ĐẶC ĐIỂM THẠCH HỌC VÀ TUỐI ĐỒNG VỊ U–Pb ZIRCON CÁC THÀNH TẠO GRANITOID VÙNG NAM BẾN GIẰNG, TỈNH QUẢNG NAM

Đinh Quang Sang

Trường Đại học Khoa học Tự Nhiên, ĐHQG-HCM

(Bài nhận ngày 24 tháng 01 năm 2011, hoàn chỉnh sửa chữa ngày 25 tháng 10 năm 2011)

TÓM TÁT: Các thành tạo granitoid kiềm – vôi vùng Nam Bến Giằng (thị trấn Nam Giang) - tỉnh Quảng Nam có diện lộ khoảng 120 km² với dạng kéo dài theo phương á vĩ tuyến, đã được nghiên cứu và đề cập trong công tác đo vẽ bản đồ địa chất tỷ lệ 1:500.000 và 1:200.000. Chúng được [1] xếp vào phức hệ Bến Giằng, được [11] xếp vào phức hệ Bến Giằng - Quế Sơn có tuổi Paleozoi muộn.

Sáu (06) mẫu đá của khu vực được chọn nghiên cứu chi tiết về đặc điểm thạch học chủ yếu là diorit thạch anh và granodiorit. Chúng được tuyển chọn tách các đơn khoáng zircon để nghiên cứu về hình dạng hạt và cấu trúc bên trong cũng như thành phần đồng vị U-Pb tại phòng thí nghiệm của trường ĐH Tasmania – Australia. Tuổi các thành tạo granitoid của sáu mẫu trên có tuổi từ 306 Triệu năm (SVN48.1- gabbrodiorit hạt trung) đến 278 Triệu năm (SVN73.2 – granit hạt trung-thô dạng porphyr). Kết quả đồng vị U-Pb zircon từ 72 hạt của sáu mẫu đá nói trên dao động trong dải giá trị nhỏ 269 – 313 Triệu năm, tuổi trung bình là 294 Triệu năm (tương ứng với Permi sớm).

Từ khóa: Tuổi đồng vị, U-Pb, zircon, LA-ICP MS, granitoid, Bến Giằng

ĐẶT VẤN ĐỀ

Các thành tạo granitoid kiềm – vôi tuổi Permi – Trias phân bố khá rộng rãi trong đai tạo núi Trường Sơn (Truong Son Fold Belt), kéo dài theo phương tây bắc – đông nam. Chúng bao gồm granitoid phức hệ Điện Biên Phủ [7], phức hệ Bến Giằng và phức hệ Quế Sơn [6].

Các thành tạo xâm nhập granitoid kiểu Bến Giằng phân bố khá rộng rãi ở vùng Kon Tum và phần phía nam của Bắc Trung Bộ với các khối batholit khá lớn với diện lộ đến hàng ngàn km².

Đặc điểm địa chất

Khối Nam Bến Giằng được xếp vào phức hệ Bến Giằng [6], khối nghiên cứu có diện lộ khoảng 120 km² với dạng kéo dài theo phương á vĩ tuyến. Chúng có quan hệ không chỉnh hợp bởi hệ tầng Sông Bung ở phía bắc và bị các đứt gãy phương đông bắc – tây nam xuyên cắt làm dịch chuyển.

Phạm Đức Lương và Trần Anh Tuấn [3] thì granitoid Bến Giằng xếp vào tổ hợp magma granit cung núi lửa (Volcanic Arc Granite) có tuổi Carbon muộn – Permi (C₂-P). Granitoid của tổ hợp magma này là sản phẩm của quá trình phân dị magma, nên chúng có nhiều pha gồm 3 pha chính và pha đá mạch. Thành phần thạch học của chúng biến thiên từ mafic qua trung tính đến felsic, tạo thành tổ hợp phân dị liên tục.

Pha 1: Phân bố hạn chế gồm chủ yếu diorit, diorit thạch anh, ít hơn có gabbrodiorit tạo thành các khối nhỏ hoặc dưới dạng các thể tù nhỏ phân bố ở ven rìa khối hoặc trong các đá của pha muộn.

Pha 2: pha xâm nhập chính, gặp hầu hết các khối có diện lộ lớn. Các đá của pha này, thường gặp nhiều thể đá tù có kích thước thay đổi. Thành phần thạch học của pha 2 gồm granodiorit biotit hornblend, tonalit biotit hornblend. Chúng xuyên cắt hoặc chứa các thể tù các đá pha 1.

Pha 3: ít phổ biến hơn pha 2 bao gồm granit biotit hornblend, granosyenit biotit hornblend hạt vừa – nhỏ, màu hồng, đôi khi có kiến trúc dạng porphyr.

Pha đá mạch: khá phát triển, xuyên cắt các pha xâm nhập chính, thành phần bao gồm granit aplit, granit porphyr, diorit porphyr, spessartit và pegmatoid.

Về quan hệ địa chất: Granitoid Bến Giằng xuyên qua các thành tạo trầm tích, trầm tích – phun trào tuổi Paleozoi hệ tầng A Vương, hệ tầng Long Đại, hệ tầng Tân Lâm [12], và bị phủ bởi các trầm tích biển lục nguyên nguồn núi lửa thành phần felsic hệ tầng Sông Bung, các trầm tích lục địa màu đỏ chứa than hệ tầng Nông Sơn phía tây bắc của khối (Quốc lộ 14D). Ngoài ra chúng còn bị xuyên cắt bởi granitoid phức hệ Hải Vân tại vết lộ SVN73.

Đặc điểm thạch học – khoáng vật

Gabbrodiorit màu xanh đen phớt lục, có cấu tạo định hướng hoặc dạng khối, kiến trúc tàn dư gabbro, đôi khi kiến trúc porphyr vơi các ban tinh pyroxen bị amphibol hóa. Thành phần khoáng vật (%): plagioclas 53,3-62,5; pyroxen bị amphibol hóa 30-45; biotit 5; ít sphen, apatit.

Diorit và diorit thạch anh màu xám, cấu tạo khối, hạt vừa đến lớn, gần đứt gãy có cấu tạo định hướng. Thành phần khoáng vật (%): plagioclas 50-65, feldspat kali 0-10, thạch anh 20-35, biotit 5-15, hornblend 3-10, sphen, apatit, zircon, khoáng vật quặng.

Granodiorit màu xám trắng, cấu tạo định hướng, hạt không đều, kiến trúc nửa tự hình. Thành phần khoáng vật (%): plagioclas 43,0-60,7; feldspat kali 8,9-17,5; thạch anh 14,8-20,7, biotit 3,5-12,3; hornblend 4,8-13,7; ít hoặc không có pyroxen.

Granosyenit màu hồng xám, cấu tạo hạt vừa đến thô, kiến trúc nửa tự hình hoặc dạng porphyr, giàu ban tinh feldspat kali hồng, kích thước 5-12 mm. Thành phần khoáng vật (%): plagioclas 15-27, feldspat kali 40-55, thạch anh 22-33, biotit 3-6, hornblend ít hơn 2, sphen, apatit, zircon, orthit.

Granit biotit cấu tạo khối, hạt nhỏ - vừa, sắp xếp định hướng. Thành phần khoáng vật (%): plagioclas 30-35, feldspat kali 30-35, thạch anh 25-30, biotit 5-8, hornblend 3-5, sphen, apatit, zircon, hiếm muscovit, khoáng vật quặng.

Diorit porphyr màu lục nhạt, hạt vừa, kiến trúc nửa tự hình, porphyr, ban tinh plagioclas, nền gồm plagioclas, biotit, thạch anh. Granit porphyr màu xám sáng, cấu tạo khối, kiên trúc porphyr, ban tinh 0,1-1,5 cm, sắp xếp gần định hướng. Thành phần khoáng vật (%): ban tinh feldspat kali 10, thạch anh 5; nền plagioclas 20-30, feldspat kali 20-30, thạch anh 25-30, sphen, apatit, zircon, orthit.

Hình 1. *a & b tại vết lộ chỉ quan hệ các đá.* c: Granodiorit-pha 2, chứa các thể tù diorit thạch của pha 1 vết lộ SVN42; b: Microgabbro-pha đá mạch, xuyên cắt qua các đá pha 1 và pha 2 vết lộ SVN46; c-f: *Ảnh chụp lát mỏng dưới 2 Ni+. c:* Plagioclas bị biến đổi sotsurit ở phần nhân (lm SVN41.1); d: Pyroxen xiên bị hornblend hóa ven rìa (lm SVN48.1); Plagioclas có cấu tạo đới và bị biến đổi không đều, thạch anh hạt nhỏ tập trung thành cụm (lm SVN42); f: Plagioclas bị biến đổi không đều, thạch anh hạt nhỏ phân bố rãi rác (lm SVN42.1).

Hình 2. Ảnh phát quang cực âm CL (Cathodoluminescence) đại diện, thể hiện hình dạng và cấu trúc của các tinh thể zircon tiêu biểu từ các thành tạo granitoid khối Nam Bến Giằng. Các ký hiệu tương ứng với số hiệu kết quả phân tích từ bảng 1. Hầu hết các hạt zircon phân tích có cấu trúc phân đới tự hình, chúng phản ánh nguồn gốc

magma thực thụ. Các vòng tròn nhỏ (đường kính ~20 μ m) là vị trí phân tích LA ICP MS U-Pb zircon (Ảnh chụp sau khi đã phân tích mẫu).

Hình 3. Các biểu đồ đường cong Tera-Wasserburg biểu diễn các kết quả phân tích U-Pb trong zircon của các thành tạo granitoid khối Nam Bến Giầng (a) - SVN42, (b) - SVN42.1, (c) - SVN43.1, (d) - SVN48.1, (e) - SVN73 và (f) - SVN73.2

PHƯƠNG PHÁP

Phương pháp đồng vị U-Pb zircon dùng tổ hợp máy Laser ablation ICP-MS

Phương pháp phân tích tuổi đồng vị U-Pb trong zircon dùng tổ hợp máy LA ICP-MS (Laser Ablation Inductively-Coupled Plasma Mass-Spectrometry) đã sử dụng rộng rãi trong

Trang 20

khoảng một thập niên gần đây để xác định tuổi kết tinh zircon bằng cặp đồng vị U-Pb của đá. Có nhiều khoáng vật phụ có thể sử dụng phương pháp như zircon [10, 13], monazit [14], sphen (titanit) [5] và rutil [16]. Trong các khoáng vật kể trên thì zircon là khoáng vật thích hợp nhất để phân tích đồng vị U-Pb, vì 5 lý do sau: (1) trong cấu trúc zircon có nhiều U, còn Pb gần như không tồn tại trong ô mạng cấu trúc tại thời điểm kết tinh; (2) Zircon có nhiệt độ "đóng" cao nhất trong các khoáng vật (trên 900°C), nếu nhiệt độ không vượt quá giá trị đó thì hệ đồng vị U-Pb trong zircon không có gì thay đổi, đồng hồ đồng vị không bị tác động bởi các quá trình địa chất (như sói mòn trong trầm tích, hoặc biến chất có nhiệt độ thấp hơn 900[°]C); (3) khoáng vật phụ rất phổ biến trong đá magma (đá không chứa sinh vật để định tuổi); (4) dể dàng tách ra khỏi các khoáng vật khác; và (5) thời gian phân tích nhanh và giá thành phân tích thấp nhất với độ chính xác cao nhờ bộ mẫu chuẩn đồng bộ.

Quy trình tuyển chọn zircon

Các mẫu nghiên cứu cho bài báo này được thu thập trong 2 đợt thực địa (tháng 3-4 năm 2005 và tháng 2-3 năm 2006). Các mẫu này được lấy dọc theo Sông Cái (hạ lưu sông Dak My) hoặc đường Hồ Chí Minh (quốc lộ 14) phía Nam của thị trấn Nam Giang (Bến Giằng cũ) – Huyện Nam Giang theo hướng Bắc – Nam (~25km) và dọc sông Giang (quốc lộ 14D) theo hướng Đông bắc – Tây nam (~22km). Nhìn chung, sáu mẫu chọn xác định tuổi tuyệt đối U-Pb trên zircon của các mẫu nghiên cứu thể hiện một cách chi tiết cho toàn khối Nam Bến Giằng.

Zircon dùng trong nghiên cứu này được tuyển chọn từ sáu mẫu granitoid thu thập từ khối Nam Bến Giằng. Các hạt zircon chủ yếu có dạng tự hình, dạng lưỡng tháp hai đầu, kích thước hạt dài thay đổi từ 80 đến 500 µm (Hình 2). Hầu hết các hạt zircon phân tích có cấu trúc phân đới tự hình, chúng phản ánh nguồn gốc magma thực thụ [4].

Các mẫu nghiên cứu cho bài báo này được thực hiện tại Trung tâm nghiên cứu Khai thác Quặng mỏ đặt tại Trường ĐH Tasmania -Australia (CODES-UTAS). Mẫu đá được nghiền thô và mịn đến kích thước hạt tùy vào kích thước của đá (đối với các mẫu như khối Nam Bến Giằng loại hạt trung – thô thì chọn phần dưới ray 0,5mm) bằng máy nghiền với lỗi thép chrom (chrome-steel ring-mill). Sau đó, được tuyển lấy phần nặng đem sấy khô, loại bỏ phần từ tính. Cuối cùng zircon được lựa chọn bằng tay dưới kính hiển vi xem nổi (loại kính trọng sa), chúng được gắn vào một đĩa nhựa dùng băng keo hai mặt để giữ các hạt zircon vừa tách và cố định bằng epoxy cùng với các hạt zircon tiêu chuẩn vào vòng có đường kính 1-inch (2,54 cm), và được đánh bóng (bằng keo bột kim cương 0,25 µm) để lộ phần trung tâm của các hạt cần phân tích. Mẫu zircon sau khi đánh bóng, được phân tích đặc điểm cấu trúc phân đới bên trong bằng kỹ thuật phân tích hiển vi điện tử quét FEI Quanta 600 (SEM: Scanning Electronic Microscop) tại Trung tâm Thí nghiệm Khoa học - Trường ĐH Tasmania -Australia (CSL-UTAS). Thủ tục chuẩn bị này

giúp chọn những "vùng" thích hợp trong tinh thể zircon (những vùng không có khuyết tật, sạch) để phân tích LA ICP-MS U-Pb tiếp theo. Các phân tích LA ICP-MS U-Pb trong zircon được tiến hành tại Phòng Thí nghiệm của CODES-UTAS.

Trước khi bắt đầu phân tích U-Pb cần phải làm sạch lần cuối để loại bỏ tất cả U, Th, Pb hoặc các yếu tố có thể làm sai lệch kết quả bằng máy 'rung siêu âm' (ultrasonic gun).

Tùy theo yêu cầu sử dụng nghiên cứu hình dạng và cấu trúc các hạt zircon phân tích có thể chụp ảnh bằng phương pháp ảnh phát quang cực âm CL (Cathodo-Luminescence) dùng máy Cameca SX-100 Electron Micro-Probe (EMP), hoặc Back-scattered electron (BSE) dùng máy hiển vi điện tử quét FEI Quanta 600 tại CSL-UTAS.

Các tham số về tổ hợp máy Laser ablation ICP-MS

Tại Phòng Thí nghiệm của CODES-UTAS sử dụng tổ hợp máy ICP-MS loại Agilent HP 4500Plus kèm với máy Laser Ablation loại New Wave UP-213 nm (LA-ICPMS). Tổ hợp máy LA-ICPMS phân tích được các đồng vị ⁹⁶Zr, ¹⁴⁶Nd, ¹⁷⁸Hf, ²⁰²Hg, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, và ²³⁸U với đường kính phân tích 30 µm. Mỗi hạt phân tích với thời lượng là 60 giây: 30 giây đầu chạy mẫu nền, 30 giây tiếp theo là phân tích kết quả mẫu bằng chụp laser, kết quả đọc được của tổ hợp máy là mỗi 0,2 giây.

Để phân tích một mẫu đem thí nghiệm chưa biết (tương ứng 12 hạt zircon), cần phân

tích trước sáu hạt zircon của các mẫu chuẩn quốc tế (4 hạt của Temora và 2 hạt của mẫu 91500) [1,15], để hiệu chỉnh được kết quả chính xác mẫu thí nghiệm. Kết quả hiệu chỉnh có sự giúp đở của TS. Meffre.

Các tỷ số đồng vị nhận được gồm ²⁰⁶Pb/²⁰⁷Pb, ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/²³⁵U, ²⁰⁸Pb/²³²Th, và các nguyên tố Hf, Pb, U và Th (bảng 1). Sau cùng là xử lý số liệu của chúng bằng phần mền *Isoplot* version 3.0 [8] để tính ra các giá trị tuổi và thể hiện chúng lên biểu đồ (Hình 3).

KÉT QUẢ phân tích đồng vị u-pb trong zircon của các thành tẠo granitoid khối nam bến giằng

Các kết quả phân tích chi tiết được trình bày ở bảng 1 và sai số các tỷ số và chúng được thể hiện trên các biểu đồ đường cong Tera-Wasserburg biểu diễn các kết quả phân tích (Hình 3). Kết quả tuổi ²³⁸U - ²⁰⁶Pb thích hợp nhất được hiệu chỉnh từ đồng vị ²⁰⁷Pb sử dụng phần mền Isoplot 3.0 (Ludwig 2003) với sai số của đồng vị của chúng là 1-sigma

SVN42 (Tọa độ 107.8385 °E, 15.5787 °N) vết lộ ở lòng Dak My (Sông Cái) cách cầu Xơi ~ 12km về phía Nam

Mẫu SVN42 là đá granodiorit biotithornblend hạt trung – thô dạng porphyr với ban trạng là plagioclas (lớn đến 4,5mm), thành phần khoáng vật là plagioclas (andesin) (~50%), thạch anh (15%), orthoclas (10%), hornblend (~15%), biotit (~10%), khoáng vật thứ sinh chlorit, epidot và tập hợp sotsurit. Khoáng vật phụ zircon, sphen, apatit và quặng. Kết quả tuổi đồng vị U-Pb của mười hai hạt zircon cho mẫu phân tích SVN42 có tuổi từ 228 - 305 Tr.n, (Bảng 1), được trình bày trên hình 3a. Hình 3a cho thấy các hạt phân tích có tuổi phù hợp tập trung (cumulative probability) thành một nhóm có giá trị tuổi trung bình (weighted mean age) tại điểm 296 \pm 3 Tr.n (MSWD = 1.0, probability = 0.43, N = 12), tuổi này được cho là tuổi kết tinh của granitotid pha 2 ứng với đá granodiorit biotit-hornblend hạt trung – thô (mẫu SVN42).

SVN42.1 (Tọa độ 107.8385 °E, 15.5787 °N) cùng lộ điểm với vết lộ SVN42

Mẫu SVN42.1 là đá diorit thạch anh hạt trung không đều dạng porphyr với ban trạng là hornblend (lớn đến 2,5mm), thành phần khoáng vật là plagioclas (andesin) (~55%), hornblend (~20%), biotit (~8%), thạch anh (10%), orthoclas (~5%), khoáng vật thứ sinh chlorit, epidot và tập hợp sotsurit. Khoáng vật phụ zircon và quặng.

Kết quả tuổi đồng vị U-Pb của mười hai hạt zircon cho mẫu phân tích SVN42.1, có một hạt có tuổi cổ nhất 332 ± 7 Tr.n (hạt SVN42.1_1), mười một hạt còn lại có tuổi từ 285 – 306 Tr.n, (Bảng 1), được trình bày trên Hình 3b. Hình 3b cho thấy mười một hạt phân tích có tuổi phù hợp tập trung thành một nhóm có giá trị tuổi trung bình tại điểm 295 ± 4 Tr.n (MSWD = 1.1, probability = 0.34, N = 11, trừ một hạt có tuổi cổ hơn), tuổi 295 ± 4 Tr.n được cho là tuổi kết tinh của granitotid mẫu SVN42.1.

SVN43.1 (Tọa độ 107.8281 °E, 15.6397 °N) Nam cầu Xơi ~1,5km Mẫu SVN43.1 là đá diorit thạch anh hạt trung, thành phần khoáng vật là plagioclas (andesin) (~60%), hornblend (~20%), biotit (~5%), thạch anh (10%), orthoclas (~5%), khoáng vật thứ sinh chlorit, epidot và tập hợp sotsurit. Khoáng vật phụ zircon, sphen và quặng.

Kết quả tuổi đồng vị U-Pb của mười hai hạt zircon cho mẫu phân tích SVN43.1 có tuổi từ 286 – 309 Tr.n, (Bảng 1), được trình bày trên Hình 3c. Hình 3c cho thấy các hạt phân tích có tuổi phù hợp tập trung thành một nhóm có giá trị tuổi trung bình tại điểm 297 \pm 5 Tr.n (MSWD = 1.9, probability = 0.05, N = 10), có hai hạt có tuổi cổ hơn (hạt SVN43.1_4 là 307 \pm 5 Tr.n và hạt SVN43.1_8 là 309 \pm 4 Tr.n), tuổi này được cho là tuổi kết tinh của granitotid pha 1 của đá diorit thạch anh hạt trung.

SVN48.1 (Tọa độ 107.8194 °E, 15.6500 °N) phía Nam Cầu Xơi ~200m.

Mẫu SVN48.1 là đá gabbrodiorit hạt trung không đều dạng porphyr với ban trạng hornblend nâu (lớn đến 4mm), thành phần khoáng vật gồm plagioclas (andesin) (chiếm ~38% hàm lượng), pyroxen xiên đơn bị amphibol hóa (chiếm ~15%), hornblend nâu (chiếm ~45%), khoáng vật thứ sinh chlorit, epidot và tập hợp sotsurit. Khoáng vật phụ sphen (~2%), zircon, apatit và quặng.

Kết quả tuổi đồng vị U-Pb của mười hai hạt zircon cho mẫu phân tích SVN48.1 có tuổi từ 313 - 294 Tr.n (Bảng 1), và được trình bày trên Hình 3d. Hình 3d cho thấy các hạt phân tích có tuổi phù hợp tập trung thành một nhóm có giá trị tuổi trung bình tại điểm 306 ± 2 Tr.n (MSWD = 1.4, probability = 0.15, n = 12), tuổi này được cho là tuổi kết tinh của granitotid pha đầu của khối Nam Bến Giằng tương ứng đá gabbrodiorit hạt trung không đều có chứa pyroxen (mẫu SVN48.1).

Bảng 1. Kết quả phân tích đồng vị U-Pb trong từng hạt zircon của các thành tạo granitoid kiềm – vôi vùng Nam Bến Giằng, tỉnh Quảng Nam (phương pháp phân tích LA-ICP MS)

	110	DI	771		238		207 DL (20801		Tu	iối ²³⁸ U-		
Số hiệu	HI (ppm)	PD (ppm)	In (ppm)	(ppm)	²⁰⁶ Ph	+1σ	²⁰⁶ Pb	+1σ	²³² Th	+1σ		(Tr n)	+1σ	
Mẫu SVN42	(ppm)	(ppm)	(ppm)	(ppm)	10	-10	10	10	III	10		(11.11)	10	
SVN42 1	11065	42	529	816	21.70	0.42	0.0574	0.0042	0.013	7 0.000	56	289	Т	6
SVN42_2	10012	33	406	754	21.51	0.35	0.0518	0.0036	0.014	3 0.000	67	293	1	5
SVN42 3	10711	33	437	637	21.13	0.37	0.0527	0.0035	0.014	0 0.000	57	298	-	5
	10774	55	681	1095	21.54	0.32	0.0524	0.0032	0.014	1 0.000	50	292		4
SVN42_5	10341	47	464	943	20.98	0.29	0.0560	0.0036	0.015	0 0.000	58	299		4
SVN42_6	9970	46	705	845	21.31	0.40	0.0534	0.0033	0.014	0 0.000	54	295		6
SVN42_7	10620	50	588	971	21.03	0.30	0.0527	0.0031	0.014	5 0.000	55	299		4
SVN42_8	10388	57	636	1109	21.02	0.35	0.0532	0.0034	0.015	2 0.000	52	299		5
SVN42_9	10126	34	297	688	21.27	0.35	0.0531	0.0038	0.014	3 0.000	60	296		5
SVN42_10	10615	26	247	505	20.57	0.35	0.0539	0.0044	0.016	0 0.000	72	305		5
SVN42_11	10696	60	661	1228	21.84	0.30	0.0536	0.0029	0.014	2 0.000	53	288		4
SVN42_12	10959	62	686	1236	21.44	0.41	0.0504	0.0030	0.014	0.000	53	295		6
Mẫu SVN42.1	-			-		-		_						
SVN42.1_1	10946	21	225	384	18.98	0.38	0.0493	0.0047	0.016	6 0.000	73	332		7
SVN42.1_2	12549	21	438	403	22.15	0.48	0.0488	0.0069	0.015	2 0.000	72	286		7
SVN42.1_3	11524	15	321	265	21.45	0.54	0.0598	0.0058	0.014	8 0.000	67	291		8
SVN42.1_4	10482	33	363	662	21.06	0.38	0.0499	0.0035	0.015	0 0.000	59	300		5
SVN42.1_5	10148	76	1312	1493	21.95	0.43	0.0512	0.0030	0.014	5 0.000	41	287		6
SVN42.1_6	10102	61	896	1202	21.42	0.42	0.0495	0.0030	0.014	9 0.000	44	295		6
SVN42.1_7	10260	69	1121	1384	21.92	0.88	0.0583	0.0048	0.015	3 0.000	67	285	1	11
SVN42.1_8	9949	66	1267	1128	20.62	0.41	0.0520	0.0033	0.014	5 0.000	45	306		6
SVN42.1_9	9955	56	917	1050	20.75	0.53	0.0493	0.0035	0.015	9 0.000	59	305		8
SVN42.1_10	9680	37	442	770	21.71	0.48	0.0508	0.0031	0.015	9 0.000	65	291		6
SVN42.1_11	10784	61	818	1251	21.83	0.36	0.0466	0.0031	0.014	5 0.000	49	291		5
SVN42.1_12	10496	46	523	943	21.32	0.34	0.0521	0.0033	0.014	6 0.000	47	296		5
Mẫu SVN43.1				1		1			-					
SVN43.1_1	7398	53	784	987	21.02	0.45	0.0535	0.0034	0.015	5 0.000	54	299		6
SVN43.1_2	9427	29	231	591	20.49	0.36	0.0560	0.0047	0.016	2 0.000	68	306		6
SVN43.1_3	7978	65	1121	1167	21.13	0.31	0.0536	0.0028	0.014	3 0.000	42	298	_	4
SVN43.1_4	8355	78	1583	1305	20.48	0.31	0.0534	0.0029	0.014	8 0.000	44	307	_	5
SVN43.1_5	9165	82	1299	1596	21.71	0.34	0.0541	0.0027	0.014	2 0.000	42	290	_	5
SVN43.1_6	8317	37	538	679	21.22	0.31	0.0549	0.0040	0.015	3 0.000	153	296	_	4
SVN43.1_7	7895	33	449	616	20.99	0.43	0.0582	0.0039	0.014	8 0.000	63	298	_	6
SVN43.1_8	/140	8/	1742	1443	20.37	0.28	0.0516	0.0029	0.015	0 0.000	138	309	_	4
SVN43.1_9	11284	/6	554	15/3	20.70	0.27	0.0545	0.0030	0.015	3 0.000	49	303	_	4
SVN43.1_10	8198	47	825	942	21.95	0.30	0.0559	0.0035	0.014	5 0.000	47	286	+ -	4
SVN43.1_11	8821	20	277	415	21.92	0.89	0.0498	0.0081	0.017	9 0.001	29	288	+ 1	12
SVN43.1_12	8681	27	338	498	20.34	0.42	0.0661	0.0053	0.016	6 0.000	64	304	_	6
Mau SVN48.1	0225	21	072	201	20.45	0.22	0.0500	0.0017	0.015	1 0.000	57	300		-
SVN48.1_A110	8333	21	213	391	20.45	0.33	0.0508	0.0017	0.015	0.000	10/	308		5
SVN48.1_AIII	865/	56	604	624	20.88	0.26	0.0561	0.0014	0.014	9 0.000	43	300	4	4
SVN48.1_A112	8754	8	91	147	21.26	0.48	0.0576	0.0027	0.015	2 0.000	/8	294		7

Trang 24

TẠP CHÍ PHÁT TRIỂN KH&CN, TẬP 14, SỐ T4 - 2011

SVN48.1_A113	9636	50	813	863	20.21	0.22	0.0544	0.0012	0.0151	0.00041	311	3
SVN48.1_A114	6948	68	2241	833	20.53	0.21	0.0527	0.0011	0.0151	0.00035	307	3
SVN48.1_A115	8001	33	542	552	20.11	0.24	0.0518	0.0014	0.0158	0.00049	313	4
SVN48.1_A116	7033	111	2451	1780	20.78	0.18	0.0521	0.0009	0.0149	0.00036	303	3
SVN48.1_A117	8714	22	360	389	20.81	0.33	0.0527	0.0017	0.0151	0.00056	303	5
SVN48.1_A118	9192	32	717	471	20.24	0.27	0.0526	0.0015	0.0160	0.00048	311	4
SVN48.1_A119	7307	80	2330	1073	20.44	0.22	0.0533	0.0010	0.0153	0.00035	308	3
SVN48.1_A120	7294	28	487	476	20.79	0.28	0.0552	0.0016	0.0151	0.00049	302	4
SVN48.1_A121	7294	61	1330	959	20.52	0.22	0.0523	0.0012	0.0148	0.00037	307	3
Mẫu SVN73												
SVN73_1	10555	13	182	245	21.68	0.54	0.0512	0.0075	0.0142	0.00083	291	8
SVN73_2	10517	24	417	474	22.80	0.40	0.0514	0.0043	0.0134	0.00055	277	5
SVN73_3	11270	23	430	440	22.83	0.43	0.0498	0.0047	0.0142	0.00048	277	5
SVN73_4	10887	20	351	398	23.38	0.47	0.0557	0.0049	0.0134	0.00053	269	6
SVN73_5	10691	22	335	456	23.16	0.43	0.0469	0.0042	0.0133	0.00048	274	5
SVN73_6	11068	11	170	215	22.38	0.69	0.0429	0.0067	0.0147	0.00080	285	9
SVN73_7	11023	20	331	379	21.80	0.53	0.0583	0.0056	0.0138	0.00062	287	7
SVN73_8	10469	16	275	306	21.86	0.56	0.0411	0.0051	0.0135	0.00070	292	8
SVN73_9	10936	20	338	393	22.10	0.54	0.0388	0.0040	0.0128	0.00051	290	7
SVN73_10	10670	12	181	236	22.20	0.56	0.0548	0.0066	0.0141	0.00068	283	7
SVN73_11	10570	13	162	263	21.36	0.55	0.0464	0.0055	0.0139	0.00063	297	8
SVN73_12	10658	18	244	358	21.75	0.42	0.0433	0.0042	0.0147	0.00075	293	6
Mẫu SVN73.2												
SVN73.2_2	12719	79	893	1794	23.27	0.37	0.0481	0.0025	0.0141	0.00042	272	4
SVN73.2_3	11933	100	1376	2056	22.61	0.35	0.0607	0.0039	0.0144	0.00048	276	4
SVN73.2_4	12257	75	874	1663	23.07	0.33	0.0509	0.0030	0.0136	0.00041	274	4
SVN73.2_5	12313	95	1138	2018	21.98	0.32	0.0493	0.0027	0.0141	0.00040	288	4
SVN73.2_6	13233	65	655	1423	22.43	0.32	0.0544	0.0033	0.0140	0.00044	280	4
SVN73.2_7	12229	90	1243	1958	23.14	0.30	0.0496	0.0027	0.0132	0.00041	273	4
SVN73.2_8	12468	59	608	1308	22.41	0.29	0.0503	0.0033	0.0137	0.00050	282	4
SVN73.2_9	12353	60	624	1289	22.26	0.30	0.0522	0.0032	0.0141	0.00052	283	4
SVN73.2_10	12703	113	1476	2413	22.61	0.26	0.0498	0.0024	0.0136	0.00033	280	3
SVN73.2_11	12001	66	748	1457	22.88	0.28	0.0513	0.0029	0.0142	0.00038	276	3
SVN73.2_12	12390	75	977	1686	23.15	0.42	0.0507	0.0046	0.0147	0.00066	273	5

SVN73 (Tọa độ 107.7730 °E, 15.6899 °N) tại ngã ba đường Hồ Chí Minh và quốc lộ 14D (ủy ban nhân dân thị trấn Nam Giang)

Mẫu SVN73 là đá gabbro hạt trung – thô dạng porphyr với ban trạng là plagioclas (lớn đến 5mm), thành phần khoáng vật là plagioclas (andesin) (~55%), hornblend (~35%), biotit (~10%), khoáng vật thứ sinh chlorit, epidot và tập hợp sotsurit. Khoáng vật phụ sphen, zircon, apatit và quặng.

Kết quả tuổi đồng vị U-Pb của mười hai hạt zircon cho mẫu phân tích SVN73 có tuổi từ

269 - 297 Tr.n, (Bảng 1), được trình bày trên hình 3e. Hình 3e cho thấy tất cả các hạt phân tích có tuổi phù hợp tập trung thành một nhóm có giá trị tuổi trung bình tại điểm 283 ± 6 Tr.n (MSWD = 2.0, probability = 0.03, N = 12), tuổi này được cho là tuổi kết tinh của granitotid mẫu SVN73.

SVN73.2 (Tọa độ 107.7730 °E, 15.6899 °N) cùng lộ điểm với vết lộ SVN73

Mẫu SVN73.2 là đá granit hạt trung – thô dạng porphyr với ban trạng là microclin (lớn đến 4,5mm) thỉnh thoảng có kiến trúc pegmatit,

thành phần khoáng vật là plagioclas (~30%), feldspat kali (~35%), thạch anh (30%), biotit (vài vảy), khoáng vật thứ sinh chlorit, epidot và sericit. Khoáng vật phụ zircon, sphen và quặng.

Kết quả tuổi đồng vị U-Pb của mười hai hạt zircon cho mẫu phân tích SVN73.2, mười một hạt zircon có tuổi từ 272 - 288 Tr.n (Bảng 1), được trình bày trên hình 3f. Hình 3f cho thấy các hạt phân tích có tuổi phù hợp tập trung thành một nhóm có giá trị tuổi trung bình tại điểm 278 \pm 3 Tr.n (MSWD = 1.5, probability = 0.14, n = 11, một hạt không sử dụng vì hàm lượng U rất cao, nhưng tuổi thấp), tuổi này được cho là tuổi kết tinh của granitotid mẫu SVN73.2.

THẢO LUẬN

Theo tài liệu nghiên cứu trước, các thành tạo granitoid kiềm – vôi tuổi Permi – Trias phân bố khá rộng rãi trong đai tạo núi Trường Sơn, kéo dài theo phương tây bắc – đông nam. Chúng bao gồm granitoid phức hệ Điện Biên Phủ [7], phức hệ Bến Giằng và phức hệ Quế Sơn [6]. Chúng bao gồm ba nhóm đá khác nhau phân dị liên tục từ mafic (gabbrodiorit) qua trung tính (diorit thạch anh - granodiorit) đến felsic (granit biotit-hornblend), song về tuổi địa chất chỉ dựa chủ yếu vào quan hệ địa chất và tuổi đồng vị K-Ar và Ar-Ar (Bảng 2).

Thu thập tuổi đồng vị phóng xạ của khối dao dộng trong khoảng 242 - 300 triệu năm (Paleozoi muộn) dựa vào năm giá trị phân tích đơn khoáng theo biotit, amphibol (Bảng 2). Song tuổi đồng vị K-Ar hoặc Ar-Ar chỉ cho biết được tuổi của giai đoạn biến dạng cuối (nếu có). Do vậy, các giá trị tuổi đồng vị trẻ chỉ phản ánh tuổi biến dạng về sau, trong đó đáng chú ý là giai đoạn biến dạng mạnh mẽ vào Trias liên quan đến chuyển động mạnh vào giai đoạn tạo núi Indosini [9].

Bảng 2. Tuổi đồng vị thu thập của granitoid khối Bến Giằng (theo tài liệu [12])

STT	Số hiệu	Tên đá	Tuổi (tr. n)	Phương pháp, khoáng vật phân tích	Tác giả, nơi phân tích
1	J5123	Gabrodiorit	300 ± 16	K/Ar (amphibol)	Nguyễn Xuân Bao, 1979, Liên Xô
2	J17589/1	Granodiorit	271	K/Ar (biotit+amphibol)	Ngô Văn Khải, 1979, Liên Xô
3	J17589	Granodiorit	251	K/Ar (biotit+amphibol)	Ngô Văn Khải, 1979, Liên Xô
4	HD26031	Diorit	266	Ar/Ar (hornblend)	Vũ Như Hùng, 1999, Đài Loan
5	HD26032	Diorit	242 ± 4,4	Ar/Ar (hornblend)	Vũ Như Hùng, 1999, Đài Loan

Ghi chú:

Mẫu 1: Huỳnh Trung, Nguyễn Xuân Bao, 1980. Các hoạt động magma kiến tạo chủ yếu ở Miền Nam Việt Nam. BĐĐC số 47 - Hà Nội Mẫu 2: Huỳnh Trung, Nguyễn Xuân Bao, 1986. Những tài liệu mới về tuổi tuyệt đối của các thành tạo magma xâm nhập ở Miền Nam Việt Nam. Thông báo KH - Đại học Tổng hợp TP. Hồ Chí Minh 5/1986.

Mẫu 3: Huỳnh Trung, Nguyễn Xuân Bao, 1983. Những số liệu tổng quát về tuổi đồng vị của các thành tạo magma xâm nhập ở miền Nam Việt Nam. Hội nghị KHKT địa chất Việt Nam lần thứ 2, Hà Nội

Kết quả phân tích thạch học chi tiết cho thấy các thành tạo granitoid khối Nam Bến Giằng, có thành phần thạch học phân dị từ mafic đến felsic, thành phần chủ yếu là plagioclas (trên 45% hàm lượng), thạch anh và feldspat kali, khoáng vật màu gồm phổ biến là hornblend (>20%), pyroxen xiên đơn thường bị amphibol hóa (đối với đá gabbrodiorit, diorit và diorit thạch anh), biotit (5-20%). Khoáng vật phụ đặc trưng sphen và zircon. Phạm Đức Lương và Trần Anh Tuấn [3], granitoid của tổ hợp magma này là sản phẩm của quá trình phân dị magma xếp vào tổ hợp magma granit cung núi lửa.

Với kết quả phân tích sáu mẫu tuổi đồng vị U-Pb trong zircon của các thành tạo granitoid vùng Nam Bến Giằng (SVN42, SVN42.1, SVN43.1, SVN48.1, SVN73 và SVN73.2), cho thấy tuổi kết tinh của zircon dao động trong dải giá trị 269 – 313 Triệu năm. Như vậy, dải tuổi trên cho thấy thời gian thành tạo của zircon sớm nhất có tuổi 313 Tr.n, và thời gian kéo dài của khối là khoảng 45 triệu năm. Với tuổi của từng mẫu được trình bày ở Bảng 3.

STT	Số hiệu	Kinh độ đông	Vĩ độ bắc	Tên đá	Phương pháp	Tuổi (tr. n)	Sai số 1-σ
1	SVN42	107.8385	15.5787	Granodiorit	U-Pb zircon	296	3
2	SVN42.1	107.8385	15.5787	Diorit thach anh	U-Pb zircon	295	4
3	SVN43.1	107.8281	15.6397	Diorit thạch anh	U-Pb zircon	297	5
4	SVN48.1	107.8194	15.6500	Gabbrodiorit	U-Pb zircon	306	2
5	SVN73	107.7730	15.6899	Gabbrodiorit	U-Pb zircon	283	6
6	SVN73.2	107.7730	15.6899	Granit biotit	U-Pb zircon	278	3

Bảng 3. Kết quả tuổi đồng vị U-Pb zircon các thành tạo granitoid khối Nam Bến Giằng - Quảng Nam.

Các giá trị tuổi đồng vị U-Pb trong zircon này được xác định cho khối Nam Bến Giằng là 294 ± 3 Triệu năm (tương ứng với Permi sớm), trình bày trên khá phù hợp với các đặc điểm về cấu trúc – địa chất và thành phần vật chất của granitoid phức hệ Bến Giằng [6].

PETROGRAPHIC CHARACTERISTICS AND ZIRCON U-PB GEOCHRONOLOGY OF GRANITOID ROCKS IN THE SOUTHERN BÉN GIÀNG, QUẢNG NAM PROVINCE

Dinh Quang Sang

University of Science, VNU-HCM

ABSTRACT: The early Palaeozoic calc-alkaline granitoid association in south Nam Giang town is forming large area reaching hundreds of km², along the east – west ductile deformation zones, which is studied in detail in diffirent geologic maps scales by the geologists (Huynh Trung and Nguyen Xuan Bao, 1981 at 1:500,000 scale or Nguyen Van Trang et al, 1986, at 1:200,000 scale).

The six samples were studied in details, which are composed mainly quartz diorite and granodiorite. The samples were crushed and large zircons were extracted. The laser ablation microprobe-inductively coupled plasma mass spectrometer (LA-ICP MS) U-Pb zircon dating was carried out by standard methods at CODES, University of Tasmania-Australia. In-situ zircon U–Pb geochronology was conducted on six samples of age between 306 Ma and 278 Ma. A total of seventy-two zircons were analysed and the results exist a narrow spread in individual zircon ages between ca. 269 and 313 Ma, with significant form a coherent single age suite of 295 Ma (early Permian). As the six samples are all assigned to the same granitic suite, I have combined the individual isotopic data yields a weighted mean age from 72 analyses of 294 Ma, which represents the minimum age for the crystallisation of the south Ben Giang granite.

Key works: geochronology, U-Pb, zircon, LA-ICP MS, granitoid, Bến Giằng.

TÀI LIỆU THAM KHẢO

- [1]. Black, L. P., Kamo, S. L., Allen, C. M., Aleinikoff, J. N., Davis, D. W., Korsch, R. J., and Foudoulis, C., 2003, *TEMORA 1: a new zircon standard for Phanerozoic U-Pb geochronology*. Chemical Geology, v. 200, no. 1-2, p. 155-170.
- [2]. Bùi Thế Vinh và nnk, (đang thực hiện). Các kết quả nghiên cứu đề án (Lập Bản

đồ Địa chất và điều tra khoáng sản, tỷ lệ 1/50.000 Nhóm tờ A Hội – Phước Hảo, tỉnh Quảng Nam, từ 2004 - 2010. Liên đoàn Bản đồ Địa chất miền Nam. TP. Hồ Chí Minh.

- [3]. Bùi Minh Tâm và nnk, 2010. Hoạt động magma Việt Nam. Viện Khoa học Địa chất và Khoáng sản, Hà Nội.
- [4]. Corfu, F., Hanchar, J. M., Hoskin, P. W. O., and Kinny, P., 2003, *Atlas of Zircon Textures.* Reviews in Mineralogy and Geochemistry, v. 53, no. 1, p. 469-500.

- [5]. Frost, B. R., Chamberlain, K. R., and Schumacher, J. C., 2001, Sphene (titanite): phase relations and role as a geochronometer. Chemical Geology, v. 172, no. 1-2, p. 131-148.
- [6]. Huỳnh Trung, Nguyễn Xuân Bao, 1978. Sơ lược về phân chia các thành tạo magma xâm nhập miền nam Việt Nam (A sketch of the subdivision of intrusive magmatic formations in South Viet Nam). " Bản đồ địa chất", số 40, trang 39-56, Hà Nội.
- [7]. Izokh, E.P.,Dovjikov, A.E., 1981. So dồ magma tổng quát của Việt Nam. (General schema of magmatism of Viet Nam). "Bản đồ địa chất", số 50, trang 13-32.Hà Nội.
- [8]. Ludwig, K. R. 2003. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel. Special Publication 4. Berkeley Geochronology Center, Berkeley.
- [9]. Lepvrier, C., Maluski, H., Vu Van Tich, Leyreloup, A., Phan Truong Thi, and Nguyen Van Vuong, 2004, *The Early Triassic Indosinian Orogeny in Vietnam* (*Truong Son Belt and Kontum Massif*); implications for the geodynamic evolution of Indochina. Tectonophysics, v. 393, no. 1-4, p. 87-118.
- [10]. Mattinson J.M., 2005. Zircon U-Pb chemical abrasion ("CA-TIMS") method: Combined annealing and multistep partial dissolution analysis for improved precision and accuracy of

zircon ages. Chemical Geology, 220, 47-66.

- [11]. Nguyễn Văn Trang và nnk, 1986. Báo cáo các kết quả đo vẽ bản đồ địa chất tỷ lệ 1:200.000 nhóm tờ Huế- Quãng Ngãi.
 Lưu trữ tại Liên đoàn Bản đồ Địa chất Miền Nam.
- [12]. Nguyễn Xuân Bao và nnk, 2001. Báo cáo thuyết minh bản đồ Kiến tạo – Sinh khoáng Miền Nam Việt Nam, tỷ lệ 1:500.000. Lưu trữ Liên đoàn Bản đồ Địa chất Miền Nam, TP. Hồ Chí Minh.
- [13]. Parrish, R. R., and Noble, S. R., 2003. Zircon U-Th-Pb Geochronology by Isotope Dilution - Thermal Ionization Mass Spectrometry (ID-TIMS), in Hanchar, J., and Hoskin, P., eds., In Zircon, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, p. 183-203.
- [14]. Parrish R.R., 1990. U-Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27, 1431-1450.
- [15]. Wiedenbeck, M., Hanchar, J. M., Peck,
 W. H., Sylvester, P., Valley, J.,
 Whitehouse, M., Kronz, A., Morishita,
 Y., Nasdala, L., Fiebig, J., Franchi, I.,
 Girard, J. P., Greenwood, R. C., Hinton,
 R., Kita, N., Mason, P. R. D., Norman,
 M., Ogasawara, M., Piccoli, P. M.,
 Rhede, D., Satoh, H., Schulz-Dobrick,
 B., Skar, O., Spicuzza, M. J., Terada,
 K., Tindle, A., Togashi, S., Vennemann,
 T., Xie, Q., and Zheng, Y. F., 2004.

Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, v. 28, no. 1, p. 9-39. [16]. Zack T., Luvizotto G.L., Barth M. and Stockli D., 2007. U-Pb rutile dating in granulite-facies rocks by LA-ICP-MS. EOS, American Geophysical Union, V34C-05, 2425.