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Efficient numerical analysis of transient 
heat transfer by Consecutive-Interpolation 
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
Abstract—The consecutive-interpolation technique 

has been introduced as a tool enhanced into 
traditional finite element procedure to provide 
higher accurate solution. Furthermore, the gradient 
fields obtained by the proposed approach, namely 
consecutive-interpolation finite element method 
(CFEM), are smooth, instead of being discontinuous 
across nodes as in FEM. In this paper, the technique 
is applied to analyze transient heat transfer 
problems. In order increase time efficiency, a model-
reduction technique, namely the proper orthogonal 
decomposition (POD), is employed. The idea is that a 
given large-size problem is projected into a small-size 
one which can be solved faster but still maintain the 
required accuracy. The optimal POD basis for 
projection is determined by mathematical 
operations. With the combination of the two novel 
techniques, i.e. consecutive-interpolation and proper 
orthogonal decomposition, the advantages of 
numerical solution obtained by CFEM are expected 
to be maintained, while computational time can be 
significantly saved.

Index Term—three-dimensional transient heat 
transfer, CFEM, POD, consecutive interpolation.
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1 INTRODUCTION

NE may encounter heat transfer problems in 
many human activities. For example, all three 

types of heat transfer can be found in cooking, i.e 
conduction, convection and radiation. Design of 
air-conditioning system is usually based on 
knowledge of heat convection. Day by day, the 
Earth is receiving heat from the Sun by thermal 
radiation. In industry, heat transfer analysis is 
required in many fields of engineering, such as 
mechanical engineering, electrical engineering, 
aeronautical engineering, etc. However, analytical 
solutions are only available for some specific 
problems, most of which are described with 
relatively simple geometry and boundary 
conditions. When it comes to deal with 
complicated geometries and/or boundary 
conditions, which are usually the cases of 
engineering applications, numerical analysis seems 
to be a more practical approach. Currently, the 
standard finite element (FEM) [1] has been widely 
used for heat transfer problems due to its 
simplicity and reasonable accuracy. However, 
several shortcomings of the method have been 
pointed out, see [2]. The FEM shape function is C0 
continuous, resulting in non-physical discontinuity 
of gradient fields, e.g. temperature gradient in case 
of heat transfer problems.

As alternatives to FEM, various other methods 
have been proposed for heat transfer analysis, such 
as the Boundary Element Method (BEM) [3] and 
the class of meshfree method [4, 5]. On the other 
hand, amendments that can be integrated into FEM 
was also suggested to overcome the weakness 
while keeping the familiar FEM framework. In 
recent years, the consecutive-interpolation 
procedure (CIP) has been introduced as an 
enhancement for traditional FEM, to develop the 

O
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so-called Consecutive-interpolation Finite Element 
Method (CFEM). In CFEM, the continuity of 
gradient fields is improved by taking the averaged 
nodal gradients into interpolation. Interestingly, 
the number of degrees of freedom are equal to that 
of FEM, given the same mesh. The CFEM was 
first investigated for two-dimensional linear elastic 
problems [6, 7] and later was further developed for 
heat transfer analyis in two-dimensional space [8] 
and three-dimensional space [9]. A general 
formulation which allows application of CFEM in 
a wide range of finite elements was also proposed 
in [9].

As a model reduction method, the Proper 
Orthogonal Decomposition (POD) was introduced 
to reduce the computational time by projecting the 
problem of interest to another one which is much 
smaller in size. Hence, computer memory and 
elapsed time can be greatly saved. POD has been 
applied to structural vibration analysis based on 
experiments [10]. Investigation on combination of 
POD with finite element analysis of heat transfer 
problems is discussed by [11].

In this study, POD is combined with CFEM to 
effectively save computational time in the context 
of three-dimensional transient thermal analysis, 
such that the applicability of CFEM is further 
expanded. The proposed procedure is named by 
CFEM-POD for brevity while the CFEM without 
POD is mentioned by CFEM.

The paper is organized as follows. After the 
introduction, a brief review on application of CIP 
to three-dimensional element is presented in 
Section 2. The integration of POD into analysis is 
discussed in Section 3. In Section 4, the efficiency 
and accuracy of the proposed formulation are 
investigated by several numerical examples. 
Concluding remarks are given in Section 5.

2 CONSECUTIVE-INTERPOLATION FOR
HEAT TRANSFER PROBLEMS

2.1 Brief on consecutive-interpolation

Let us consider a 3D body in the domain Ω
bounded by Г = Гu + Гt và Гu ∩ Гt = {ø}. In finite 
element analysis, the domain Ω is discretized into 
non-overlapping sub-domains Ωe called elements. 
The points interconnected by the elements called 
nodes. Each node is associated with a shape 
function. Any function u(x) defined in Ω can be 
approximated by a linear combination as

(1)

Here n is the number of nodes, is the vector 

containting nodal values and N is the vector of 
shape functions. By assigning the approximated 

value at node i as , and the vector of 

shape functions evaluated at node i as 

, the average nodal derivatives 

(similarly for and ) can then be determined 

by [6, 7, 9]

(2)

in which the vector of averaged derivative is 

calculated by 

(3) 

In Eq. (3), denotes the derivative of 

computed in element e. Si is the set containing all 
the elements connected to node i, and we is a 
weight function defined by [9] 

, (4)

with being the volume of element .

One well-known shortcoming of the standard 
FEM is the non-physical discontinuity of gradient 
fields, e.g. temperature gradient in case of heat 
transfer analysis. Such drawback can be overcome 

by taking both the averaged nodal derivatives 

(and and ) and the nodal values u[i] and 

into interpolations, following the consecutive-
interpolation procedure (CIP) [9]. By means of 
CIP scheme, the approximation in Eq. (1) can be 
rewritten as

(5)

In Eq. (5), the CIP shape functions is given by 

, in 

which , , and iz are the auxiliary 
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functions dependent on the element type. 
Determination of auxiliary functions used to be 
bottleneck in application of CIP into finite element 
analysis, i.e. CFEM. However, a general 
formulation recently suggested by [9] can be used 
to determine auxiliary functions for a wide range 
of standard finite element types. For the sake of 
completeness, the formulation will be briefly 
presented here. Let us denote the following terms

and (6)

where n is the number of nodes within the 
element of interest and Li is the Lagrange shape 
function associated with the ith node of the 

element. The functions and can be written 

by

(7)

(8)

In Eq. (8), xi and xj denote the x-coordinate of 

node i and node j, respectively. Functions and 

are obtained analogously by replacing x-

coordinate in Eq. (8) with y-coordinate and z-
coordinate, respectively.

Figure 1. Schematic sketch of CQ4 element

Figure 1 illustrates the application of CIP 
approach into the four-node quadrilateral (Q4) 
element, which results in the namely CQ4 element. 
Without loss of generality, the scheme is described 
particularly in an irregular finite element mesh. As 
shown in Figure 1, the supporting nodes for the 
point of interest x include all the nodes in the four 

sets Si, Sj, Sk, Sm, which contain all the adjacent 
elements that share the nodes i, j, k, m, 
respectively. Thus, the support domain for a point 
x in CQ4 element is larger than that in the standard 
Q4, since it includes not only the nodes of the 
element in interest but also the nodes of the 
neighboring elements. Similar observation is 
reported by [9] for the case of tetrahedral element, 
as shown in Figure 2.

Figure 2. Schematic representation of support domain 
of CTH4 element

2.2 Governing equations of heat transfer 
problems

The governing equation of a heat transfer 
problem in a domain Ω is given by

(9)

with the following boundary conditions

on Г1: Dirichlet boundary (10)

on Г2: surface heat flux (11)

on Г3: adiabatic boundary (12)

on Г4: convection (13)

In Eqs. (9) to (13), k = diag(kxx, kyy, kzz) is the 
tensor of thermal conductivities; T is the 
temperature field; Q is the body heat flux; ρ is the 
density; c is the specific heat capacity; h is the 
convective coefficient; and Ta is the ambient 
temperature. Multiplying both sides of Eq. (9) with 
an arbitrary test function δT, then applying Green’s 
theorem and integration by parts, the variational 
form is obtained as follows
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(14)

Using the approximation in Eq. (5) for both 
temperature T and test function δT, one gets

, (15)

(16)

where matrix B calculates the derivatives of shape 
functions R. The discrete form is obtained by 
substitution of Eqs. (16-17) into Eq. (15)

(17)
in which M is the matrix related to the specific 
heat capacitance, K is the matrix related to 
conductivity and convection terms, while F is the 
vector accounts for heat source and thermal 
interaction with external environment.




 dRRM cT (18)

(19)

(20)

3 PROPER ORTHOGONAL DECOMPOSITION
(POD).

The Proper Orthogonal Decomposition (POD) 
was initially developed to statistically analyze 
experimental data. Firstly, a series of snapshots are 
generated. Each snapshot is actually a vector 
containing data of system response at a specified 
time period. An orthogonal basis is then obtained 
from the snapshots. The orthogonal basis is 
constructed such that it reduces the size of the 
problem to be solved, but the required accuracy is 
still kept. Due to the reduction of problem size, 
computational cost can be greatly saved. Finally, 
the full system can then be reproduced from the 
reduced system without much loss of accuracy.

Denoting the column vector Ti, i = 1, 2, …, d, as 
the response at the ith time step and d is the total 
number of time steps, the set of snapshots can be 
expressed by an n x d matrix, with n being the total 
number of degrees of freedom

(21)

By using singular value decompositions, the 
matrix Tsnap can be decomposed into three parts as 
follows

(22)

where V is an orthogonal matrix of size d x d; D is 
the rectangular matrix of size n x d containing the 
singular values; while the n x n matrix 

stores the orthogonal 

eigenvectors of  . In matrix D, only 

values along the diagonal are non-negative and 
named by singular values, while the rest are all 
zero. In practice, matrix D is sorted such that the 
singular values are arranged in decreasing order, 

i.e. , with r = min(n, d). 

Denoting , the snapshot matrix is rewritten 

by

(23)

Since is orthogonal, V can be calculated by

(24)

The snapshot matrix can be approximated by a 

truncated basis where is the first k columns 
of

(25)

The truncation error of approximation is 
determined by

(26)

Due to orthogonality, is an identity 
matrix. The key point in POD procedure is to 
determine k such that truncation error less than a 
given tolerance. Similar to [12], the cumulative 
“energy” coefficient is defined by

(27)

Here, e(k) represents the ratio of “energy” in the 
total first k modes with respect to the total 
“energy”. As k increases, the truncation error 
reduces. Once the POD basis is selected, the 
following reduced problem can be obtained

FTKTM  , (28)
which can be solved much faster than Eq. (17) due 
to the smaller size. The terms in Eq. (28) are 
determined by
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, ,

, , (29)

4 NUMERICAL EXAMPLES.

In this section, three numerical examples are 
investigated to demonstrate the effectiveness of the 
proposed procedure. We denote Q4 for the 
standard four-node quadrilateral element and TH4 
for the tetrahedral element, while CQ4 and CTH4 
are the CIP-version of Q4 and TH4, respectively.

4.1 Two-dimensional heat transfer

Let us consider a square domain (see Figure 3) 
of size L x L, where L = π m. On all four 
boundaries of the square, zero temperature, T = 0 
oC, is imposed. Initially, the temperature 
distribution is given by the following equation:

(30)

Figure 3. Example 4.1: Geometry

Material properties are given as follows: the 
mass density ρ = 1 kg/m3, the specific heat c = 1 
J/(kg oC), and the heat conductivity k = 1 W/(m 
oC). Under the boundary conditions specified 
above, the temperature tends to drop down from 
the initial value to zero as given by follows [13]

(31)

Two levels of finite element mesh are used in 
numerical simulation: 20x20 CQ4 elements and 
40x40 CQ4 elements (i.e. 441 and 1681 degrees of 

freedom). Firstly, the matrix of snapshots is 

generated for a time span of t = 0.5s with time 
increment Δt = 0.02s, i.e. 25 time steps. Next, 

singular decomposition is calculated for . As 

shown in Table 1, the first singular value (the 

largest one) dominates. Thus, it is reasonable to 
select a POD basis of size k = 3 to approximate the 
response of the system. The reduced system is 
obtained using Eq. (30). Finally, solution for time 
span of t = 3s, i.e. 150 time steps, is computed by 
the reduced system.

Table 1. Example 4.1: Magnitude of the three largest singular 
values of matrix Tsnap

Mesh 1st value 2nd value 3rd value
20x20 CQ4 ~ 102 ~ 10-13 ~ 10-13

40x40 CQ4 ~ 102 ~ 10-13 ~ 10-13

The results evaluated by CQ4-POD are 
compared with both CQ4 and analytical solutions 
(see Eq. (32)). The temperature along the line 
y=π/2 evaluated at t = 1s, t = 2s and t = 3s are 
depicted in Figure 4. At t = 3s, temperature is 
almost zero at every node, indicating a steady state 
is reached. Note that snapshot matrix is only 
calculated from t = 0 to t = 0.5s. Hence, the 
reduced system obtained by POD is able to predict 
responses taking place after snapshots have been 
generated. 

Figure 4. Example 4.1: Temperature along the line

evaluated at t = 1s, t = 2s and t = 3s

Relative errors between values computed by 
CQ4 only and by CQ4-POD at t = 1s with respect 
to analytical solutions are reported in Table 2. 
Results show that the accuracy of CQ4-POD is 
almost equivalent to CQ4, despite the fact that the 
reduced system has only 3 degrees of freedom, 
much smaller than the full system. Computational 
time in CQ4-POD (including the time required for 
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generating snapshots) is greatly reduced, 
especially when finer mesh is used, see Table 3.

Table 2. Example 4.1: Relative errors between CQ4 and CQ4-
POD with analytical solutions, at t = 1s

Mesh CQ4 CQ4-POD

20x20 CQ4 3.97% 4.28%

40x40 CQ4 3.95% 3.97%

Table 3. Example 4.1: Computational time

Mesh CQ4 CQ4-POD

20x20 CQ4 ~24s ~24s

40x40 CQ4 ~90s ~55s

4.2 Three-dimensional heat transfer

Figure 5. Example 4.2: Geometry (upper) and one-quarter 
model (lower)

In this example, three-dimensional transient heat 
transfer in a square plate with a cylindrical hole at 
center is investigated. The plate is subjected to 
both convection and Dirichlet boundary 
conditions, as shown in Figure 5. Due to 
symmetry, only one-quarter of the plate is 
modeled. 

Material properties are given as follows: 
homogeneous conductivity k = 15W/m oC, density 
ρ = 7800 kg/m3 and specific heat capacitance c = 

125 J/kg oC. Initially, the entire plate is kept at 50 
oC. In the hole, the temperature is prescribed at Tw

= 200 oC. Convection takes place on the top 
surface with a coefficient of h = 200W/m2 oC, and 
the ambient temperature is set by Ta = 100 oC.

Table 4. Example 4.2: Relative errors between CTH4 and 
CTH4-POD values at various periods 

Time t = 75s t = 250s t = 750s

Relative Errors 0.13% 0.087 % 0.082 %

Figure 6. Example 4.2: The x-component of heat flux at t = 

750s, obtained by CTH4-POD (upper) and TH4 (lower)

For numerical simulation, a mesh of 3428 
consecutive-interpolation four-node tetrahedral 
elements (CTH4), i.e. 848 nodes, is used to 
discretize the domain. The snapshot matrix Tsnap is 
generated by CTH4 solutions for a time span of 
75s with 75 time steps, i.e. time increment Δt = 1s. 
Based on singular value decomposition of Tsnap, a 
set of 24 POD bases is chosen (largest singular 
value is of magnitude 103 and the 24th singular 
value is of magnitude 10-9). POD procedure is then 
used to predict temperature changing from t = 0 to 
t = 750s. Table 4 presents the relative errors 
between CTH4-POD and CTH4 solutions at t = 
125s, t = 500s and t = 750s. The errors are all 
smaller than 1%. Elapsed time of CTH4-POD is 
approximately 160s, quite smaller than that of 
CTH4, which is approximately 176s. Figure 6
depicts the x-component of heat flux, showing that 
heat flux computed by CTH4 elements is smooth, 
while the one obtained by TH4 elements (standard 
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FEM) is non-physically discontinous. Hence, 
CTH4-POD preserves the desirable property of 
CTH4, such that the nodal gradients are continous.

4.3 Heat transfer in a 3D complicated domain

Heat transfer through a 3D domain with 
complicated geometry is considered in this 
example, see Figure 6. The conductivity for this 
example is set to be k = 100 W/m oC. The inward 
heat flux is applied by q = 20000 W/m2 on the 
curved surface of the middle fin. Convection takes 
place on the left hand side surface (x = 0) with an 
ambient temperature of Ta= 300 oC and convection 
coefficient h = 100 W/m2. On the right hand side 
surface (x = 0.5), temperature is prescribed at T = 
300 oC. The density is ρ = 3000 kg/m3 and specific 
heat capacitance is c = 125 J/(kg oC). Initially, 
temperature of the whole domain is at T = 0 oC.

Figure 7. Example 4.3: Geometry and boundary condition

A mesh of 7430 four-node tetrahedral elements 
(1847 nodes) are used to discretize the problem 
domain. The snapshot matrix Tsnap is taken by 
solution of the full problem from t = 0 to t = 500 s 
with time increment Δt = 5s (i.e. 100 time steps). 
Singular decomposition of Tsnap reveals that it is 
reasonable to select 22 POD bases for the reduced 
problem. The 22th singular value is of magnitude 
10-9. The reduced-problem is then solved from t = 
0 to t = 5000s using 1000 time steps. Variation of 
temperature at point A (see Figure 7) with respect 
to time is presented in Figure 8, showing that 

solution has reached steady-state after 5000s. 
Elapsed time for the CTH4-POD solution 
(including both the time needed to generate 
snapshot matrix and the time needed to solve the 
reduced problem) is approximately 272 seconds.

Figure 8. Example 4.3: Variation of temperature at point A (see 
Figure 7) with respect to time

Table 5. Example 4.3: Relative errors between CTH4 and 
CTH4-POD values at various periods 

Time 50s 500s 1500s 3000s

Relative 

Errors

0.07% 0.03 % 0.02 % 0.02%

For comparison, the full-size problem for a time 
span from t = 0 to t = 5000s is solved by 1000 time 
steps using the same mesh of 7430 CTH4 elements. 
Elapsed time is  approximately 320 seconds. 
Relative errors between CTH4-POD solution with 
CTH4 solution at t = 50s, t = 500s, t = 1500s and t
= 3000s are reported in Table 5. All the errors are 
least than 1%, demonstrating the high accuracy of 
the POD approximation, although only 22 degrees 
of freedom are used in the reduced problem, 
instead of 1847 degrees of freedom in case of the 
full-size problem. Figure 9 depicts the y-component 
of heat flux obtained by CTH4-POD and TH4 
elements (standard FEM). As expected, the CTH4-
POD results are smooth, while that of TH4 are non-
physically discontinuous across nodes.
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Figure 9. Example 4.3: the y-component of heat flux obtained 

by TH4 (upper) and CTH4-POD (lower)

5 CONCLUSIONS.

Two novel techniques have been investigated to 
improve finite element analysis of transient heat 
transfer problems. The consecutive-interpolation 
finite element method (CFEM) helps to “upgrade” 
a wide range of standard finite elements types such 
that the approximation accuracy is higher and the 
gradient field is smooth. In term of computational 
efficiency, Proper Orthogonal Decomposition 
(POD) effectively shortens elapsed time while 
advantages of CFEM are still maintained. 
Although in the numerical examples, only CQ4 
and CTH4 elements are considered as 
representatives for two-dimensional elements and 
three-dimensional elements, respectively, the 
CFEM-POD procedure for other types of element 
is expected to be the same.
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Tóm tắt—Kỹ thuật nội suy liên tiếp đã được biết đến như một giải pháp cải tiến phương pháp phần tử hữu 
hạn truyền thống nhằm mang lại lời giải số có độ chính xác cao hơn. Thêm nữa, trường đạo hàm thu bởi 
phương pháp này, còn gọi là phương pháp Phần tử hữu hạn Nội suy liên tiếp (CFEM) là một trường trơn, 
thay vì bất liên tục khi qua biên phần tử như trong FEM. Với bài báo này, kỹ thuật nội suy liên tiếp được ứng 
dụng để phân tích bài toán truyền nhiệt quá độ. Nhằm cải thiện hiệu năng tính toán, kỹ thuật thu gọn mô hình 
bằng phân rã trực giao (POD) được giới thiệu. Ý tưởng của giải pháp này là ánh xạ bài toán lớn về bài toán 
nhỏ hơn, nhờ đó đẩy nhanh quá trình giải, trong khi vẫn đảm bảo độ chính xác mong muốn. Bằng các phép 
biến đổi toán học, một nhóm hàm cơ sở POD phục vụ cho phép ánh xạ sẽ được xác định. Thông qua việc kết 
hợp CFEM và POD, ưu điểm của CFEM được kì vọng sẽ duy trì, đồng thời tiết kiệm thời gian tính toán.

Từ khóa—truyền nhiệt quá độ ba chiều, CFEM, POD, nội suy liên tiếp.


