
TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 16, SOÁ K4- 2013

 Trang 33

Applying 2-way Superscalar Technique to

a 32-bit RISC Microprocessor

 Do Ngoc Quynh

 Hau Nguyen Thanh Hoang

Integrated Circuit Design Research and Education Center

(Manuscript Received on September 25th, 2013, Manuscript Revised October 15th, 2013)

ABSTRACT:

In one-way microprocessor, the program

code is executed at the maximum (ideal) rate

of one instruction per cycle. In practice, due

to the occurrence of branch instruction, this

rate is less than 1. Superscalar architecture,

when applied to a 32-bit RISC

microprocessor, enables the handling of two

instructions in a single machine cycle. To

further increase the processing speed, the

out-of-order execution is also applied to

process an instruction that its operands are

ready. As a result, the microprocessor which

can complete two instructions per cycle is

obtained.

Keywords: Microprocessor, advanced computer, RISC computer, superscalar.

INTRODUCTION

In the present paper, we show how to apply

superscalar technique to a 32-bit RISC

microprocessor (MCU) to enable a simultaneous

processing of multiple instructions. In our design,

the maximum number of instructions is 2. The

out-of-order execution is also incorporated for

more efficient use of hardware resources. An

instruction is executed immediately when its

operands are ready. A branch prediction block

with high accuracy is indispensable to reduce

waste in the case when branch instructions exist.

RELATED WORKS

To improve the performance of a single

microprocessor, designers can increase the

pipeline stages to raise the operating frequency of

the system. With this method, the maximum

upper limit processing speed of the system is still

1 instruction per 1 cycle. The complexity of the

design is manifold due to this increase of stages

accordingly many times; and high frequency can

be more costly in term of power consumption.

This is a disadvantage when the MCU is used in

a system that requires less power consumption.

In superscalar technique, it is not necessary to

increase the operating frequency, but the

capability of processing multiple instructions in

one cycle is permitted. The difficulty of this

technique is to make sure the relationship

between the result of the previous instruction and

the operands of the current instruction (data

dependence). Thus the design of CPUs with

multiple instruction issues has recently become a

trend of the microprocessor industry.

SUPERSCALAR HARDWARE

The superscalar techniques require more

resources to handle multiple instructions in

parallel at the same time. These circuits are

added at all pipeline stages.

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 16, No.K4- 2013

Trang 34

Fetch and Decode stages

Fig.1. 2-way parallel decode block

In the Fetch stage, the Instruction Queue (IQ)

is able to send 2 instructions to Decode stage.

Two read pointers are used to choose

Instruction_0 and Instruction_1 from IQ.

The main functions of IF1:

Checking Instruction Cache (IC) Tag for

IC_hit

Checking Prefetch Buffer (PB) Address for

PB_hit

Pushing instruction into IQ and queue there

Sending to fetch request to lower level memory

if the IC and the PB are both missed

Checking Branch Target Buffer (BTB) data,

Local History, Global History for predicting

branch

Controlling the operation of GHR

Controlling the operation of RS

Pushing branch predicted information into

Prediction Queue (PQ)

Holding BTB_PLRU value in BTB_lookup

buffer

The continualness of providing two

instructions is a key issue when designing Fetch

stage. The pipeline process will reach the highest

efficiency while input instruction is always

ready. The state machine IQ_SM (as shown in

Fig. 1) generates an instruction request to

prefetch 4 instructions of a L1 cache line (the

address bits from 31 to 4 are the same). First,

there is a comparison circuit to check the address

request and the contents of Array IC; the

instruction is read from IC cache and brought to

IQ in the hit case. In the miss case, the instruction

must be read from lower memory (UL2 cache).

These instructions are queued in IQ and waited

for sending to Decode stage. IQ can

accommodate up to 10 instructions; this value is

sufficient for optimal IQ with this 2-way

superscalar design.

The Decode stage identifies an instruction and

generates the corresponding control signals. Two

instructions from IF1 are processed in parallel

and flopped at the output of the stage. It will be

the income of the next stage. In some cases, the

system must handle a task too long. It will pause

receiving a new instruction to be able to complete

the old one. At this point, the Decode stage will

activate the ‘stall’ signal to prevent new

instruction from Fetch stage. A Skid buffer will

save the control signals in this case to reuse as

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 16, SOÁ K4- 2013

 Trang 35

soon as the system exits ‘stall’ state. After that,

the control signals are selected from the Skid

Buffer instead of the outgoing values of the 2

decode units.

Dispatch stage

An important block in the Dispatch stage is

ROB (in Fig. 2). An instruction is processed in

the order in Fetch, Decode, Issue stages and out-

of-order in the following stages. The ROB will

rearrange the order of instructions and retire them

in the program flow. An instruction is not

actually completed until ROB retires it and writes

to the register file. When the program branches to

a new location, the following instructions after

the branch will be ignored all, and a new

instruction at the new location is fetched and

written to ROB. So, ROB is to control the flow of

microprocessor operation.

Fig.2. ROB

The main functions of Dispatch (DP):

Containing Register Files (RF)

Containing PC at Dispatch Stage

(Dispatch_PC)

Containing Reorder Buffer (ROB). The CPU

pipeline executes instructions out-of-order, ROB

reorders the executed instructions and keeps them

retiring in-order.

Containing PC at ROB (ROB_PC)

Dispatching instructions to the next stage (up

to 2 instructions/cycle).

Essential information of Dispatch PC needs to

calculate and save in this stage because the PC of

instructions is not in order after this stage. There

are 2 Dispatch PC0 and PC1 values, they

correspond to instruction 0 and instruction 1. In

normal operation, the value of Dispatch_PC

increases 8 for each cycle. For branch

instructions, the PC is the target of the branch

instruction.

Issue stage

Each RS holds control signals of each type of

instruction. When instruction operands are ready,

the instruction will be issued to the next stage.

The ALU0RS and ALU1RS are issued out-of-

order. And the LSRS, BRRS, and MULTRS are

issued in order. These blocks must be done in

order to ensure the order of instructions.

The main functions of Issue (ISU):

There are 5 Reservation Stations (RS): 2 ALU

Reservation Stations (ALU0RS, ALU1RS),

Load/Store Reservation Station (LSRS), Branch

Reservation Station (BRRS), Multiply

Reservation Station (MULTRS)

Each RS holds control signals of each type of

instruction

When instruction operands are ready, the

instruction will be issued to the next stage.

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 16, No.K4- 2013

Trang 36

Fig.3. Issue stage

Normally, data is written into the RSs from

DP. In the case the data is the result of preceding

instructions, the result will be forwarded into the

RSs from the stage which firstly has valid result.

Execute stage

All ALU instructions are executed in one clock

cycle. The following instructions are executed in

ALU0/ALU1: ADDx (addition), SUBx

(subtraction), CLTx (comparison), ANDx, ORx,

XORx, NOR, SLLx (left shift), SRx (right shift).

The isu_alu0_control or isu_alu1_control signals

select which operator will be executed. Two

input operands of ALUx have the 32-bit width.

For the signed addition or subtraction, if the

result of ALUx is incorrect to return, the

alu0_overflow or alu1_overflow will assign to 1.

In the Execute stage, the load/store instruction

is only calculated the load/store address and byte

valid bits. The isu_ls_opa is a base address, and

isu_ls_offset is an offset address of a load/store

request. The offset address is the 16-bit width, so

it is signed-extend to become 32-bit width. The

offset address is added to the base address

including a sign bit. It can be shown in Fig. 4.

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 16, SOÁ K4- 2013

 Trang 37

Fig.4. Execute stage

A multiplication executes in 2 clock cycles.

The product is stored in the pair of registers

mult_result_hi and mult_result_lo. In order to

read the contents of the high / low product, the

user must use MFUP/MFLP instructions. The

isu_mult_unsigned signal indicates that the

multiplication is signed or unsigned. When it is 1,

this is an unsigned multiplication and vice versa.

A move-from result can be selected from 2

sources: high/low product of multiplication or

CP0 register contents. It depends on

isu_mfmult_val signal. When it is 1,

ex_mf_result is the contents of the high / low

product. Otherwise, ex_mf_result is a value of

CP0 register.

PERFORMANCE IMPROVEMENT

Superscalar technique

At one point, the pipeline stages can handle up

to 2 instructions at the same time. Especially

Execute stage can handle up to 5 instructions

simultaneously because it has 5 independent

execution blocks.

An instruction will be distributed to the Issue

blocks corresponding to its instruction type after

decoding is completed. When the instruction

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 16, No.K4- 2013

Trang 38

goes to Issue stage, it also is written to the ROB

in accordance with the program order. And in the

final stage of the pipeline, the instructions are

sequentially retired in the program order. The

function of ROB is to re-arrange the order of

instructions and writes the result of execution to

the system registers. The rearrangement is

required because the instructions in Issue and

Execute stages are performed out-of-order.

After the instruction has been dispatched, it

will be in turn placed in the Reservation Station

(RS) to wait for executing. The RS in Issue stage

will check all operand sources continuously. As

soon as the result of the operand appears, the

ready bits of the operand are updated to 1. It

means that the content of the operand is valid.

When all operands of instruction are ready,

operator will be executed in the Execute stage

and the calculation result is saved into the

Reorder buffer (ROB).

If the ROB contains the branch instruction that

the branch prediction target is wrong, then the

following instructions of a branch that will be

ignored because the flow of the program was no

longer true. The same manner is in the case of an

exception.

Branch Predictor

Fig. 5. Branch Predictor

Two techniques will be used in Branch

prediction block: Local history and Global

history.

- Local history based on the address of the PC

of jump and branch instructions to predict the

branch target.

- GHR saves branch results of 10 previous

branch instructions.

- Global history is based on the results of the

previous branch instructions to form the bit index

to read the contents of the Global History and get

branch prediction result.

The implement of branch prediction is applied

in this 32-bit RISC microprocessor that combined

Local and Global predictors (as shown in Fig. 5).

In particular, the address of the branch instruction

PC will be brought to the Local History SRAM

to read the 2-bit saturating counter. The 2-bit

saturating counter, the PC address bits of branch

instructions and GHR registers are mixed to

generate the index bits to read 2-bit Counter of

Global History. Global values are read from the

user to predict the direction of the branch

instruction. The bit 1 is the direction of the

branch and bit 0 is the strength of the prediction.

The index address of global history is compiled

from various sources that contain more

information about jump/branch prediction. All

information of branch instruction and the history

of branch flow are stored in SRAMs (in Fig. 6).

The target addresses of branch instructions are in

Branch Predictor – Entries (in Fig. 7).

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 16, SOÁ K4- 2013

 Trang 39

Fig. 6. Branch predictor - SRAM (IF0 stage)

Fig. 7. Branch predictor - Entries (IF1 stage)

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 16, No.K4- 2013

Trang 40

Branch Prediction flow:

Data from BTB Arrays, Local History, and

Global History (Fig. 6) will be checked to detect

branch instructions, and predict whether the

branch is taken. The necessary information will

be written to PQ. The information in the PQ will

be useful for the next stage.

The status of current predicted branch

(taken/not taken) is shifted to GHR[9:0] (LSB to

MSB). The value of GHR is then used to access

Global History for later prediction.

Return Stack (ReS): there are 3 blocks of ReSs:

(1) ReS at Fetch (Fetch_ReS), (2) ReS at Execute

(Execute_ReS), and (3) ReS when retiring

(arch_ReS). When CALL, return PC will be

written to ReS at ReS_pointer and the pointer is

increased by 1. This pointer is decreased by 1

when return PC will be read out (RET

instruction).

BTB_lookup store the BTB_PLRU value of

the BTB. This value will be used for replacing

the BTB.

Prediction Queue (PQ): hold all necessary

information for branch prediction. Each PQ entry

is setup at IF1. PQ entries can be read and

updated at other stages such as DP, EX, ROB

(when retiring) .

Memory hierarchy

Fig. 8. System memory hierarchy

The memory hierarchy of this microprocessor

is designed to operate efficiently with 2 levels. In

the Fig. 8, at the level 1, it consists of L1

instruction cache (IL1) and L1 data cache (DL1)

separately, the Harvard memory model supports

to access instruction and data simultaneously. At

the level 2, there is only an L2 Unified cache

(UL2), it is shared between Instruction and Data.

The Pseudo Least Recent Use (PLRU)

replacement policy is applied to achieve a high

hit ratio for the cache.

The IL1 and DL1 sizes are small 32KB each

and simple circuit implementation for fast

operation (two clock cycles). The hit rate of L1

caches only reaches about 85%. UL2 cache is

larger than the L1 cache 8 times, 256KB. It has a

slower return data rate (s cycles) and higher hit

rate 95%. With a high hit rate, the performance

of the system will increase significantly, due to

missing request in UL2 cache will be taken

directly from the system bus with long latency

(52 cycles for the fastest case: 1 request cycle + 3

cycles for the first address + 16 data x 3 cycles

for each (the clock rate ratio of CPU clock / bus

clock = 1/3).

The DL1 cache can operate as a non-blocking

data cache. The PB block in DL1 cache has 2

entries and can handle up to 2 miss loads. This is

really a valuable feature when a miss load is

followed by another load. The second load will

start running before the end of the first load. The

second load can be continued to process and

TAÏP CHÍ PHAÙT TRIEÅN KH&CN, TAÄP 16, SOÁ K4- 2013

 Trang 41

return read data if it hits in DL1, and it is written

to PB in the miss case. For third load, it must be

re-sent in the miss case. Because, at that time, the

PB is full and can’t receive more miss loads.

The UL2 cache supports Store Gathering

Buffer block. This one collects all store requests

with the same L2 cache line. An L2 cache line

contains 64 bytes, so 2 store addresses are

considered the same cache line if address bits

from 31 to 6 are equal. An L2 cache line in SGB

is written AHB bus when all byte of cache line is

collected. This helps to optimize the access to the

system bus, and bus bandwidth is used more

efficiently. In some special cases, the entry of the

SGB will be evicted to the bus before it collected

enough one L2 cache line, but these cases will

not be presented in detail.

Out-of-Order Execution

The instructions are processed with the correct

program order (in order) in the IF0, IF1, and DP

stages and out-of-order in the ISU, EX, M0 and

M1. But, at Commit stage (the last stage), the

instructions are rearranged to write the result of

calculation to the register file with the exact

program flow.

Most instructions go through ISU and EX stage

out-of-order. At the ISU stage, as shown in Fig.

3, the instructions will be classified and placed in

the reservation stations (RS) in preparation for

the execution of the instruction. These stations

check all operands of instruction and send the

instruction having ready operands to EX stage.

Two ALU/SHIFT RSs issue instruction out-of-

order, the remaining RSs: LOAD/STORE,

BRANCH, MULT is in order. An instruction

consumes a one cycle to give the operator result

in EX stage, except MULT (multiplier)

instruction which must take two cycles to

complete. Then, the results of execution will be

saved in ROB to wait for retiring.

CONCLUSION

The Fetch stage is made to achieve high

performance. When instructions are already in

the cache, the 2 consecutive instructions are put

to the Decode in a cycle. The 2-way superscalar

fulfills 2 instructions in parallel. The number of

instructions, which is executed simultaneously in

the pipeline, is 2. An instruction is executed out-

of-order, and it will start whenever all operands

are ready. This helps an efficient use of hardware

resources.

The branch prediction block eliminates wasted

cycles to change the program flow in the correct

prediction cases. When the prediction is wrong,

waste cycles are required. Since the miss

prediction rate is low, the performance of

microprocessor increases significantly.

The two-level cache hides the long latency due

to waiting for response data from the main

memory. The fast L1 caches can return the load

data after 2 cycles. The high hit rate of UL2

cache is to minimize the number of times when

the system reads data directly from the main

memory. The bottleneck issue between the

processor and the memory is reduced and the

load/store instructions will be processed at the

speed of the microprocessor.

SCIENCE & TECHNOLOGY DEVELOPMENT, Vol 16, No.K4- 2013

Trang 42

Áp dụng kỹ thuật Superscalar vào một vi

xử lý RISC 32 bit

 Đỗ Ngọc Quỳnh

 Hầu Nguyên Thanh Hoàng

Trung tâm đào tạo nghiên cứu thiết kế vi mạch ICDREC

TÓM TẮT:

Trong vi xử lý một luồng mã lệnh, mã

lệnh chương trình được thực thi với khả năng

lý tưởng là một mã lệnh trên một chu kỳ.

Nhưng với các ứng dụng thực tế, tỷ lệ này sẽ

giảm thấp hơn 1 bởi vì sự xuất hiện của các

lệnh rẽ nhánh. Kiến trúc superscalar khi

được sử dụng trong một vi xử lý RISC 32 bít

sẽ cho phép xử lý hai mã lệnh trong một chu

kỳ máy. Để tăng thêm tốc độ xử lý, phương

thức thực hiện mã lệnh không theo thứ tự

cũng được sử dụng. Các mã lệnh sẽ ngay

lập tức được thực thi khi các toán hạng ngõ

vào sẵn sang. Kết quả nghiên cứu đã đạt

được một vi xử lý có thể hoàn tất hai mã lệnh

trong một chu kỳ.

REFERENCES

[1]. J. L. Hennessy and D. A. Patterson,

Computer Architecture - A Quantitative

Approach, 4th ed.: Morgan Kaufmann,

(2007).

[2]. J. P. Shen and M. H. Lipasti, Modern

Processor Design - Fundamental of

Superscalar Processor.: McGraw-Hill,

(2005).

[3]. M. C. Chang, Y. W. Chau, Branch

prediction using both global and local

branch history information, IEEE Proc.-

Comput. Digit. Tech., vol. 149, Mar.

(2002).

[4]. K. Skadron, M. Martonosi, D. W. Clark,

Speculative Updates of Local and Global

Branch History - A Quantitative Analysis.

[5]. H. Ghasemzadeh, S. Mazrouee, and M. R.

Kakoee, Modified Pseudo LRU

Replacement Algorithm, Proceedings of the

13th Annual IEEE International

Symposium and Workshop on Engineering

of Computer Based Systems (ECBS’06),

(2006).

[6]. K. Aasaraai and A. Moshovos, An Efficient

Non-Blocking Data Cache for Soft

Processors, International Conference on

Reconfigurable Computing and FPGAs

(ReConFig), 2010, 19-24, December 2010.

[7]. D. Kroft, Lockup-free instruction

fetch/prefetch cache organization,

Proceedings of the 8th annual symposium

on Computer Architecture (ISCA '81), pp.

81-87, 1981.

