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Efficient numerical analysis of transient
heat transfer by Consecutive-Interpolation
and Proper Orthogonal Decomposition

Nguyen Ngoc Minh, Nguyen Thanh Nha, Truong Tich Thien®, Bui Quoc Tinh

Abstract—The consecutive-interpolation technique
has been introduced as a tool enhanced into
traditional finite element procedure to provide
higher accurate solution. Furthermore, the gradient
fields obtained by the proposed approach, namely
consecutive-interpolation finite element method
(CFEM), are smooth, instead of being discontinuous
across nodes as in FEM. In this paper, the technique
is applied to analyze transient heat transfer
problems. In order increase time efficiency, a model-
reduction technique, namely the proper orthogonal
decomposition (POD), is employed. The idea is that a
given large-size problem is projected into a small-size
one which can be solved faster but still maintain the
required accuracy. The optimal POD basis for
projection is determined by mathematical
operations. With the combination of the two novel
techniques, i.e. consecutive-interpolation and proper
orthogonal decomposition, the advantages of
numerical solution obtained by CFEM are expected
to be maintained, while computational time can be
significantly saved.

Index Term—three-dimensional transient heat
transfer, CFEM, POD, consecutive interpolation.
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1 INTRODUCTION

NE may encounter heat transfer problems in

many human activities. For example, all three
types of heat transfer can be found in cooking, i.e
conduction, convection and radiation. Design of
air-conditioning system is usually based on
knowledge of heat convection. Day by day, the
Earth is receiving heat from the Sun by thermal
radiation. In industry, heat transfer analysis is
required in many fields of engineering, such as
mechanical engineering, electrical engineering,
aeronautical engineering, etc. However, analytical
solutions are only available for some specific
problems, most of which are described with

relatively simple geometry and boundary
conditions. When it comes to deal with
complicated  geometries  and/or  boundary
conditions, which are wusually the cases of

engineering applications, numerical analysis seems
to be a more practical approach. Currently, the
standard finite element (FEM) [1] has been widely
used for heat transfer problems due to its
simplicity and reasonable accuracy. However,
several shortcomings of the method have been
pointed out, see [2]. The FEM shape function is CO
continuous, resulting in non-physical discontinuity
of gradient fields, e.g. temperature gradient in case
of heat transfer problems.

As alternatives to FEM, various other methods
have been proposed for heat transfer analysis, such
as the Boundary Element Method (BEM) [3] and
the class of meshfree method [4, 5]. On the other
hand, amendments that can be integrated into FEM
was also suggested to overcome the weakness
while keeping the familiar FEM framework. In
recent years, the consecutive-interpolation
procedure (CIP) has been introduced as an
enhancement for traditional FEM, to develop the
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so-called Consecutive-interpolation Finite Element
Method (CFEM). In CFEM, the continuity of
gradient fields is improved by taking the averaged
nodal gradients into interpolation. Interestingly,
the number of degrees of freedom are equal to that
of FEM, given the same mesh. The CFEM was
first investigated for two-dimensional linear elastic
problems [6, 7] and later was further developed for
heat transfer analyis in two-dimensional space [8]
and three-dimensional space [9]. A general
formulation which allows application of CFEM in
a wide range of finite elements was also proposed
in [9].

As a model reduction method, the Proper
Orthogonal Decomposition (POD) was introduced
to reduce the computational time by projecting the
problem of interest to another one which is much
smaller in size. Hence, computer memory and
elapsed time can be greatly saved. POD has been
applied to structural vibration analysis based on
experiments [10]. Investigation on combination of
POD with finite element analysis of heat transfer
problems is discussed by [11].

In this study, POD is combined with CFEM to
effectively save computational time in the context
of three-dimensional transient thermal analysis,
such that the applicability of CFEM is further
expanded. The proposed procedure is named by
CFEM-POD for brevity while the CFEM without
POD is mentioned by CFEM.

The paper is organized as follows. After the
introduction, a brief review on application of CIP
to three-dimensional element is presented in
Section 2. The integration of POD into analysis is
discussed in Section 3. In Section 4, the efficiency
and accuracy of the proposed formulation are
investigated by several numerical examples.
Concluding remarks are given in Section 5.

2 CONSECUTIVE-INTERPOLATION FOR
HEAT TRANSFER PROBLEMS

2.1 Brief on consecutive-interpolation

Let us consider a 3D body in the domain Q
bounded by I"'= 1, + [t valy N I = {o}. In finite
element analysis, the domain Q is discretized into
non-overlapping sub-domains €. called elements.
The points interconnected by the elements called
nodes. Each node is associated with a shape
function. Any function u(x) defined in Q can be
approximated by a linear combination as

d)=i() =Y MK =NG ()
i=1

Here n is the number of nodes, uis the vector
containting nodal values and N is the vector of

shape functions. By assigning the approximated
value at node i as ul’ =u(x,-), and the vector of
evaluated at node i as

shape functions

N =N (x,-) , the average nodal derivatives i [,ﬁ]
(similarly for u [}’] and 17,[;]) can then be determined
by [6, 7, 9]

] =N ®)
in which the vector of averaged derivative N[;] is

calculated by
N = 3o i) o

eeS;

In Eq. (3), N!ﬁc][e] denotes the derivative of NI

computed in element e. S; is the set containing all
the elements connected to node i, and w. is a
weight function defined by [9]

Ae

S )

ees;

We=

with A, being the volume of element e € S;.

One well-known shortcoming of the standard
FEM is the non-physical discontinuity of gradient
fields, e.g. temperature gradient in case of heat
transfer analysis. Such drawback can be overcome

by taking both the averaged nodal derivatives 17[;]

(and L_l[‘l;] and LT,[Zi]) and the nodal values u! and

into interpolations, following the consecutive-
interpolation procedure (CIP) [9]. By means of
CIP scheme, the approximation in Eq. (1) can be
rewritten as

n

i(x)= Y (gl + g5 + g,l) + g,a1)
i=1
= R(x)ﬁ

In Eq. (5), the CIP shape functions is given by

)

R()=Y (N0 + 6, N1 g, NUL g W) i

i=l

which ¢,, ¢, ¢,and ¢ are the auxiliary
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functions dependent on the element type.
Determination of auxiliary functions used to be
bottleneck in application of CIP into finite element
analysis, i.e. CFEM. However, a general
formulation recently suggested by [9] can be used
to determine auxiliary functions for a wide range
of standard finite element types. For the sake of
completeness, the formulation will be briefly
presented here. Let us denote the following terms

A = ZH:L,, and 4, = i:Lf (6)
i=1 i=1

where n is the number of nodes within the
element of interest and L; is the Lagrange shape
function associated with the /™ node of the
element. The functions ¢ and ¢, can be written

by
&, =Li+L?(A1_Li)_Li(A2_L%) @)

n

Py = Z (xj_xi{Lzz'Lj +%LiLj(A1_Li_Lj)j

j=l.ji
®)
In Eq. (8), x; and x; denote the x-coordinate of

node i and node j, respectively. Functions ¢I-y and

¢, are obtained analogously by replacing x-

coordinate in Eq. (8) with y-coordinate and z-
coordinate, respectively.

Finite element mesh

A Point of interest x
e Supporting nodes for the point x

Figure 1. Schematic sketch of CQ4 element

Figure 1 illustrates the application of CIP
approach into the four-node quadrilateral (Q4)
element, which results in the namely CQ4 element.
Without loss of generality, the scheme is described
particularly in an irregular finite element mesh. As
shown in Figure 1, the supporting nodes for the
point of interest x include all the nodes in the four

sets Si, Sj, S, Sm, which contain all the adjacent
elements that share the nodes i, j, k, m,
respectively. Thus, the support domain for a point
x in CQ4 element is larger than that in the standard
Q4, since it includes not only the nodes of the
element in interest but also the nodes of the
neighboring elements. Similar observation is
reported by [9] for the case of tetrahedral element,
as shown in Figure 2.

¥
b4

Figure 2. Schematic representation of support domain
of CTH4 element

2.2 Governing of heat transfer

problems

equations

The governing equation of a heat transfer
problem in a domain € is given by

V-(kVT)+Q=pcT C)

with the following boundary conditions

T =T onT: Dirichlet boundary (10)
—kVT =g onT:: surface heat flux (11)
—kVT =0 onTj;: adiabatic boundary (12)
—kVT = h(Ta - T) on I's: convection  (13)

In Egs. (9) to (13), k = diag(kxx, kyy, kzz) 1s the
tensor of thermal conductivities; T is the
temperature field; Q is the body heat flux; p is the
density; ¢ is the specific heat capacity; 4 is the
convective coefficient; and 7, is the ambient
temperature. Multiplying both sides of Eq. (9) with
an arbitrary test function 67, then applying Green’s
theorem and integration by parts, the variational
form is obtained as follows
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jaT.T'dQ+jaVTkVTdQ+jaTthr
Q Q

I
(14)

—jé'erQ—jau-qdr—jsrhTadr:o
Q ¥y I3
Using the approximation in Eq. (5) for both
temperature 7 and test function 87, one gets

T =RT ,ol =RJIT (15)

VT =BT,oVT = BST (16)
where matrix B calculates the derivatives of shape
functions R. The discrete form is obtained by
substitution of Egs. (16-17) into Eq. (15)

MT + KT =F (17)
in which M is the matrix related to the specific
heat capacitance, K is the matrix related to
conductivity and convection terms, while F is the
vector accounts for heat source and thermal
interaction with external environment.

M:IRTpc~RdQ (18)
Q
K- _[ B7kBdQ + _[ R’ ARAT
= (19)
Q I
(T T— T
F_IR QdQ+JR qu+IR AT,dT" (20)
Q L I,

3 PROPER ORTHOGONAL DECOMPOSITION
(POD).

The Proper Orthogonal Decomposition (POD)
was initially developed to statistically analyze
experimental data. Firstly, a series of snapshots are
generated. Each snapshot is actually a vector
containing data of system response at a specified
time period. An orthogonal basis is then obtained
from the snapshots. The orthogonal basis is
constructed such that it reduces the size of the
problem to be solved, but the required accuracy is
still kept. Due to the reduction of problem size,
computational cost can be greatly saved. Finally,
the full system can then be reproduced from the
reduced system without much loss of accuracy.

Denoting the column vector T;, i =1, 2, ..., d, as
the response at the i time step and d is the total
number of time steps, the set of snapshots can be
expressed by an n x d matrix, with n being the total
number of degrees of freedom
=1 T, T, ] @

Tsnap

By using singular value decompositions, the
matrix Tsap can be decomposed into three parts as
follows

T, =UDV

snap

(22)

where V is an orthogonal matrix of size d x d; D is
the rectangular matrix of size n x d containing the

singular values; while the » x »n matrix
[(p1 03 (p,,] stores  the  orthogonal
. T .

eigenvectors of Tsnastnap. In matrix D, only

values along the diagonal are non-negative and
named by singular values, while the rest are all
zero. In practice, matrix D is sorted such that the
singular values are arranged in decreasing order,
ie. A=k, 2---2A,. 20, with » = min(n, d).

Denoting @ = UD, the snapshot matrix is rewritten
by

Tp =PV (23)
Since @ is orthogonal, V can be calculated by
V= (DTTsnap (24)

The snapshot matrix can be approximated by a

truncated basis (I_> where (I_> is the first k£ columns
of ®
T, ~®OV=V=0'T

snap snap

(25)

The truncation error of approximation is
determined by
=X ey
= Tsnap -PV= Tsnap -0 Tsnap (26)

Due to orthogonality, I =0®’ s an identity
matrix. The key point in POD procedure is to
determine k such that truncation error less than a
given tolerance. Similar to [12], the cumulative
“energy” coefficient is defined by

>
e(k) = ”—‘ Jh<r
z j=17‘j

Here, e(k) represents the ratio of “energy” in the
total first & modes with respect to the total
“energy”. As k increases, the truncation error
reduces. Once the POD basis is selected, the
following reduced problem can be obtained

MT+KT=F, (28)
which can be solved much faster than Eq. (17) due
to the smaller size. The terms in Eq. (28) are
determined by

@7
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M=0"M®, K=0"K®,
F=0'F, T=0'T, (29)

4 NUMERICAL EXAMPLES.

In this section, three numerical examples are
investigated to demonstrate the effectiveness of the
proposed procedure. We denote Q4 for the
standard four-node quadrilateral element and TH4
for the tetrahedral element, while CQ4 and CTH4
are the CIP-version of Q4 and TH4, respectively.

4.1 Two-dimensional heat transfer

Let us consider a square domain (see Figure 3)
of size L x L, where L = © m. On all four
boundaries of the square, zero temperature, T = 0
°C, is imposed. Initially, the temperature
distribution is given by the following equation:

T(x,y,t =0)=10sin(x)sin(y) (30)
T=0
o o
“|E -
! : 4
T=0

Figure 3. Example 4.1: Geometry

Material properties are given as follows: the
mass density p = 1 kg/m?, the specific heat ¢ = 1
J/(kg °C), and the heat conductivity £ = 1 W/(m
°C). Under the boundary conditions specified
above, the temperature tends to drop down from
the initial value to zero as given by follows [13]

T(x,y,t)zlosin(x)sin(y)e_2t 3D

Two levels of finite element mesh are used in
numerical simulation: 20x20 CQ4 elements and
40x40 CQ4 elements (i.e. 441 and 1681 degrees of

freedom). Firstly, the matrix of snapshots T, is

generated for a time span of t = 0.5s with time
increment At = 0.02s, i.e. 25 time steps. Next,

singular decomposition is calculated for T, . As

shown in Table 1, the first singular value (the

largest one) dominates. Thus, it is reasonable to
select a POD basis of size k = 3 to approximate the
response of the system. The reduced system is
obtained using Eq. (30). Finally, solution for time
span of t = 3s, i.e. 150 time steps, is computed by
the reduced system.

Table 1. Example 4.1: Magnitude of the three largest singular
values of matrix Tnap

Mesh 1% value 2" value 3" value
20x20 CQ4 ~ 102 ~ 1013 ~ 1071
40x40 CQ4 ~10% ~ 101 ~ 1071

The results evaluated by CQ4-POD are

compared with both CQ4 and analytical solutions
(see Eq. (32)). The temperature along the line
y=n/2 evaluated at t = Is, t = 2s and t = 3s are
depicted in Figure 4. At t = 3s, temperature is
almost zero at every node, indicating a steady state
is reached. Note that snapshot matrix is only
calculated from t = 0 to t = 0.5s. Hence, the
reduced system obtained by POD is able to predict
responses taking place after snapshots have been
generated.

Analytics
+  CQ4

O CQ4-POD

Temperature

0 05 1 15 2 25 3

1L
Figure 4. Example 4.1: Temperature along the line y = E

evaluated att = 1s, t =2s and t = 3s

Relative errors between values computed by
CQ4 only and by CQ4-POD at t = 1s with respect
to analytical solutions are reported in Table 2.
Results show that the accuracy of CQ4-POD is
almost equivalent to CQ4, despite the fact that the
reduced system has only 3 degrees of freedom,
much smaller than the full system. Computational
time in CQ4-POD (including the time required for
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generating  snapshots) is greatly reduced,
especially when finer mesh is used, see Table 3.

Table 2. Example 4.1: Relative errors between CQ4 and CQ4-
POD with analytical solutions, at 7= 1s

Mesh CQ4 CQ4-POD
20x20 CQ4 3.97% 4.28%
40x40 CQ4 3.95% 3.97%
Table 3. Example 4.1: Computational time
Mesh cQ4 CQ4-POD
20x20 CQ4 ~24s ~24s
40x40 CQ4 ~90s ~55s

4.2 Three-dimensional heat transfer

Convection
3
< boundary

“Dirichlet

b o0
boundary

Lo NP

Figure 5. Example 4.2: Geometry (upper) and one-quarter
model (lower)

In this example, three-dimensional transient heat
transfer in a square plate with a cylindrical hole at
center is investigated. The plate is subjected to
both and Dirichlet boundary
conditions, as in Figure 5. Due to
symmetry, only one-quarter of the plate is
modeled.

convection
shown

Material properties are given as follows:
homogeneous conductivity £ = 15W/m °C, density
p = 7800 kg/m? and specific heat capacitance ¢ =

125 J/kg °C. Initially, the entire plate is kept at 50
°C. In the hole, the temperature is prescribed at T,
= 200 °C. Convection takes place on the top
surface with a coefficient of # = 200W/m? °C, and
the ambient temperature is set by T, = 100 °C.

Table 4. Example 4.2: Relative errors between CTH4 and
CTH4-POD values at various periods

Time t=75s t=250s t="750s
Relative Errors 0.13% 0.087 % 0.082 %
4
x10

\

Figure 6. Example 4.2: The x-component of heat flux at t =
750s, obtained by CTH4-POD (upper) and TH4 (lower)

0

For numerical simulation, a mesh of 3428
consecutive-interpolation four-node tetrahedral
elements (CTH4), i.e. 848 nodes, is used to
discretize the domain. The snapshot matrix Tnap 1S
generated by CTH4 solutions for a time span of
75s with 75 time steps, i.e. time increment At = 1s.
Based on singular value decomposition of Tsnap, @
set of 24 POD bases is chosen (largest singular
value is of magnitude 103 and the 24™ singular
value is of magnitude 10-). POD procedure is then
used to predict temperature changing from ¢ = 0 to
t = 750s. Table 4 presents the relative errors
between CTH4-POD and CTH4 solutions at t =
125s, t = 500s and t = 750s. The errors are all
smaller than 1%. Elapsed time of CTH4-POD is
approximately 160s, quite smaller than that of
CTH4, which is approximately 176s. Figure 6
depicts the x-component of heat flux, showing that
heat flux computed by CTH4 elements is smooth,
while the one obtained by TH4 elements (standard
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FEM) is non-physically discontinous. Hence,
CTH4-POD preserves the desirable property of
CTH4, such that the nodal gradients are continous.

4.3 Heat transfer in a 3D complicated domain
Heat transfer through a 3D domain with
complicated geometry is considered in this
example, see Figure 6. The conductivity for this
example is set to be £ = 100 W/m °C. The inward
heat flux is applied by ¢ = 20000 W/m? on the
curved surface of the middle fin. Convection takes
place on the left hand side surface (x = 0) with an
ambient temperature of T,= 300 °C and convection
coefficient # = 100 W/m?. On the right hand side
surface (x = 0.5), temperature is prescribed at 7 =
300 °C. The density is p = 3000 kg/m? and specific
heat capacitance is ¢ = 125 J/(kg °C). Initially,
temperature of the whole domain is at 7= 0°C.

q=20000wim*

heat
convection

|
0.5 A%
D

Figure 7. Example 4.3: Geometry and boundary condition

A mesh of 7430 four-node tetrahedral elements
(1847 nodes) are used to discretize the problem
domain. The snapshot matrix Tsnap is taken by
solution of the full problem from =0 to z =500 s
with time increment At = 5s (i.e. 100 time steps).
Singular decomposition of Tsnap reveals that it is
reasonable to select 22 POD bases for the reduced
problem. The 22" singular value is of magnitude
10”°. The reduced-problem is then solved from t =
0 to t = 5000s using 1000 time steps. Variation of
temperature at point A (see Figure 7) with respect
to time is presented in Figure 8, showing that

solution has reached steady-state after 5000s.
Elapsed time for the CTH4-POD solution
(including both the time needed to generate
snapshot matrix and the time needed to solve the
reduced problem) is approximately 272 seconds.

300

250 -

8]
S
8

150 -

Temperature [°C]

=]
g

50

0 L L H . . .
o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [s]

Figure 8. Example 4.3: Variation of temperature at point A (see
Figure 7) with respect to time

Table 5. Example 4.3: Relative errors between CTH4 and
CTH4-POD values at various periods

Time 50s 500s 1500s 3000s
Relative 0.07% 0.03 % 0.02 % 0.02%
Errors

For comparison, the full-size problem for a time
span from ¢ = 0 to # = 5000s is solved by 1000 time
steps using the same mesh of 7430 CTH4 elements.
Elapsed time is  approximately 320 seconds.
Relative errors between CTH4-POD solution with
CTH4 solution at ¢ = 50s, ¢t = 500s, ¢ = 1500s and ¢
= 3000s are reported in Table 5. All the errors are
least than 1%, demonstrating the high accuracy of
the POD approximation, although only 22 degrees
of freedom are used in the reduced problem,
instead of 1847 degrees of freedom in case of the
full-size problem. Figure 9 depicts the y-component
of heat flux obtained by CTH4-POD and TH4
elements (standard FEM). As expected, the CTH4-
POD results are smooth, while that of TH4 are non-
physically discontinuous across nodes.
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4

x 10

N

-

-

TH4
2
® |
-~ 4

-5

CTH4-POD

Figure 9. Example 4.3: the y-component of heat flux obtained
by TH4 (upper) and CTH4-POD (lower)

5 CONCLUSIONS.

Two novel techniques have been investigated to
improve finite element analysis of transient heat
transfer problems. The consecutive-interpolation
finite element method (CFEM) helps to “upgrade”
a wide range of standard finite elements types such
that the approximation accuracy is higher and the
gradient field is smooth. In term of computational
efficiency, Proper Orthogonal Decomposition
(POD) effectively shortens elapsed time while
advantages of CFEM are still maintained.
Although in the numerical examples, only CQ4
and CTH4 elements are considered as
representatives for two-dimensional elements and
three-dimensional elements, respectively, the
CFEM-POD procedure for other types of element
is expected to be the same.
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Tém tit—K§ thuit ndi suy lién tiép di dwoc biét dén nhw mat giai phap cai tién phwong phap phén tir hiru
han truyén théng nhim mang lai 10i gidi s6 c6 dd chinh xdc cao hon. Thém nira, truomg dao ham thu béi
phwong phap nay, con goi la phwong phap Phén tir hitu han Ni suy lién tiép (CFEM) 13 mdt trudng tron,
thay vi bét lién tuc khi qua bién phin tir nhw trong FEM. Véi bai bao nay, ky thuit ndi suy lién tiép dwgc ing
dung dé phan tich bai todn truyén nhiét qua d9. Nham cai thién hi¢u niing tinh toin, k§ thuit thu gon mé hinh
bing phén ri trie giao (POD) dwoe gidi thidu. Y twong ciia gidi phap nay la anh xa bai toin 16n vé bai toan
nhé hon, nhé d6 diy nhanh qua trinh gii, trong khi vin dam bio dd chinh xac mong mudn. Bing cic phép
bién déi toan hoc, mjt nhém ham co s¢ POD phuc vu cho phép dnh xa sé dwoc xac dinh. Thong qua viée két
hop CFEM va POD, uu diém ciia CFEM duwoc ki vong sé duy tri, dong thoi tiét ki¢m thoi gian tinh toan.

Tir khéa—truyén nhiét qua dd ba chidu, CFEM, POD, ndi suy lién tiép.



