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ABSTRACT: Under a generalized Karush-Kuhn-Tucker condition up to e, we establish some
sufficient optimality conditions for almost e-quasisolutions of a nonconvex programming problem which
has an infinite number of constraints. Some results on e-weak duality in Mond-Weir type for the
problem are also introduced.
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duality in Mond-Weir type.

INTRODUCTION

In this paper, we establish some approximate optimality conditions for a nonconvex optimization
problem. This topic has attracted many authors for years [10], [7], [14], [9], [11], [2], [3]), [13], [14]. In
optimization, characterizing approximate solutions of a problem is essential since, numerically, only
approximate solutions can be obtained [13]. Besides concept of e-solutions which has global character,
there were concepts of approximate solutions which have local ones, such as e-guasisolutions, almost &-
quasisolutions (Definition 2.3). The global character of e-solutions is suitable for convex pptimzation
problems. The local one of e-quasisolutions or almost e-quasisolutions, meanwhile, is useful for
nonconvex optimization problems.

We deal with sufficient optimality conditions for almost e-quasisolutions of a nonconvex
optimization problem formulated as follows:

(P) Minimize f(x)

st f(x)<0,teT,

xe(C,

where f, f,: X = R,t €T, are locally Lipschitz functions on a Banach space X, T is an index

set not necessarily finite, C is a nonempty closed subset of X. Our results develope some ones from the
paper [13], where approximate sufficient optimality conditions were established under a Karush-Kuhn-
Tucker (KKT) condition and the properties of regularity and semiconvexity applied for functions
involved. To start with it, we reconsider necessary/sufficient conditions for approximate optimality
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solutions for (P). Then, by relaxing or modifying conditions on the data for (P), we establish some new
versions of approximate sufficient optimality conditions for (P). In our new results, we use property &-
semiconvexity for locally Lipschitz functions instead of property regularity or semiconvexity. Note
that, for the problem (P), there were some results on &-weak duality of the problem in Wolfe type

presented in [13]. Here we give some results of e-weak duality of (P) in Mond-Weir type.

The paper is organized as follows: The next section is devoted to preliminaries. Definitions of
semiconvex functions and e-semiconvex functions are recalled in this part. We also recall some
definitions of local approximate solutions such as e-quasisolutions, almost e-quasisolutions. Our main
results are in the last section. Several versions of optimality theorems for e-quasisolutions of (P) are

established. Some results on e-duality of (P) in Mond-Weir type are given in this section,

PRELIMINARIES

Throughout this paper, X is a Banach space, T is a compact topological space, f: X = R isa
locally Lipschitz function, f,: X — R, r €T, are locally Lipschitz with respect to x uniformly in 1,
i.e., that for each x € X, there exists a neighborhood U of x and a constant K > 0 such that
| (2)- f(z)|<K||z—2'||, Vz,z' €U,V e T.The following concepts can be found in the Clarke's
book [1]. Let g: X — R be alocally Lipschitz function. The directional derivative of gat z€ X in

direction d € X , denoted by g'(z;d), is defined by

g(z+1d)—-g(2)
!

g'(z;d) =lim

if the limit exists. The Clarke generalized directional derivative of g at z€ X in direction

d e X, denoted by g°(z;d), and the Clarke subdifferential of gat z € X, denoted by 0°g(z) , are

L Y 35 18} IR dprelciiiidal ul s dal £ £ A Ucliuicud

defined by

g°(z;d)=1lim g(x+1d) - g(x) and §°g(z) = {ve X'| v(d)<g‘(z;d),Vd e X],
X=h2 [

130

respectively.
A locally Lipschitz function g is said to be quasidifferentiable (or regular in the sense of Clarke)

at ze€ X if g'(z;d)existsand g°(z;d)=g'(z;d)forall de X .

Let D be a nonempty closed subset of X. Let X be the dual space of X. The normal cone to
z € D is defined by:
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N(D,z)={ue X |u(v)<0,YveT,(2)}

_Ty(2)={veX|d)(zv)=0| d

whe denotes the tangent cone to D at z, and ~ ” is the distance

function to D. When D is convex, N(D, z) coincides with the normal cone in the sense of convex

analysis:

N(D.z)={ue X" |u(x~z)<0,Vxe D}

g: X —->R

Definition 2.1 [8] Let C be a subset of X. A function is'said to be semiconvex at

z2€C jfthe following statements are satisfied:
(i) g is locally Lipschitz at z,
(ii) g is regular at z, and

(iii) deX,z+deC gi(z;d)20 = g(z+d)2g(2).

The function g is said to be semiconvex on C if g is semiconvex at every Z € C,

Lemma 2.1 [8, Theorem 8] Let C be a convex subset of X. If g:X >R is a semiconvex

function on C then
zeC,de X,z+deC, g(z+d)<g(z) = g'(z;d)<0.
The following definition is extended from Definition 2.1.

Definition 2.2 [13] Let € =0 A function 8 2 X >R

hypothesis (i) and (ii) of Definition 2.1 hold and

deX,z+deC,g'(z;d)+Ve ||d||20=>g(x)+e || d||2 g(2). e

is said to be e-semiconvex at £ € C if the

The function g is said to be e-semiconvex on C if g is e-semiconvex at every Z € C,

We use the following linear space:

R :={(4),er | 4 =0 for allz € T but only finitely many 4, = 0} win A=(h)E R

25 T ={teT|4 =0}

the supporting set coressponding to . Obviously, it is a finite subset of T.

. ().
The nonnegative cone of R is defined by,

R" ={(4)eR" | 4 20,V1eT}
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. : . (1) .
It is easy to see that this cone is convex. The space R™’ can be equiped a norm formulated as

follows

120=2 14 1= 2 141,

teT tel(A)

with 2€ R and {z, }:e'r C Z , Z being a real linear space,

> Az, if T(A)#@,

Zi{z{ =< rel(4)

<t 0 if T(A)=2.

For f,,t €T, and for {Y;} a family of nonempty subsets of X

rel’

D Af if T(H)#Q,

Z ;"Iﬂ =« teT (1)
= 0 it 7(1)=2,
and

DAY if T(A)=@,
ZA"YJ = J1eT(A)
s 0 if T(1)=4.
For the problem (P), we denote by A the feasible set of (P), Let & 2 0. The e-feasible set of (P) is
A :={xeC|;ﬁ(x)sJE,v:e T}.
Definition 2.3 Let £ 2'0, A point z, € X s said to be
(i) An almost e-solution of (P) if z, € A, and f(z,) < f(x)+¢& forall x € 4;

(ii) An almost e-quasisolution of (P) if z, € A, and f(2,) € f(x)+&||x=z,|| for all x € 4;

(iii) An almost regular g-solution of (P) if z, € AE_ is an almost e-solution and is an almost -

quasisolution of (P).

When z, € A, we obrain concepts e-solution, e-quasisolution, and regular e-solution of (P),

respectively.

RESULTS AND DISCUSSION

Approximate optimality conditions
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To establish sufficient conditions for almost & -quasisolution of (P), we recall some results

presented in [13]. Let us denote by (#) the fact that at least one of the following conditions is satisfied:
(al) X is separable;

(a2) X is metrizable and 0" 1, (x) is upper semicontinuous in t € T for every x € X.

Let z, € A and let I(z,)= {f eT| f,(z,)=0 } We denote by (%) the following constraint
qualification condition:
3d €T, (z,): £ (z,:d) <0, Yt € I(z,) = {t e T | f,(2,) = 0} .Proposition 3.1 [13, Theorem 4.1] Let
€20and let z, € Abe an & -quasisolution of (P). Suppose that the condition () is satisfied. If the

constraint qualification condition (%) holds and the convex hull of {Ua“f, (z.)|teT.(z, )} is weak

"-closed then there exists 2 € R""’ such that

0€d°f(z,)+ D, 40 f(2,)+ N(C,z,)+VeB', f(z,)=0,Y1eT(A)  (.1)

tel’
where B is a closed unit ball in X.
If a pair (z,,4) satisfies the condition (3.1) then it is called a Karush-Kuhn-Tucker (KKT) pair
up to €. The following definition is an extension of it.
Definition 3.1 [13, Definition 4.1] Let £20. A pair (z,,4)e 4, xR is called a
generalized KKT condition up to ¢ if

Oe ac‘f(zs)_l_Z/qﬂas'f;(zg}+N(C’z£)+\/EB', f;(zs)ZO,V(ET(A)WhCTe B’ is a closed unit ball in

tel’

X", Itis called strict if f,(z,) >0 forall # € T(1), which is equivalentto 4 =0 if f(z,)<0.
The definition above is reasonable since it was shown in [13] that there exist z, is an almost & -

quasisolution of (P) and 4 € R\ such that (z,,A) is a generalized KKT pair up to &. So, the such

generalized KKT pair up to € can be used as a hypothesis to survey the existence of almost & -

quasisolutions of (P).
Theorem 3.1 [13, Theorem 4.3] For the problem (P), assume that C is convex and that the

functions f,, # €T, are convex. Let £ 20 and let (z,,1) € 4, x R'" be a generalized KKT pair up

to &. If fis e-semiconvex at z, with respect to C, then

f(zE)Sf(x)+\E||x—z£ || forall x € C such that
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fEE f(2.) YeeT(4). -
In particular, z, is an almost e-quasisolution for (P).

£

By modifying or changing assumptions applied to the involved functions of (P), we will give

some new versions of the theorem above.
Theorem 3.2 For the problem (P), let £= 0 and let (z,,4) € 4, x R\’ be a generalized KKT
pair up to &. Suppose that C is convex, the function f is g-semiconvex at z,, and the functions

f,, t €T, are semiconvex at z, . Then
f(z,) Sf(x)+\fg | x—z, || forall x € C such that
[(x)< fi(z.), VieT(4).
In particular, z, is an almost & -quasisolution for (P).

Proof. Let (z,,A)€ A4, % Rf') be a generalized KKT pair up to & of (P). We have

0€8 f(z,)+ Y A8 f(z,)+ N(C.z,)+eB', £,(2,)20,VieT(A).1f T(A)=D then

tel’
/1; =y forall [ € T.Weget

0€d°f(z,)+N(C,z,)+VeB', £,(2,)20,Vt e T(A).

Hence, there exist such that

ued f(z,),we N(C,z,),veB
u(x—z,)HE | x—2, || = u(x—z,)+enx—z,)=—n(x—z,)20,¥xeC,

G o i
So, [ (zsx Zs)‘i'\/;” x=2z, |2 f(z,),Vx € C'Since fis e-semiconvex at 2

2

f(x)+\/gllx—z£ = flz. ), Yz e C.

Noting that 4 < C, the inequality above holds for all x € A. Since z, € A_, z_is an almost & -

quasisolution for (P).
If T(A)#@ then f(z,)=0 forall f€T(A). Since (z,,4) € 4, % R is a generalized
KKT pair, there exist # €0°f(z,), u, €0 f,(z,),t€T, weN(C,z,), ve B’ such that

u+ Z Au, +Jev = —w. Hence,

teT
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U(x-z,)+ Z Au(x=1z) +\/;v(.r -z, )=-w(x-2,)20,VxeC. (3.2)

tel’

Since f,.1 €T, are semiconvex at z, and S (x)S f(z,) forall te T(A),
ulx~z )<z 30—~2,)= f'(zg;x—zg), VteT(4),VxeC.

Then, from (3.2), we obtain u(x—z,)+ \/; |x~z, ||0,VxeC. Using a similar argument as

above, we deduce that
S+ (| x=z, |2 f(z,),VxeC,
and z, is an almost & -quasisolution for (P). o

Remark 3.1 Since a convex function is a semiconvex function (see [6], [13]), we can see that

Theorem 3.1 ([13, Theorem 4.3] ) is a consequence of Theorem 3.2.
In the next theorem, assumptions applied for the constraint functions are relaxed. Concretely, we

use the regularity property of f,,f € T, instead of the semiconvexity. We need the Lagrange function

associated to (P):

f(x)+ Z A f(x), (x,4)eCxRD,
L(x’,'{_)z el
+e0, (x,4)gCxRD,

Note that sum of two& -semiconvex (semiconvex) functions may not be an & -semiconvex

(semiconvex) function. We propose a following theorem.
Theorem 3.3 For the problem (P), let £ 20 and let (z,,4) € A4, x Rfr) be a generalized KKT
pair up to &. Suppose that C is convex, the functions fand f,, 7 € T, are regular at 2, ML A) s

&€ -semiconvex at z, then

F(2) < f(x)+Ve || x=z,|| forall xe C such that
f(x) < f,(z,), VteT(A).In particular, Z_is an almost & -quasisolution for (P).

Proof. Let (z,,1)e 4, xR!" be a generalized KKT pair up to &. If 7'(1) = &5, the proof is similar
to the coressponding case in the proof of Theorem 3.2. If 7(1)# @ then £(z,)>0 forall teT(1).

The proof is the same as that of Theorem 3.2. There exists ued f(z,),ue€df(z,)teT,

weN(C,z,),ve B’ such that
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u(x—zg)-i-Z/l,u,(x~zg)+\/gv(x-zs) =-w(x-z,)20,Vxe(C:

tel

f.teT

Since - * and f are regular at % , we get

f'(zg,x—z£)+Z/1,f['(zE,x—z€)+\/EH x-2,|20,VxeC.

el

& Cy— — > "
It follows that L(,/?.)(Zg,x Z”)+ng|x Z"-'”'_O for all xEC. Since L(’;{) is €-

; . ;
semiconvex at ~ ¢, we obtain

F@+Y 2 £ e 1 x—2, |2 £(z)+ D A f(2),VxeC.

1el 1eT
On the other hand, under assumption that f,(x) < f,(z,) forall t € T(A) and forall xe C,

we deduce that
fx)+e | x-z, |12 f(z,),VxeC.
Since Ac C , z_is analmost & -quasisolution for (P). o

The following example shows that there exists the & -feasible set is a convex but the constraint

functions may not & -semiconvex.
3 . :
Example: Let A, = {x eC|x S\/E} where C =[-1,1] and & = W . A simple computation
gives A =[-1,}], a convex set. We can check that the function g(x)= x” is not Y -semiconvex at
z, =0. Indeed, g'(O;d)-E-«/;\d |= \/E|d |=0 for all deR. Choose d=-1. We get
z,+d e A and g0+d)+e|dl=-1+ Y, =-3] <g(0)=0.

We now give a modified version of Theorem 3.3 by assuming that the & -feasible set of (P), A,

is a convex subset of X.
Theorem 3.4 For the problem (P), let £ >0 and let (z,,4) € 4, X Rir) be a generalized KKT
pair up to . Suppose that C is convex, f,, 1 €T, areregularat z,, A_ isa convex subset of X, and

fis e-semiconvex at z, then
f(z,)< f(x)+\/; | x—z,|| forall xe A, such that

L)< f(2,), VieT(A).
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-

In particular, z, 4s an almost £ -quasisolution for (P).

Proof. Let & > 0. Suppose that(z,,4) € 4, x R is a generalized KKT pair up to € of (P), the
functions f,, f € T, are regular at z,, and the function f is e-semiconvex at z, . If 7(4) = &, we use

the argument as in the proof of Theorem 3.2. When 7'(4) # &, similarly to the proof of Theorem 3.3
we obtain u€ 0 f(z,), u, €0 f,(z, ).t €T, WE N(C,z,), ve B suchthat

Wr-2)+ Y A (x-2,) e (a-2,) =w(x-2)20VxeC. 63

ter

Since A, isaconvex setand Z, € A, , forevery X € A, , we have
z, +p(x—z.)=px+(l - )z, € A,V e (0,1).
Hence, f(z, +u(x~z,)— f,(z,)<0,V1 € T(1), V& (0,1). Thus,

f(z, +plx—-2,)— 1(z.) <0,VieT(A).
U

fi(z,;x—z,)=lim
u—0

Since U, € 0° f,(z,)and f,teT,areregularat z,
u(x—2,)< f(z;3x—2,)= [ (23x-2,) SO0,V €T (1), Vx € 4,

Combining this and (3.3), we deduce that #(x —z,)+ \/E | x—2z, |20 forall x& A4, . Since

f is e-semiconvex, the desired conclusion follows. O

3.2 Approximate duality
The results on e-weak duality of (P) in Wolfe type was presented in [13]. The last part of this
paper is devoted to e-weak duality of (P) in Mond-Weir type. Frequently, the dual problem of (P) in this

type is formulated as follows:

FANATYIY Mavimiza P ETAY
\iviLs ) IVIdALLIL LA FET
s.d. 0ea"f(y)+zA,é*‘;j(y)+N(C,y)+JEB',

el

Af(»)z0,teT,
(y,A)e Cx R
Let us denote by F the feasible set of (MD).
Theorem 3.5 For the problem (P), suppose that C is convex, f is e-semiconvex on C, and

j: .t €T, are semiconvex on C. Then e-weak duality between (P) and (MD) holds, i.e.,
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f) Vel x=pl2 f(»),Vxe AV(,A) e F. (3.4)

Proof. Let x and (y,A) be the feasible points of (P) and (MD), respectively. Since

0€0° f(1)+ 2 A0 [,(1)+N(C,y)+VeB’, there exist ued f(y)u, €8 f,(y)tel,ve B and

1]

we N(C, ) such that

u(x =)+ 3 Au(x- y) +ev(x - y) = “W(x=))20,VxeC, (3.5)

tel’

As xe 4, we have S(x)S0 for all teT. Since Af(N=0 for all teT
LX) f,(y) for all

, it derives
t€T(A). Using a property of semiconvex function, we deduce that

U (x=p) < f;(¥;x=y) <0 forall t € T(A). So, this and (3.5) imply that-
u(x~y)+e || x=y|20.

The conlusion follows since f is g-semiconvex on C. o

Theorem 3.6 For the problem (P), suppose that C is convex, [ fist €T, are regular on C, and

Joreach A € Ri”, L(:,A) is e-semiconvex on C. Then e-weak duality between (P) and (MD) holds.

Proof. Let x and (), 4) be the feasible points of (P) and (MD), respectively. Using a similar

argument of the proof of the theorem above, there exist u € 8° f(y), u €0 f(y).t €T such that

u(x=y)+ Y Au(x-y)+Je | x-y|20,VxeC.

Since f, f,,t € T, are regular on C, it follows that
L(A)y:x-y)+Ve || x-y|20,VxeC.

Since L(+,4) is e-semiconvex on C then L(x, A) ++e |x=yl|= Ly, A), ie.,

SO+ 2 AL+ x-p 20+ 4.

tel’ tel’
The desire result follows by f,(x)<0 and 4, £()20 forall e T . o

Remark. /n the two theorems above, asx € A, the inequality (3.4) holds if we assume that

S )LL) forall t e T(A).

The following corollary is a consequence of the previous theorems.

Corollary 3.1 Assume that at least one of the following statements are satisfied:
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a) fis e-semiconvex on C and f: ,1 €T, are semiconvex on C;

b f.f .t €T, areregular on C andfor every A € R L(-, &) is e-semiconvex on C;
?:hen, for every feasible point (z,A4) of (MD),

(i) if z € A, then z is an almost e-quasisolution of (P);

(ii) if z € A then z is an g-quasisolution of (P).

PIEU KIEN TOI UU CHO HAU TU'A £ -NGHIEM CUA BAI TOAN TOI UU KHONG
LOI CO VO HAN RANG BUQC

Tran Vin Thach”, Ta Quang Son®
(1) Truomg Pai hoc Thi Dau Mot
(2) Trudng Pai hoc Nha Trang

TOM TAT: Dua trén diéu kién Karush-Kuhn-Tucker suy rgng chinh xdc dén &, chiing t6i thiét
ldp mot $6 diéu kién dui 16i wu cho cdc hau twa e-nghiém cua bai todn qui hoach khong 16i ¢6 vé han

rang buge. Mot $6 két qua vé e-doi ngau yéu dang Mond-Weir cho bai toan ciing duwgc gidi thiéu.
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