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ABSTRACT: The principle of active noise control (ANC) is to produce a secondary acoustic

noise which has the same magnitude as the unwanted primary noise but with opposite phase. The sum of

these two signals reduces acoustic noise in the noise control area. In this paper we present a new ANC

method using neural system. Moreover a new method for compensating the saturation of the power

applifier is also introduced. The performance of the proposed method is compared to that of traditional

methods. Simulation results are provided for illustration.
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1. INTRODUCTION

Acoustic noise problems become more and

Q  iwmpwanos A B ~F
vl

industrial equipment such as engines, blowers,
fans, transformers, and compressors are in use.
Traditional methods of acoustic noise control
use passive controls such as enclosures,
barriers, and silencers to attenuate the
undesired noise [1], [2]; however, they are
relatively large, costly, and ineffective at low
frequencies [1], [3]. The ANC system
efficiently attenuates low frequency noise
where passive methods are either ineffective or

tend to be very expensive or bulky.

Adaptive linear filtering techniques have
been extensively used for the ANC, and many
of today’s implementations of active noise
control use those techniques [1]-[3]. A popular
adaptive filtering algorithm is the filtered-X
Least Mean Square (LMS) algorithm, because

of its simplicity and its relatively low

computational load [1], [2], [7]. [8]. This
algorithm is a steepest descent algorithm that
uses an instantaneous estimate of the gradient
of the cost function. Detailed presentations of
ANC can be mentioned as follows: [2]
considers a frequency-domain approach using
adaptive neural network; [4] proposes a
recursive-least-squares algorithm for nonlinear
ANC system using neural networks; [5] uses a
neural network for the nonlinear active control
of sound and vibration; [6] presents a filtered-X
CMAC algorithm for active disturbance
cancellation in nonlinear dynamical systems;
[7] introduces a stable adaptive IIR filter for
active noise control systems; [8] investigates
stability and convergence characteristics of the
delayed-X LMS algorithm in ANC systems; [9]
presents an adaptive neurocontrollers for
vibration suppession of nonlinear and time
varying structures; [10] proposes an intelligent
active vibration control for a flexible beam

system., etc.
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ANC using neural system is considered in
this paper. Neural network based adaptive
control systems with online learning are
capable of updating the weights of the filtered-
X LMS algorithm. And, ANC is based on
feedback control, where the active noise
controller attempts to cancel the noise without
the benefit of an upstream reference input,
which will be dicussed in section 2 and section
3

2. TRADITIONAL ANC SYSTEMS

2.1. Feedforward ANC system

The block diagram of a feedforward ANC
system using the filtered-X LMS algorithm is

llustrated in Fig. 1, in which an adaptive filter

W(z) is used to estimate the unknown plant
P(z). The primary path P(z) consists of the
acoustic response from the micro 1 to micro 2
where the primary noise is combined with the
output of the adaptive filter. Therefore, it is
necessary to compensate for the secondary-path

transfer function G(z) from y(n) to e(n),

which includes the digital-to-analog converter,
reconstruction  filter,  power  amplifier,
loudspeaker, acoustic path from loudspeaker to
micro 2, pre-amplifier, anti-aliasing filter, and

analog-to-digital converter.
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Fig. 1. Feedforward ANC system using the FXLMS algorithm

The introduction of the secondary-path
transfer function in a system using the standard
LMS algorithm leads to instability because it is
impossible to compensate for the inherent
delay due to G(z) if the primary path P(z)
does not contain a delay of equal length. Also,
a very large FIR filter would be required to
effectively model 1/G(z). This can be solved

by placing an identical filter G(z) in the

reference signal path to the weight update of

the LMS equation.
The secondary signal y(n) is computed as
ymy=w (mxn) (1)
where

w(n) =[w,(n) w(n) - w,(m]

andx(n) =[x(n) x(n=1) -+ x(n—-L)]" are
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the coefficient and signal vectors, respectively,

of W(z) and L is the filter order.

The FXLMS algorithm updates the
coefficient vector
wn+1) = w(n) + ux'(n)e(n)  (2)

where x'(n) = g(n)*x(n), g(n) is the

impulse response of the estimated secondary-

path filter G(z), and (*) denotes the

convolution operator.

2.2. Feedback ANC system

In many applications, it is not feasible to
measure the primary noise and we have to use a

feedback ANC system (Fig. 2).
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Fig. 2. Feedback ANC system using the FXLMS algorithm

The basic idea of adaptive feedback ANC
is to estimate the primary noise and use it as a
reference signal x(n) for the ANC filter. In Fig.
2, the primary noise is expressed in the z-
domain as

D(z)=E(z2) + G(2)Y(2) 3)

where E(z) is the signal obtained from the
error sensor and Y(z) is the secondary signal
generated by the adaptive filter W(z). If
G(z) =~ G(z), we can estimate the primary

noise d(n) and use this as a synthesized

reference signal x(#) . That is
X(z)=D(z)=E(z2)+ G(2)Y(z) (4

or in the time domain

i M
x(n)=d(n)=e(n)+>.g,y(n—-m) (5
m=0
where g,,m=0,1,.., M, are the

coefficients of the M™ order FIR filter G(z)
used to estimate the transfer function of the

secondary path. The algorithm for feedback
ANC is similar to (1), (2).

3. NEURAL NETWORK
FEEDBACK ANC SYSTEM

BASED

In order to cope with the nonlinearity in the
system, we propose to replace the FIR filter
W(z) in figure 2 by a perceptron with linear

integration function
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net = i w,(n)x(n-j) = v_vr(n)g(n) (6)

=0

and tansig activation function

y(n) = f(net) = -1 (7)

1 + e—nrcr

(Fig. 3), where w(n) is the weight vector

and x(n) is the regressor

w, (1) x(n)
gl W, (:n) | st x(n:—i) (8)
w,_ (n) x(n-L)

Define the cost function as

Since

aJ(n) _

J(n) = %ez(n) = e(n);

e(ny=d(n)—y'(n)=d(n)- igmy(n -m) = :—
w

m=0

oy(n—m) _Gy(n—m) Onet _ 1
ow Onet ow 2

1,
-J(n)==e*(n) 9)
2
The network weight update is based on a
stochastic steepest descent which incrementally

reduces the instantaneous squared error in the

output of the neural network as

T
w(n+ 1) = w(n) - n{gi ((’:J (10)

where 7 > 0 is the gain parameter. Applying

the chain rule

oJ(n) _ aJ(n) de

11
ow Oe Ow e

e - oy(n—m)
= _Z &g,
m=0 . aﬂ’

[1=y*(n—m)]x(n—m)"

where the last equality follows from (6) and (7). We have

aJ(n) 1 M

511 m=0

Thus the network weights update is computed as

=——e(n)D g, lL-y*(n—m)lx(n—m)" (12)

w(n+1)=w(n)+ %ne(n)igm [1-y*(n- m)]x(n— m)"  (13)

m=0
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Fig. 3. Neural network based feedback ANC system

Remark that if we use the linear activation
function then

y(n) = f(net) =net= v_vT (n)x(n) (14)

we have the system of Fig. 2. So the difference
between the system in Fig. 2 and the proposed
system in Fig. 3 is that we use the activation
function (9) to the

take into account

nonlinearity in the system.

4. SATURATION COMPENSATION

In order to compensate for the saturation of

the power amplifier, we introduce the

saturation blocks S(v) as in Fig. 4

1 l<v
S(v)=1v, -1<v<l (15)
-1, v<-l
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Fig. 4. Neural network ANC system with saturation
compensation

5. SIMULATION RESULTS

In the following simulations, the noise
source is a sinusoidal signal of frequency

150Hz. The sampling rate is 8 KHZ

5.1. Traditional feedback ANC system

Fig. 5 and Fig. 6 show, respectively, the
simulation results of traditional ANC system
with and without saturation compensation.
Remark that without saturation compensation
the system can not function when the power
amplifier is saturated. With saturation
compensation, system still functions even when

the power amplifier is saturated.
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Fig. 5. Traditional ANC system without'saturatiox: Fig. 6. Traditional ANC system with saturation
compensation compensation
5.2. Neural network based feedback ANC compensation. Fig. 9 and Fig. 10 show the
system zoom of Fig. 7 and Fig. 8, respectively.

Fig, 7 and Flg. § show, respectively, he Remark that the ANC system with saturation

.- compensation is much more effective than the
simuiation results of neural network ANC P

. ' : ANC system without saturation compensation.
svstem with  and  without  saturation

Fig. 7. Neural network ANC system without saturation  Fig. 8. Neural network ANC system with saturation
compensation compensation
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Fig. 9. Zoom of Fig. 7. Fig. 10. Zoom of Fig. 8.

6. CONCLUSIONS network to replace the traditional FIR filter in

the forward branch. Secondly we propose a

Thiscpaper deals with ANC. systeans. The method  for  saturation  compensation.

contribution of the paper is twofold. Firstly, to Simulation results show that the proposed

cope with the nonlinearity in the system, we system is effective.

investigate the use of a feedforward neural

KIEM SOAT TIENG ON TiCH CUC DUNG MANG NORON

Huynh Vin Tuén", Dvong Hoai Nghia®

(1) Truong Pai hoc Khoa hoc Tu Nhién, Dai hoc Quéc Gia Tp.HCM
(2) Trudng Pai hoc Bach Khoa, Pai hoc Quéc Gia Tp.HCM

TOM TAT: Nguyén Iy cia kiém sodt tiéng 6n tich cuec 1a tao ra tiéng on thir cdp o cing bién do
nhung ngwoc pha voi tiéng én so cap sao cho tiéng on téng hop giam di trong méi trucng kiém sodt
tiéng on. Trong bai bai bdo nay chiing t6i gici thiéu mét phwong phdp kiém soat nhiéu méi sic dung
mang noron. Ching t6i ciing da dwa ra mot phuong phdap moi vé bé chinh bao hoa ciia bé khuéch dai
céng sudt trong hé théng kiém sodt tiéng én. Giai thudt kiém soat tiéng on diea ra duege so sanh voi cdc
giai thuat truyén thong. Céc két qua mé phong duwgc trinh bay.

Tir khoa: kiém soat tieng 6n, mang noron.
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