện thực nghiệm đầu vào – 

đầu ra. Lần đầu tiên, mô hình động học nơ rôn MIMO NARX ngược của tay máy 2 bậc dùng bắp thịt khí 

nén nhân tạo (PAM) được khảo sát hoàn chỉnh. Các kết quả cho thấy mô hình động học thông minh 

được đề xuất, được huấn luyện bằng thuật toán Lan Truyền Ngược (BP learning algorithm) cho chất 

lượng tốt với độ chính xác khi nhận dạng rất cao. Mô hình động học nơ rôn MIMO NARX ngược cho 
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thấy chúng có thể dùng hiệu quả trong nhận dạng  không chỉ hệ tay máy PAM 2-bậc mà cho cả các hệ 

cơ động học phi tuyến  đa biến khác. 

Keywords: mô hình động học, bắp thịt khí nén nhân tạo (PAM), tay máy PAM 2 bậc, nhận dạng 

mô hình ngược, mô hình nơ rôn MIMO NARX ngược, thuật toán lan truyền ngược (BP). 
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