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ABSTRACT

In this paper we introduce two new
versions of Farkas lemma for two kinds of
convex systems in locally convex Hausdorff
topological vector spaces which hold without
any constraint qualification conditions.
These versions hold in the limits and will be
called sequential Farkas lemmas.
Keywords: The Farkas lemma,
approximate Hahn-Banach theorem.

INTRODUCTION

Farkas lemma is one of the most important
results from fundamental mathematics. It is
equivalent to the Hahn-Banach theorem [10] and
has had many applications in economics [9], in
finance [8], in mechanics, and in many fields of
applied mathematics such asmathematical
programming and optimal control. For more
details, see the recent survey paper [7].

The first correct version of Farkas lemma for
a linear system was introduced by the physicist
Gyula Farkas in 1902. Since then, many
generalized versions of this “lemma" have been
proved. Most of these extensions are non-
asymptotic versions and hold under some
qualification conditions [5, 7]. In the recent

sequential

Concretely, we establish sequential Farkas
lemmas for cone-convex systems and for
systems which are convex with respect to a
sublinear function. The first result extends
some known ones in the literature while the
second is a new one.

Farkas functional

lemmas, inequalities,

years, several asymptotic versions  for
generalized Farkas lemma have been established
and found many applications in optimization
problems [4, 6, 11].

In this paper, we first introduce an
asymptotic version of Farkas lemma for a cone-
convex system which extends some known
results in the literature [6, 11]. Imitating the idea
in [5], we then establish the corresponding
asymptotic version of Farkas lemma for systems
which are convex with respect to a sublinear
function, which appears for the first time and
may pay the way for applications to some areas
in applied mathematics.
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NOTATIONS AND PRELIMINARIES

Let X and Y be locally convex Hausdorff
topological vector spaces (l.c.H.t.v.s.), with their
topological dual spaces X" and Y, endowed
with W’ -topologies, respectively. Given a set
Ac X", we denote by ClA the closure of A
(with respect to the W'-topology) in X"

Let f:X —>P uUf{+o}. The effective
domain of f is
dom f == {xe X : f(x)<-+o0}. The
function f is said to be properif dom f = &.
The epigraph of f is
epi f :={(x,@) e X x[J : f(x)<a}. The set
of all proper, lower semi-continuous (lsc) and
convex functionson X is denoted by F(X )

The conjugate function regarding the set
Cc X of f is the function f7:X* —>P
defined by

fg(x*)=sxlejg{<x*,x>— f(x)}, VX" e X",

When C = X the conjugate regarding the
set C is the classical (Fenchel-Moreau)
conjugate function of f denoted by f *see [3].

The indicator function of the set Ac X is
denoted by i,, ie, i,(x)=0 if xeA
in(X)=+o0 if Xxe XTTA

A closed convex cone K <Y generates a
partial order <, on Y by

Vi< Yo if y, -y, eK.

We addto Y a greatest element with respect
to <, , denoted by oo, , which does not belong
to Y and let Y* =Y U{wo, }. Then one has
y < oo, for every yeY*. We shall use the
following conventions on Y*:
y+oo, =, +y=0,, forall yeY®, and
ao, =, if a>0. The dual cone of K,
denoted by K™, is defined by

K ={y"eY" :<y*,y>20for all ye K}
A  mapping h:X—>Y® is
(extended) K -convex if

called

X)X € X, phy, pty >0, gy + 41, =1

= (X + 1,%,) < h(%) + 150(%,),
where "<, " is the binary relation (generated by
K') extended to Y *. The domain of h, denoted
by domh, is defined as the set
domh:={xe X:h(x)eY} and the K-
epigraph of h is:

epi h:={(x,y) e X xY:y eh(x)+K}.

Itis clear that h is K -convex if and only if
epi,h is convex. The mapping h: X —Y* is
said to be K — epi-closed if epi, h is a closed
subset in the product space X xY, and in this
case, the set h?'(-K) is closed as
h™(=K)x{0,} = (epich) N (X x{0,}) [B]. It is
also worth observing that if K is a closed
convex cone and h isa K -convex function then
h(-K) is a convex subset of X . Moreover,
for any y*eY" the function y*oh is defined
on X as follows:

(y".h(x)), if xedomh,

otherwise.

(y" eh)(x) = {

~+00,

The function S:Y — P U{+oc} is called
(extended) sublinear if

S(y+Yy)<S(y)+S(y"), and S(Ay)=AS(y), Vy,y' €Y, VA>0.

By convention, we set S(0,) = 0. Such a
function S can be extended to Y * by setting
S (o0, ) = +oo together with all other
conventions related to the operations in Y *
defined above.
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An extended sublinear function
S:Y - P U{+oo} allows us to introduce in
Y* a binary relation which is reflexive and
transitive:

YiSs Yo 1 VS Yo

where K:={yeY:S(-y) <0}
Here the relation "<, " is used in the extended
senseto Y ©.

Given an extended sublinear function
S:Y P U{+cx}, we adapt the notion S -
convex (i.e., convex with respect to a sublinear
function) (see [13]) and introduce the one
corresponding to an extended sublinear function
S:

A mapping h:X —Y®is said to be
(extended) S -convex if for all XX, € X,
i, 1, >0, 14+, =1, one has

h(eaX, + 1,%,) < (%) + ,0(X,).

It can be verified easily that if h is S-
convex then h is K-convex with
K:={yeY :S(-y)<0}. Conversely, if h is K
-convex with some convex cone K then h is
S -convex with S =1i_, .

Some properties of limit inferior and
limit superior of nets of extended real numbers
will be quoted in the next lemma.

Lemma 1 [1, 2] Let (a,),., and (b)
be nets of extended real numbers. Then the
following statements hold:

(i) liminf (& +0;) > liminf & + liminf b
and  linSup (a, +b,) <lilflsup a, + lithsupb,,
provided 'that the right Wand side 'df the
inequalities are well-defined. Moreover, the
equalities hold whenever one of the nets is
convergent.

iel

(i) If s>0 then
liminf (s&;) = sliminf & and
limsup (sa,) = slimsupa;; if S<O then
Iirriﬁ'nf (sa)=s Iirjﬁ’sup a, and

limsup (sa,) = s liminf a,.

“A net (ui*)i':I in the topological dual
space X of an lLcH.tvs. X converges to
u” e X" w.rt. the w’-topology will be denoted
by u’ —"u".

SEQUENTIAL FARKAS LEMMA FOR K -
CONVEX SYSTEMS

In this section we will introduce a version of
Farkas lemma for cone-convex systems which
holds in the limit form without any qualification
condition. The result extends the ones in [6], [11]
and [4] in some senses.

Theorem 2 [Approximate Farkas lemma 1]
Let X,Y be locally convex Hausdorff
topological vector spaces, K be a closed convex
cone in Y, C be a nonempty closed convex
subset of X, f:X —P U{+oc} be a proper
convex Isc function. Let further, g: X —Y* be
a K-convex and K -epi closed mapping and
S P . Assume that (domf)nC g™ (-K) # .
Then the following statements are equivalent:

(i) xeC,g(x)e-K = f(x) = .
(i) There exists a net (y)
such that

£00 +liminf (¥ ©9)() = B, vxeC. (1)

Proof. e [(i) = (ii)] Assume that (i) holds.
Let A:=Cng ™" (-K). It is obvious that A is
non-empty closed convex set (as C and
g '(—K) are closed and convex). Observe that
(i) is equivalentto — 8> (f +i,)"(0, ),

cK*

iel
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or equivalently, (0_.,—/) cepi(f +i,)".
By using Remark 8.11, p.54 in [2] one has
epi(f +i,)" =cl(epi £+ | Jepi(2g +i.)").
A IRE
Consequently, (i) is equivalent to
(0 .,~B) ecl(epi "+ |J epi(ig +ic)").
1R
Thus, there are nets (X ),_,, (V).
(V)i €K, ()i =P, such that
X +V; =0 .,

c X7,

im [ 00)+ (¥ 0 g +i) () + s ] = 4.

For each iel, set
&= T () +(y; og+ic) (V) +o; + 5. Then
& — 0. Note also that for any X € C one has

£0¢) 2 (6, %) — f(X)

and (y; °g +ic) (V) 2 (v, %) = (y; °9)(x),
and so, it follows from the definition of ¢, and
a; 20, one gets:
&2 (X +V, )= F(X)=(y; °9)(X) + B,
vxeC,Viel. )

Taking the limit superior both sides of (2)
we get

0 =limsups;, > —f (X)+ S+

Ilmsup((x +V,X) = (Y 2 g)(x)),VxeC,
or equwalently,

f(x)— B>
limsup((x; +v;,%) = (y; °g)(x)), ¥x e C
iel (3)

Since X +V; =0 ., it follows from (3) that,
forall xeC,

f(x)= B2 limsup((x +V; %)= (y; °9)(X))
' Himsup(—(X, +V;, X))
>llmSUp( (¥; o 9)(x)'=! ~liminf (¥; °9)(x)
(see Lemma 1). Consequently, we arrive at

(ii):

f(x)+ liminf (y; 2g)(X)= B, ¥xeC.
® [(ii) :(|)] Assume that (ii) holds, i.e.,
there exists a net (y;),,, < K* such that

f(x)+ liminf (y; c9)(x) = B, VxeC.

Observe N that if  xeC such that
g(x) e —K, then (y og)(x)<0 for all iel.
Therefore, for xe C with g(x) e—K one gets

F00 = f()+liminf (y; °9)(x) = 5.
The proof is compleete.

Remark 3 The equivalence between (i) and
(ii) in Theorem 2 was established in [6], [11]
under the assumption that C=X and J is a
continuous, K -convex mapping with values in
Y . This equivalence was also established in [4]
by another approach, called dual approach, for
the case where g:X —Y is a K -convex
mapping and satisfies the assumption that y* o
is Isc for each y™ e K*, which is much stronger
than our assumption that ¢ is K -epi-closed
(see [2]). Our result extends all the results in the
mentioned papers.

SEQUENTIAL FARKAS LEMMA FOR
SUBLINEAR-CONVEX SYSTEMS

In this section, we will establish a sequential
version of Farkas lemma for systems of
inequalities involving sublinear-convex
mappings. The key tools used here are the
technique of switching a sublinear-convex
system to a cone-convex system used in the
recent paper [5] and Theorem 2 from the
previous section.
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Theorem 4 [Approximate Farkas lemma 2]

Let X,Y be l.cH.tvs, C be a nonempty
closed convex subset of X, S:Y — P U{+oc}
be an extended Isc sublinear function,
g:X —Y*® be an S -convex mapping such
that the set

{(x,y,A) e XxY xP :S(g(x)—y)< A} (4)

is closed in the product space X xY xP. Let us
consider two proper convex and Isc functions
f: X >Pufto} and y:P —P U{+o}.
Assume that

(domf){xeC:Ja e (domy)nl .1

st.(Seg)(X)<a}=J (5)
Then the following statements are
equivalent:
(@)

xeC,aell ,(Seg)X)<a= f(X)+y(a)=0.

(b) There exist nets (y;),, P, and
(¥;),, <Y " such that y" <y.S for all iel
and

F(X)+ liminf (¥; © 9)(¥) >y (liminfy,), ¥xeC. (6)
Proof. [(a) = (b)] Assume (a) holds.
Let us set Y=YxP, Y =Y"xP,
c=c x P and set S:Y — P U{+od} defined
by S(y,A)=S(y)—4 forall (y,2)eY . Then
C is a_nonempty closed convex subset of
XxP, S isan Isc sublinear function. Let also
X:=XxP,§: X >Y" and
f:X>P {00} be the mappings defined by
g(x,@):=(9(x),a), V(x,a) € X
and f(xa)=f(X)+y(a) V(xa)eX.
Since f,y are proper convex, Isc functions,
sois f . Also, g is an S -convex mapping as
g isan S -convex mapping.

! When this condition holds, it is also said
that the function is (S, g)-compatible [13]

Now let K be the closed convex cone
defined by IZ::{(y,ﬂ)eV:S(jy,—A)SO}.
Then it is easy to see that § is K -convex as
well.

The assumption (4) ensures g is K —
epi closed while (5) ensures that
(dom f)NC N (-K) 2.

We now apply Theorem 2 with X, Y,
., g, f,and K playing the roles of X, Y,
, g, f,and K, respectively, and with
=0.

== O M

From (a) and the definitions of F ﬁ ,
we have

(x,a)eC, §(x &) = (g(xX),) e —=K = f (x, @) =0,

which shows that (i) from Theorem 2 holds, and
hence, by this theorem there exists a net
(¥),., = K* such that

f () +liminf (¥ 2 §)(x,@) >0, ¥(x,a) €C.(7)
Since (y;),, < K, by Lemma 3.5 in [5],
there exists a net (y;,~,),., Y xP such that
Y, =Y, 7)., 7. =0 foreach ie |, and
y, <yS forall iel. (8)
Therefore, (7) can be rewritten as

£+ (a) +imin (5 °0)(X)-7,)>0, ¥(xa)eC. (9)
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It now follows from Lemma 5 below that
||m|nf 7, €P ., and hence, for all geP,
||m|nf (7,) € P . We get from Lemma 1 that

liminf (Y; © g)(X) — liminf (7,2)
>I|m|nf(C§} °g)(X)— %), V(x,a) eC.

Combmmg this inequality and (9) one gets,
forall (x,a) e C,

0< f(X)+y/(a) + liminf ((y; e 9)(X)— i)

< f(X) +y () + liminf (Y, ©

9)(X) = liminf (7;2),
which yields iel il

f(x )+I|m|nf(y. 9)(x)
> I|m|nf(7/,06) (a),V(x.a)eC.
Equwa?ently
f(x) +liminf (y; ©9)(x) > (liminfy)a -y (a ),
' VX & b Vael,
Taking the supremum over all ¢ P, in the
last inequality, we obtain

£+ fiminf (y; °)(x)
—%+(I|m|nf7.) vxeC,
which is (6).
[(b)=(a)] Assume that (b) holds.
Then there are two nets (y;),,, <P, and
(¥;)i, <Y such that y" <y.S forall iel
and
f(X)Jrllmlnf(y. 9)(x)
> I|m|nf(7.06) y(a),v(xa)eC  (10)
Now if " xeC,aeP satisfy (Sog)(X)<«a
then (¥ ©g)(X) <7, (Seg)(X) <y for all
i €1 and hence,

liminf (@) = liminf (y; °9)(x).
It foIIows from this mequallty and (10) that
for xeC,a P, such that (Sog)(x)<«, one

gets
F OO +liminf (i) 2 liminf (7ie) ~y (@),
(11)
Since liminfic 7, €P  (see  (6)),

liminfic, (v;&) €P for any aeP . Hence,
(a) follows from (11). The proof is complete.

Lemmab

With the notations used in the proof of
Theorem 4, let (y;,—y;);,., Y %P be such
that y = (y;,—,). 7, >0 for each iel, and
y; <y;S foralliel . If

F0) +y (@) +liminf ((¥; °9)(X) -7a)

50,v(x,a)eC (12
then fiminf 7, <P,
Proof. Observe flrstly that as y, >0 for

all iel we have limsupy; > liminf 7; > 0.
Let XeC and & edo 'ﬁ}/ be the elements that

satisfy (5), i.e., XeC (domf)~(domg)
and & e (domy) N[ , such that
(Seg)(®¥) <a, (13)
and hence, f(X)+w(a)<+oo.
Yy, <7S foreach i e, one gets

(¥; ©9)(X)=r@ <7 (S 9)(X) - &
<7 ((S.9)(X)-x)<0,Viel,
and hence,

liminf ((y; e 9)(X) - 7:@)
< I|m|nf(7 (S0 9)(X)—ya)<0.
Now, |f (12) holds then one has

f (%) +y/(@)+ liminf ((5 > 0)(X) ~@) 2

9)(X) -7a) 20,
(15)

Since

(14)

f(¥)+w(&)+|imilnf((y?°

which leads to
f(X)+y(a)=- Ilmlnf(7.((3 9)(X)-a))

= (limsupy,)(@ - (5 > g)(X)), and hence (see
also (19)),

limsup y; < T +y (@) < +o0.
a—(S-g)(X)
Since 0< ||m|nf 7, <limsup y,, one gets
liminf 7, <P, <
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B dé Farkas theo day cho cac hé 10i

¢ Nguyen Dinh
Trwdng Dai hoc Quéc Té, PHQG - HCM
e Tran Hong Mo

Trwdng Pai hoc Tién Giang, tinh Tién Giang

TOM TAT
Trong bai béo nay ching toi thiét Iap hai
phién ban clia B6 dé Farkas mé& réng cho
cac hé bat dang thirc 16i trong khéng gian 16i
dia phuong. Cac phién ban nay thod mén
khéng céan bét ky diéu kién chinh quy nao va
chung dwoc thod man dwéi dang gi6i han
nén duoc goi la cac bé dé Farkas suy réng
theo ddy. Cu thé, chung téi thiét lap phién
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