DIÊU CHẾ BIODIESEL TỪ MÔ CÁ TRA VỚI XÚC TÁC KOH/γ-Al_{2}O_{3} SỬ DỤNG SỨ KHUÂY TRỌN CỦA SÓNG SIÊU ÂM

Lê Thị Thanh Hương (1), Huỳnh Phượng Ngân (1), Phan Minh Tấn (2), Trần Thị Việt Hòa (3)
(1) Trường Đại học Công nghiệp Tp.Hồ Chí Minh; (2) Sở Khoa học và Công nghệ Tp.HCM;
(3) Trường Đại học Bách Khoa, DHQG-HCM
(Bài nhận ngày 10 tháng 06 năm 2009, hoàn chỉnh sửa chữa ngày 13 tháng 07 năm 2010)

TÔM TÁT: Trong nghiên cứu này phản ứng metanol phân mỏ cá tra sử dụng xúc tác để chế KOH/γ-Al_{2}O_{3} đã được thực hiện với sự hỗ trợ của thiết bị siêu âm tần số thấp (20 kHz). Mục tiêu của nghiên cứu là khảo sát các yếu tố ảnh hưởng đến hiệu suất điều chế biodiesel như tỷ lệ metanol: mỏ cá, hàm lượng xúc tác, thời gian và nhiệt độ phản ứng, bão độ dao động và năng lượng của sóng siêu âm. Ngoài ra nghiên cứu cũng khảo sát ảnh hưởng của sóng siêu âm đối với thành phần acid béo của biodiesel và tính chất của xúc tác để chế KOH/γ-Al_{2}O_{3}.

Từ khóa: Biodiesel, Phần ứng dao động este, Siêu âm, Xúc tác để chế, KOH/γ-Al_{2}O_{3}

1. GIỚI THIỆU

Phần ứng dao động este điều chế biodiesel xúc tác để chế diễn ra trong môi trường có ba pha không tan vào nhau là metanol, dầu mỏ và xúc tác do đó vấn đề phản ứng thấp, thời gian phản ứng kéo dài. Để tăng khả năng tiếp xúc giữa các pha cần phải tăng cường mức độ khuấy trộn của phản ứng. Thời gian gắn dây sóng siêu âm tần số thấp (28-40 kHz) đã được sử dụng nhiều trong nghiên cứu điều chế biodiesel với nó có khả năng tạo ra nhiều tương tự các chất lỏng ít tan vào nhau [1,2]. Tuy nhiên các nghiên cứu này chỉ tập trung khảo sát ảnh hưởng của xúc tác dòng thể và các thông số phản ứng dao động este [3,4,5]. Việc tác động thể và các thông số của hệ thống phản ứng như nhiệt độ phản ứng, bão độ và năng lượng của sóng siêu âm vẫn chưa được đề cập. Nghiên cứu này khảo sát các yếu tố ảnh hưởng đến hiệu suất điều chế biodiesel từ mỏ cá tra xúc tác để chế KOH/γ-Al_{2}O_{3} sử dụng sóng siêu âm tần số thấp (20 kHz).

2. NGUYÊN LIỆU VÀ THIẾT BỊ

Mỡ cá tra do Xí nghiệp đông lạnh thủy sản - Công ty xuất nhập khẩu Nông sản thực phẩm An Giang (Aflex) cung cấp. Các hóa chất khác gồm có Al(OH)_{3}, KOH 86 % (Trung Quốc), MeOH 90 % (công nghiệp). Các chất chuẩn và nội chuẩn sử dụng để phân tích metyleste (ME) của Sigma (Mỹ) và Fluka (Đan Mạch). Thiết bị siêu âm Ultrasonic Processor VC 750 hiệu Sonies, tần số 20 kHz và 750 W được lắp đặt như hình 1 với công suất cái đặt 100 %. Thành siêu âm bằng hợp kim titan có chiều dài 136 mm và đường kính 13 mm. Cái độ pulse được cái đặt có định là 5 giây/5 giây (on/off). Năng lượng của sóng siêu âm và nhiệt độ của phản ứng được ghi nhận trên màn hình của thiết bị và nhiệt kế khi thay đổi biến đổi sóng và thời gian phản ứng. Biodiesel được làm khô bằng lò
vi sóng gia đình SANYO Fan-Assisted 1200W.

3. PHƯƠNG PHÁP NGHIỀN CÚU

3.1. Điều chế xúc tác KOH/γ-Al₂O₃

Chất mang γ-Al₂O₃ thu được sau khi nung Al(OH)₃ ở 650 °C trong 6 giờ. Xúc tác KOH/γ-Al₂O₃ được điều chế từ KOH và γ-Al₂O₃ bằng phương pháp tản ród ở nhiệt độ thường với tỷ lệ KOH/γ-Al₂O₃ là 7 mmol/g, thời gian tản 3 giờ, sau đó sấy ở 120 °C trong 24 giờ. Trước khi sử dụng, KOH/γ-Al₂O₃ được sấy qua ray (90 μm) tiêu chuẩn ASTM E11 (Retsch) và nung ở 550 °C trong 2,5 giờ. Xúc tác KOH/γ-Al₂O₃ được đánh giá bằng các thông số sau: độ baz (phương pháp chỉ thị Hammet-acid benzoic), mức độ phản bọ của KOH trên chất mang γ-Al₂O₃ (phương pháp XRD trên thiết bị D8 Advance - Bruker, sử dụng ông phát tia X bằng Cu với bước sóng Kα = 1,54056 Å, điện áp 40 Kv, cường độ dòng điện 40 mA, nhiệt độ 25 °C góc quạt 20 ° - 75 °, bước quạt 0,03 °), cấu trúc bề mặt của xúc tác KOH/γ-Al₂O₃ (chụp bằng hiện vi điện tử quét trên thiết bị 7410F - JMS - JEOL với độ phóng đại 500 - 100.000 lần), liên kết phân tử (phương pháp IR với thiết bị Bruker EQUINOX 55). Sau phân ứng trao đổi este, xúc tác được lọc, rửa với metanol và hoạt hóa bằng cách nung ở 700 °C trong 3 giờ sau đó được kiểm tra các tính chất đặc trưng.

3.2. Điều chế biodiesel

Tiền hành phân ứng trao đổi este mới cả trao với metanol, xúc tác KOH/γ-Al₂O₃ theo quy trình ở hình 2 [6,7]. Thời gian tích pha của hỗn hợp sau phân ứng là 2 giờ đối với phương pháp khuấy trộn siêu âm và 4 giờ đối với phương pháp khuấy trộn truyền thống.

3.3. Phân tích hàm lượng FAME có trong biodiesel bằng phương pháp GC

Hàm lượng các methyl ester (FAME) được phân tích bằng phương pháp GC trên thiết bị HP 6890N, cốt mao quấn HP INNOWAX (30 m x 0,53 mm x 1 μm), khí mang he-li, tỷ lệ chia dòng 50:1, nhiệt độ đầu tiên 250 °C, nhiệt độ đầu do 250 °C, nhiệt độ lò 210 °C, chế độ nhiệt của cốt bắt đầu ở 120 °C giữ 2 phút, sau đó tăng đến 230 °C (7 °C/phút), giữ 15 phút. Hiệu suất điều chế biodiesel (H) được tính theo công thức sau:

Trang 73
\[H(\%) = \frac{m_{\text{biodiesel}} \times C}{3m \times M_{\text{FAME}}} \times 100\% \]

- C: hàm lượng các metyl este.
- \(m_{\text{biodiesel}} \): khối lượng biodiesel.
- \(m \): khối lượng mỗi cánh tra.
- M và \(M_{\text{FAME}} \): khối lượng phân tử trung bình của mỗi cánh tra và của FAME.

4. KẾT QUẢ VÀ BÀN LUẬN

4.1. Ảnh hưởng của tỷ lệ mol metanol:mô

4.2. Ảnh hưởng của hàm lượng xúc tác

Phân ứng được thực hiện với tỷ lệ mol metanol:mô là 12:1, thời gian phản ứng 15 phút, biến độ sóng siêu âm 80 %. Hàm lượng xúc tác KOH/\(\gamma\)-Al₂O₃ được khảo sát từ 5 % đến 8 %. Kết quả cho thấy khi tăng xúc tác KOH/\(\gamma\)-Al₂O₃ từ 5 - 6 %, hiệu suất biodiesel tăng từ 91,66 - 91,8 %. Khi hàm lượng xúc tác lớn hơn 7 %, mét độ xúc tác trong bình phản ứng tăng làm giảm mức độ khửy trùng do đó giảm khả năng tiếp xúc pha giữa MeOH, mô cánh và xúc tác dẫn đến độ chuyển hóa giảm. Tóm lại, hiệu suất biodiesel cao nhất (91,8 %) khi sử dụng hàm lượng xúc tác KOH/\(\gamma\)-Al₂O₃ 6 %.

4.3. Ảnh hưởng của biến độ sóng siêu âm và thời gian phản ứng

Biến độ và năng lượng của sóng siêu âm, thời gian và nhiệt độ phản ứng có ảnh hưởng lớn đến hiệu suất diệu chế biodiesel. Kết quả khảo sát ở điều kiện tỷ lệ mol metanol:mô là 12:1 và hàm lượng xúc tác KOH/\(\gamma\)-Al₂O₃ 6 % được trình bày ở bảng 1 đã cho thấy rõ điều này.

Bảng 1. Các yếu tố ảnh hưởng đến hiệu suất biodiesel được điều chế bằng phương pháp khửy trùng siêu âm

<table>
<thead>
<tr>
<th>Biến độ sóng (%)</th>
<th>Thời gian phân ứng (phút)</th>
<th>Hiệu suất biodiesel (%)</th>
<th>Năng lượng sóng (J)</th>
<th>Nhiệt độ phản ứng (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>5</td>
<td>87,0</td>
<td>15679</td>
<td>45</td>
</tr>
<tr>
<td>80</td>
<td>5</td>
<td>89,1</td>
<td>20612</td>
<td>47</td>
</tr>
<tr>
<td>90</td>
<td>5</td>
<td>91,2</td>
<td>25273</td>
<td>48</td>
</tr>
<tr>
<td>100</td>
<td>5</td>
<td>91,3</td>
<td>29966</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td>90,4</td>
<td>37632</td>
<td>47</td>
</tr>
<tr>
<td>80</td>
<td>10</td>
<td>90,5</td>
<td>49122</td>
<td>48</td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td>90,1</td>
<td>62615</td>
<td>50</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>89,6</td>
<td>71445</td>
<td>54</td>
</tr>
</tbody>
</table>

Trang 74
<table>
<thead>
<tr>
<th>70</th>
<th>15</th>
<th>90,8</th>
<th>49818</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>15</td>
<td>91,8</td>
<td>79342</td>
<td>49</td>
</tr>
<tr>
<td>90</td>
<td>15</td>
<td>89,4</td>
<td>89332</td>
<td>51</td>
</tr>
<tr>
<td>100</td>
<td>15</td>
<td>87,0</td>
<td>95265</td>
<td>56</td>
</tr>
<tr>
<td>70</td>
<td>20</td>
<td>92,3</td>
<td>79634</td>
<td>51</td>
</tr>
<tr>
<td>80</td>
<td>20</td>
<td>90,4</td>
<td>102000</td>
<td>54</td>
</tr>
<tr>
<td>90</td>
<td>20</td>
<td>86,6</td>
<td>139601</td>
<td>55</td>
</tr>
<tr>
<td>100</td>
<td>20</td>
<td>81,7</td>
<td>141981</td>
<td>60</td>
</tr>
</tbody>
</table>

Khi thay đổi biên độ spong và thời gian phân ứng thì nhiệt độ phân ứng, năng lượng và hiệu suất biodiesel thay đổi. Tuy nhiên ảnh hưởng của sự thay đổi này chỉ rõ nét nhất đối với năng lượng của spong và hiệu suất biodiesel.

Ảnh hưởng của biên độ spong siêu âm và thời gian phân ứng đối với hiệu suất điều chế biodiesel được trình bày ở hình 4. Kết quả này cho thấy hiệu suất biodiesel phụ thuộc đồng thời vào biên độ spong và thời gian phân ứng. Ở biên độ 70 %, thời gian phân ứng càng dài thì hiệu suất biodiesel càng cao. Tăng biên độ spong lớn hơn 80 %, thời gian phân ứng dài lại làm giảm nhanh hiệu suất phân ứng. Đặc biệt là với biên độ spong 100 %, thời gian phân ứng 20 phút, hiệu suất biodiesel đạt được thấp nhất là 81,7 %. Điều này có thể do ở biên độ spong cao, thời gian phân ứng dài sự vô nó bong bong xảy mạnh liên tạo ra năng lượng lớn (141981 J) làm xảy ra các phân ứng phụ như cracking và sau đó là oxy hóa các FAME thành anhydrox, xeton hoặc các hợp chất hữu cơ mạch ngắn khác. Ngoài ra biên độ spong cao, năng lượng spong lớn và tác động khuấy mạnh sẽ xảy ra hiện tượng xả phòng hòa do KOH bij bong ra làm giảm hiệu suất của phân ứng. Như vậy với thời gian phân ứng ngắn (5 phút), hiệu suất biodiesel cao khi biên độ spong cao. Hiệu suất biodiesel đạt cao nhất (92,3 %) ở điều kiện biên độ spong 70 % và thời gian phân ứng 20 phút tương ứng với nhiệt độ do được là 51 °C và năng lượng spong là 79 634 J.
4.4. Ánh hưởng của năng lượng sóng siêu âm

Ánh hưởng của năng lượng sóng siêu âm đối với hiệu suất biodiesel được trình bày ở hình 5. Đồ đăng nhanh thấy khi tăng năng lượng sóng, lực đầu hiệu suất biodiesel tăng lên đến cực đại và sau đó giảm dần. Khi năng lượng sóng càng lớn thì hiệu suất giảm càng mạnh.

Điều này có thể do xảy ra hiện tượng cracking, phân hủy hoặc oxy hóa các FAME. Hiệu suất biodiesel lớn hơn 90 % đạt được trong dải năng lượng của sóng từ 25 000 J đến 81 000 J.

Hình 4. Ánh hưởng của biên độ sóng và thời gian phản ứng đến hiệu suất biodiesel

Hình 5. Ánh hưởng của năng lượng sóng siêu âm đến hiệu suất biodiesel

4.5. So sánh với xúc tác KOH đóng thể và phương pháp khuấy trong truyền thông

Kết quả so sánh xúc tác KOH đóng thể và xúc tác KOH/γ-Al₂O₃ chỉ thể đối với cả hai phương pháp khuấy trong truyền thông và khuấy trong siêu âm được trình bày ở bảng 2.

Bảng 2. So sánh phương pháp điều chế biodiesel bằng xúc tác KOH và KOH/γ-Al₂O₃

<table>
<thead>
<tr>
<th>Thông số</th>
<th>Xúc tác KOH</th>
<th>Xúc tác KOH/γ-Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Khuấy cơ</td>
<td>Khuấy siêu âm</td>
</tr>
<tr>
<td>Tỷ lệ mol metanol/mol</td>
<td>6:1</td>
<td>12:1</td>
</tr>
<tr>
<td>Xúc tác (%)</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Thời gian phản ứng (phút)</td>
<td>45</td>
<td>20</td>
</tr>
<tr>
<td>Nhiệt độ phản ứng (°C)</td>
<td>50</td>
<td>47</td>
</tr>
<tr>
<td>Biên độ sóng (%)</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Năng lượng sóng (J)</td>
<td>73 248</td>
<td></td>
</tr>
</tbody>
</table>

Trang 76
<table>
<thead>
<tr>
<th>Thông số</th>
<th>Xức tác KOH</th>
<th>Xức tác KOH/γ-Al₂O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hiệu suất biodiesel (%)</td>
<td>92,7</td>
<td>92,6</td>
</tr>
<tr>
<td>Khuấy c卵巢</td>
<td>Khuấy siêu âm</td>
<td>Khuấy c卵巢</td>
</tr>
</tbody>
</table>

Các kết quả nhận được cho thấy khuấy tròn siêu âm có tác dụng thúc đẩy phản ứng trao đổi este nhanh hơn do độ rút ngắn được đáng kể thời gian phản ứng. Đặc biệt là với xức tác KOH/γ-Al₂O₃ dễ thể, thời gian phản ứng giảm 77%, thời gian tách pha cũng giảm 50%. Qua trình tinh chế sản phẩm nhanh và dễ dàng. Ngoài ra không có xả phong tạo ra khi thực hiện phản ứng trao đổi este ở các biên độ sóng thấp từ 70 – 80%.

4.6. Ảnh hưởng của sóng siêu âm đến tính chất của xức tác

Để đánh giá ảnh hưởng của sóng siêu âm đối với xức tác, sau phản ứng (điều kiện tỷ lệ mol metanol:mỡ 12:1, hàm lượng KOH/γ-Al₂O₃ 6%, biên độ sóng 70% và thời gian 20 phút) KOH/γ-Al₂O₃ được khảo sát lại các tính chất đặc trưng. Ảnh SEM (Hình 6) cho thấy bề mặt tính thể γ-Al₂O₃ (8a) được thay đổi rõ rệt sau khi được tẩm KOH. KOH phủ lên lớp và được tiêu kết trên bề mặt tính thể γ-Al₂O₃ (8b). Sau khi thấm gia phân ứng trao đổi este dưới tác dụng của sóng siêu âm bề mặt của xức tác KOH/γ-Al₂O₃ bị thay đổi nhiều và gần giống như hình ảnh của chất mang γ-Al₂O₃ (8c).

Hình 1. Ảnh SEM của γ-Al₂O₃, KOH/γ-Al₂O₃ và KOH/γ-Al₂O₃ sau phân ứng

Phổ IR của γ-Al₂O₃ và xức tác KOH/γ-Al₂O₃ sau phân ứng được trình bày ở Hình 7. Đè đánh nhận thấy hai phổ đó này có những pic đặc trưng tương tự nhau. Pic ròng và lớn ở bước sóng 3457,51 cm⁻¹ - 3440,93 cm⁻¹ được cho là ứng với dao động của liên kết γ-Al₂O₃. Hai pic ở bước sóng 580,04 cm⁻¹ và 778,62 cm⁻¹ là dao động của liên kết Al-O [9].

Trang 77
Phốt XRD của γ-Al$_2$O$_3$, KOH/γ-Al$_2$O$_3$ và KOH/γ-Al$_2$O$_3$ sau phân ứng được trình bày ở hình 8. Không tìm thấy KOH trong thành phần của xúc tác KOH/γ-Al$_2$O$_3$ sau phân ứng. Điều này là do KOH đã bị bong ra dưới tác dụng khuấy trộn mạnh của sóng siêu âm. Độ baz của xúc tác KOH/γ-Al$_2$O$_3$ trước và sau phân ứng là 3,37 (mmol/g) và 0,303 (mmol/g). Độ baz giảm đáng kể là do KOH đã bị bong ra dưới tác dụng khuấy trộn mạnh của sóng siêu âm.

Hình 8. Phốt XRD của γ-Al$_2$O$_3$, KOH/γ-Al$_2$O$_3$ và KOH/γ-Al$_2$O$_3$ sau phân ứng

4.7. Ảnh hưởng của sóng siêu âm đến tính chất của biodiesel

Các tính chất hóa lý quan trọng của biodiesel đều chế từ mỏ cát xúc tác dẫu KOH/γ-Al$_2$O$_3$ dưới điều kiện khuấy trộn của sóng siêu âm không khác biệt so với biodiesel được điều chế từ xúc tác KOH đồng thê bằng cả hai phương pháp khuấy trộn truyền thống và siêu âm (được điều chế ở các điều kiện có hiệu suất cao nhất). Phốt GC của biodiesel điều chế từ mỏ cát xúc tác KOH/γ-Al$_2$O$_3$ bằng phương pháp khuấy trộn siêu âm được trình bày ở hình 9.
Kết quả này cũng tương đương với phổ GC của nguyên liệu mỏ cá và biodiesel được điều chế từ mỏ cá trą xúc tác KOH bằng phương pháp khuấy trộn cơ học truyền thông trong các nghiên cứu của chúng tôi trước đây [6,7]. Như vậy, số liệu am chi có tác dụng làm tăng vận tốc phản ứng chuyển hóa mà không làm thay đổi thành phần các axit béo của biodiesel.

5. KẾT LUẬN

Sông siêu âm tấn số thấp là phương tiện hiệu quả để điều chế biodiesel do tiệt kiệm thời gian tách pha, thời gian phản ứng, dễ dàng cho quá trình tách rứa và tính chất sản phẩm. Ảnh hưởng đến hiệu suất biodiesel gồm có hai thành phần: các yếu tố của phản ứng trao đổi este (tỷ lệ mol metanol:mỡ, hàm lượng xúc tác, thời gian và nhiệt độ phản ứng) và các yếu tố của hệ thống phản ứng (biến độ và năng lượng của sóng siêu âm). Với xúc tác dò thể KOH/γ-Al₂O₃, hiệu suất biodiesel được điều chế bằng phương pháp khuấy trộn siêu âm tấn số thấp (20 kHz) đạt cao nhất là 92,3 % ở điều kiện: tỷ lệ mol metanol:mỡ là 12:1, thời gian phản ứng 20 phút và hàm lượng xúc tác 6 %. So với phương pháp khuấy trộn truyền thông, thời gian phản ứng giảm 77 %, thời gian tách pha giảm 50 %. Sông siêu âm không làm ảnh hưởng đến thành phần axit béo của biodiesel nhưng làm giảm hoạt tính của xúc tác. Tuy nhiên việc tái tạo lại xúc tác KOH/γ-Al₂O₃ bằng cách bổ sung KOH sau mỗi lần phản ứng có thể thực hiện được dễ dàng.
BIODIESEL FROM FAT OF TRA CATFISH VIA KOH/γ-Al₂O₃ CATALYST USING ULTRASONIC MIXING

Le Thị Thanh Huong (1), Huỳnh Phuoc Ngan (1), Phan Minh Tan (2), Trần Thị Viết Hoa (3)
(1) Trường ĐH Công nghiệp Tp. Hồ Chí Minh, (2) Sở Khoa học và Công nghệ Tp. HCM
(3) University of Technology, VNU-HCM

ABSTRACT: In the present study, the methanolysis of tra fat using KOH/γ-Al₂O₃ as heterogenous catalyst was performed with the help of low frequency ultrasonic processor (20 kHz). The main object of this study was to investigate the influences of parameters like methanol to fat molar ratio, catalyst concentration, time and temperature of reaction, wave amplitudes, and energy input on the yield of biodiesel. Moreover, this research also examined the influences of ultrasonic wave on the fatty acid composition and the properties of KOH/γ-Al₂O₃ catalyst.

TÀI LIỆU THAM KHẢO

[7]. L. T. T. Huong, P. M. Tan, T. T. V. Hoa, Biodiesel production from fat of tra catfish with KOH catalyst assisted by microwave, Tạp chí Hóa học, 47(2A), 440-446, (2009).