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ABSTRACT: By applying a nonholonomic constraints and Lagrange equation for nonholonomic
system, a method is given to model and control the 4-wheel skid-steering mobile robot which tracks a
given trajectory. First at all, a fundamental of nonholonomic system is introduced. Next, the skid
steering robot’s kinematic model and dynamic model are considered. To control the robot tracking a
trajectory, a new algorithm is given by applying feedback linearization and PD control. In addition,
simulation results show the good performance in tracking trajectories.
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1. INTRODUCTION
The skid steering robot is considered as all- working in hard environmental conditions but

terrain vehicle, and has many advantages than the mechanism is quite simple. The following

other off-road robots, for example, a high figure and table show major steering types and

maneuverability, high-power, an ability of a steering system evaluation [1].

INDEPENDENT COORDINATED FRAME SKID
EXPLICIT (Ackerman Type) ARTICULATED ART‘ICULATED

& & L

Fig. 1 Kinematics of major steering types
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Table 1. A steering system evaluation

Independent | Coordinated | Frame Skid Axle
Explicit Ackerman Articulated Articulated
Maneuverability | med/high med med high med
Mechanical med med/high low low low
complexity
Control low med/low med low med/high
complexity
Power med med/low med high low
Number of -4 1 1 0 0
Jjoints for
steering

The skid steering robot is navigated by the
angular velocity difference between left wheels
and right wheels [2]. Because of lateral
skidding, velocity constraints occurring in skid
steering robot are quite different from the ones
met in other mobile platforms wheels are not
supposed to skid. An example for this steering
type is ATRV-J robot designed by Irobot
company.

(2004)

developed the skid steering robot’s model

Recently, Kozlowski et al.
based on Dixon’s kinematic controller [3], [4],
[5]. Kozlowski extended new time
differentiable and time-varying control scheme
based on the strategy of forcing some
transformed states to track an exogenous
exponentially decaying signal produced by a

tunable oscillator [6], [7].

In this paper, a new control algorithm
based on feedback linearization and PD control
is presented. It allows us to control a reference
point fixing in the 4 wheel skid steering mobile
robot tracks a given trajectory. The first
advantage of the algorithm is kinematics and

dynamics can be studied separately. For

example, the angular velocity of each wheel
can be determined without the inertia moment
and the mass of the robot. Furthermore, this
algorithm can be applied to not only the 4
wheel skid-steering mobile robot but also all
types of the mobile robot whose equations of
motion are similar to equation‘s Lagrange.
Fields of application of the skid steering robot
can be extended. For instance, the manipulator
or GPR radar can be stuck on the robot to

inspect the geology.

2. NONHOLONOMIC SYSTEM

Major wheeled mobile robot is a typical

example of mechanical systems with
nonholonomic constraints. Although navigation
and planning of mobile robots have been
investigated extensively over the past decade,
the work on dynamic control of mobile robots
with nonholonomic constraints is much more

recent.

We consider mechanical systems that are

subject  to  nonholonomic  constraints

characterized by the following equation:

A(g)g =0 (1)

Trang 84



TAP CHi PHAT TRIEN KH&CN, TAP 13, 0 K4 - 2010

Where q is the n-dimensional generalized
coordinates

A(q) is an m x n dimensional matrix

Because the constraints are assumed to be
nonholonomic, (1) is not integrable. It will be
assumed that these constraints are independent.

In another words, A(q) has rank m.

Using the vector A of Lagrange multiplier,
the equations of motion of nonholonomically

constrained ~ systems are  governed by:

M(q)i+V(9.9)+G(q) = E(@u+A"(9)A
2)
Where: M(q) is the n x n dimensional

positive definite inertia matrix.

V(g.9) is the n dimensional velocity-
dependent force vector.

G(q) is the gravitational force vector.

u is the r dimensional vector of actuator
force/torque

E(q) is the n x r dimensional matrix
mapping the actuator space into the generalized
coordinate. -

It has been established that nonholonomic
system described by the constraint equation (1)

and the motion equation (2). [8]

3. MODEL OF A SKID STEERING
MOBILE ROBOT

3.1 Kinematic model

Fig. 2. The robot in the inertial frame

=

Fig. 3. Schematic of the skid steering robot.
The notation is shown in fig. 2, 3.

Select the inertial frame (COM ™1 Y1 21,
where COM is center of mass.

Let (X, Y, Z) to be robot’s barycentric
coordinates in the world frame,

v, 0 X
v=|v, w={0| g=|Y

0 1) 7
Note: =0
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xﬂ
Fig. 5. Wheel velocities.
We have:
X| [cos® -sin@][v,
Y| |sin@ cos@ ||v,
)

The i-th wheel rotates with an angular

wisciy D8 iistoan,
The longitudinal velocity can be obtained:

Vie = s @, 4)

In contrast to most wheeled mobile robot,

the lateral velocity of the skid steering robot

Vi
¥ is generally nonzero.

d=[d, d,]
The radius vector ' L % 1 and

T

"-":I are defined with respect
to the local frame from the instantaneous center
of rotation (IRC).

b_B
Thus: ”di " |d" (5)
v,x v.{ vr'\' v\
= - S——me——=
Or Ty _dxC dix d.\'C (6)

Coordinates of ICR in the local frames:
ICR(xErL' ’ Yim) . (_dxc’ -dyf')

Writing (6) as follows:

(7

Otherwise, from the figure 4 we have:
dy, = dz_‘, =dg, +¢
dy,=d,, =dg, ~c
d.=d, =d.—a

d2x = d3x = dC.t +b (8)

vL = vl.\' = v2x

vR = v}.r = v4_r

Hence, 9

v, | —c

Ve | _ 1 c [v‘]

Ve 0 —x . +b|| @

y 0 —x_-—a
And, LB ire (10)
Assuming that (s b
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v, =V L .
Because * 2rand this is a skid-
steering robot, the angular velocity of the first
wheel equals the angular velocity of the second

wheel.

So, let “ ; @y be respectively angular

velocities of lefts and right wheels. We can

write:

M
w, | r|vi i)

Combining (10) and (11), a control input at

kinematic level is defined as:

w,; + W,

[vx} 9
= =,
@ -, + Wy

2¢  lay

To complete the kinematic —model,

nonholonomic constraint is considered.

From (6), the velocity constraint

W, Bl 6=0

characterized by: (13)

Thus,
[-sin@ cos® x,][X ¥ 6] =0

or, A (q). 1=0(14)

The kinematic equation of the robot is
obtained: 9 =5()7 15)

Where S is the following matrix

cos@ x,.sind
S(g)=|sin@ —x,.cosf

0 1 (16)

T T
which satisfies §7(¢)A4(9)=0 (17

3.2 Dynamic model

Fig. 6. The forces acting on one wheel.

Wheel forces are depicted in Fig.6

Fol
The active force is obtained F(18)
Neglecting additional dynamic properties,
we obtain the following equation of
equilibrium:
N,.a=N,b
N,a=N,b

4
ZN:' =mg
i=l (19)

Where m denotes the robot mass and g is
the gravity acceleration. Using the symmetry

along the longitudinal midline, we obtain

N1=N4=—-b—mg
2(a+b)
a
N,=N,=——
R 2(a+b)mg

(20)

The friction acting one wheel is obtained:

Fy(0) = pie-N.sgn(@) + 1,(0) ),

Where O  denotes the linear
velocity.

N is force perpendicular to the surface.
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/uC , /’l\'

are respectively the coefficients

Coulumb and viscous friction.

In the dynamic model of this robot, the

UeN > |, 0] ‘

following relation is wvalid:

/’11' -0

Consequently, the term can be

neglected.

The following function is considered to
approximate the function

2
sgn(a) sgn(o) =— arctan(k 0)

where the constant s satisfies  the

k >1

relations: ¢ and

lim —2-.arctan(k_\, .0)=sgn(o)
kg—o T (22)

Applying to the skid steering robot, the

force friction for one wheel can be written as:

Fy = thmg sgn(v,) o

P;'J’ = #.s:'f‘nig'sgii(v.ti) (24)

#.’u and /J

where s¢i denote respectively the
coefficients of the lateral and longitudinal
forces.

It is assumed that the potential energy of
the robot [1=0 because of the planar motion.

Neglecting the energy of rotating wheels, the

kinetic energy of this robot can be rewritten:

zlm()i'2 +Y2)+l1.6'?2
2 (25)

2 mX
—(—]—1)— mY |=M.g
dt 0q
10
Hence, (26)
m 0 0
M=0 m 0
Where, 0 01 27

Considering the forces causing the

dissipation of energy:

F._(§)=cos B.ZF (v,)—sind. Z ALK
= (28)

F,(¢) =sin 9.2}? (v,,) + cos. Z (V)
| " (29)

The resistant of moment around the center

of mass can be obtained as

Mr (= _a'[El (V_m ) +E4 (""\‘4 )] +b[Ea (V +F (VH)]

+C[_F;1 (V) = Fs (V) + F3 (V) + F (v )]
Letting

R(§)=[F.@ FE,(@ M, @I

(30)
Consequently, the active force generated
by actuators can be calculated in the inertial
frame as follow:
cosg.) F;
i=l
4
sin6.) F,
i=l (31)

The active torque around the center of

4

mass is obtained:

M‘=C(—F;—E,_+F;+F;) (32)

The vector of active forces has the

F=[F, F, MT

following form:
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Using (18), (31), (32), we get:
M 4
cos@.z [
i=l

4
F= 5 sin 6’.2 7
i=1

e(-r,—1,+73+ Ti)

. ‘ (33)

{ri +7, }
T =
The term 7 is defined by: (34)

T3+T4
; cosf cos@
B(g)=—|sin@ siné
=
< 9 (35)
We have: T = B(@)-7 (36)

Using (26), (30), (36), and equation’s

Lagrange we get:
M(q).g+R(q) = B(q)r (37)

Eq. (37) describes only the dynamic of a
free body and does not include the
nonholonomic constraint (14). Therefore, the
constraint has to be imposed on (37). To solve

this problem, a vector of Lagrange multiplier

A s considered [2], and (37) becomes as

following equation:

M(@)d+R@)=B@)r+A (DA (33

T
Multiplying from the left side byS (Q), and
simplifying by using eq. (15), and the
following equation,

Gg= S(Q)?? +S8(q)-n (39)
we obtain: MA+TCATR=BT 4

Where,

_ : 0 6]
C=8"MS=mx,, { _
=§ Xire (41)
—_ m 0 |
M=5 MS= 5
0 mx, +1]

(42)

— (@) }
R=S"R =[ "
- .Fr_‘,(q) +M, @)

= !
B=S"B=l{ }
ri=—€ ¢

4. CONTROL LAW

(44)

4.1 Operational Constraint
X ’ 7
Let “°be an arbitrary constant which

. X €
sacrifices: "¢ ~ (-a, b)
The constraint equation (13) is rewritten

v",+x0.t9=0 45)

as:
Let S be a 3x2 dimensional matrix which
sacrifices the equation (17)
cos@ x,.sin@
S(g)=|siné —x,cosf

0 1 (46)

4.2 Control Algorithm

Let k be the state space vector

kz[X Y 6 v, o @7

To simplify the formula (15), (40), the

matrix

S g =
f2 =M (_CT] = R) (48)

is introduced, where
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EzSTM.ﬁ':m.x{O. 0}
~i % 49)
m 0 ]
0 mx;+1 (50)

F. ()
WE@M,|

E:STB=1[1 1}

E:SWS:[

E:STR{

rl-c ¢ (52)

Combining (15) and (40), the kinematic

equation and the dynamic equation are written:

‘- {S}W}BJ_OB}

This state

(53)

equation can be further

simplified as:

e M* M'" (54)
r=(MB Yu-f) (55)

Let a reference point be denoted in the

c

Yr ) . The robot

is controlled so that the reference point tracks

5
X
local inertial frame by( .

the given trajectory.

The world coordinates of the reference

point are obtained as:

{X,, =X, +x‘.cosf—y°.sin@

Y =X_+x/sin@+ yicosd (56)

The output equation is obtained:

y=hg)=[x, 1T e

. i :
y= (M]C] = (1),7

% (58)

where

o :{cosﬁ

x,sin@ —x! sin@ - y‘cosd :l
sinf  —x,cos6+ xicos@ -y sind (59)

.
S

By taking r, D s regular.
g

From (58) we get:

j=bn+os (60)
Hence,
li:‘l)_](’?—d’??) (61)

d

Let 7Y be a desired trajectory,

e
and® =Y Y bea feedback error.

=5+ K, =)+ K, 0" =)

By using equations (54), (55), (61), (62), a
new algorithm has been presented. It is easy to
control the angular velocities of wheels in other
that a skid steering robot tracks a given

trajectory.

5. SIMULATION RESULTS

To validate the performance of the control
algorithm, the motion of skid steering mobile
robot is simulated by Matlab. The robot is
designed to track a given trajectory. The
advantage of the algorithm is the angular
velocity of each wheel can be determined
without the inertia moment and the mass of the
robot. Therefore, dynamic parameters aren’t
considered for simplicity. The dimensions’

robot are chosen as &~ b=e= I(m). The

robot starts at location (-3; 8) with the
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o= T Case 1: A desired trajectory is given by:
2 | the horizontal velocity v,=0 x=4*t (m)

y=2%f (m)

angle

,and the angular velocity ©=0_ Tpe

is the center of mass The controller parameters are chosen as

reference  point

! 4 (-
X = = 0 X — =
P = . The constant ~?is chosen as follow: k!” 52, kD 15
x, =3.2(m
follow "© (m)
s
7GI\?(EN TRAJ i £
- : /,] PR
REF TRAJ
25 i -
20 |- -
E st ]
>
o] TN e Ol A
sk i
B R g SR T g
® - o 5 (] 5 20|
X (m)
(a)
4 T T
2} i
oF
£ 1
7] .
4 ..:
: __Xeror
S ]
:. »e Y arror
L R T, A S S T S e T
time (sec.)
(b)
Fig. 7 The simulation result of case 1. (a) robot trajectory, and (b) tracking error.
trajectory) quickly converges to the given
Figure 7(a) shows the reference trajectory, . ) )
, trajectory (desired trajectory).
and figure 7(b) shows the tracking error in the -
Case 2: A desired trajectory is given by:

fixed frame. It is clearly seen from the plots

that the reference point’s trajectory (robot
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The controller parameters are chosen as

{x = 7 sin(¢) (n1)
o =T7(1— 4 = .
! (1—cos()) (m) follow: ko=10, k, =35
s E 6 5 10
X (m)
(a)
S l‘; |
ISR e PSS
| |
= By
i
i.'.
ok I 1 L | L ; ‘
] 1 2 3 1 s 5 - - ; .
time (sec.)
(b)

Fig. 8 The simulation result of case 2. (a) robot trajectory, and (b) tracking error.

Similarly, the reference point’s trajectory

quickly converges to the given trajectory.

6. CONCLUSION

In this paper, a new algorithm of trajectory
tracking control for 4-wheel skid steering
mobile robot is presented. The output equation

is chosen to be the coordinates of the reference

point fixing in the robot. Because the mobile
robot is subject to nonholonomic constraints,
dynamics system is nonlinear (see eq. 40).
However, the number of output coordinates
equals the number of input commands. Thus,
one can use nonlinear state feedback law in
transform the nonlinear robot

order to

kinematics, dynamics into a linear system. The
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effectiveness of this algorithm is validated by

simulations on two different trajectories.

In the future, we will integrate this

algorithm with stepper motor control to design

completely a skid steering mobile robot as well

as apply a Lyapunov stability analysis to

guarantee the stability of this controller.

PIEU KHIEN THEO QUI PAO MOT ROBOT DI PONG LAI TRUQT 4 BANH

Ping Viin Nghin”, Nguyén Vin Qubc Khanh®
(1) Vién Co Tin hoc Tp.HCM
(2) Truong Pai hoc Bach Khoa, PHQG-HCM

TOM TAT: Bing cdich dp dung rang budc nonholonomic va phwong trinh Lagrange cho hé

théng nonholonomic, mét phuwong phdp dwoc dua ra dé mé hinh va diéu khién robot di déng ldi trugt 4

banh chay theo quy dao cho trude. Pau tién, cdc co so cua hé thong nonholonomic dwgc gici thiéu.

Tiép theo, mé hinh déng hoc va déng lwc hoc cia robot lai trugt dugc khao sat. Dé diéu khién robot do

theo quy dao, mot giai thudt moi dwoc dwa ra bing cdch img dung tuyén tinh héa héi tiép va bg diéu

khién PD. Hon nita, két qua mé phong da chimg to tinh hiéu qua ciia thudt todn.

(1]

Tir khéa: sw diéu khién dong chinh, robot lai truot, rang bugc nonholonomic.

REFERENCES

. Lakkad S.: Modeling and simulation of

steering systems for autonomous vehicle,

MSc thesis, the Florida state university,

(2004).

. Caracciolo L., De Luca A. and lannitti S:

Trajectory tracking control of a four-
wheel differentially driven mobile robot.
— [EEE Int. Conf. Robotics
Automation, Detroit, MI, pp. 2632-2638,
(1999).

and

. Dixon W.E., Behal A., Dawson D.M. and

Nagarkatti S.P. Nonlinear Control of

[6].

Engineering Systems, A Lyapunov-Based
Approach. — Boston: Birkhéuser. (2003)

. Dixon W.E., Dawson D.M., Zergeroglu

E. and Behal A. Nonlinear Control of
Wheeled Mobile
London:Springer. (2001)

Robots. —

. Yoshio Yamamoto and Xiaoping Yun,

Coordinating Locomotion and
Manipulation of a Mobile Manipulator.
IEEE Transactions on Automatic Control,

Vol. 39, No. 6, pp. 1326-1332. (1994)
K. Kozlowski, D. Pazderski, Modeling
and control of a 4-wheel skid-steering

mobile robot. Int. J. Appl. Math. Comput.
Sci, Vol. 14, No. 4, 477-496, (2004).

Trang 93



Science & Technology Development, Vol 13, No.K4- 2010

[7]. K. Koztowski,  D. Pazderski, I.Rudas,

J.Tar, Modeling and control of a 4-wheel
skid-steering mobile robot, From theory
to practice, Poznan University of
Technology, No. DS 93/121/04.

[8]. R. Fierro and F. L. Lewis, Control of a

Nonholonomic Mobile Robot,
Backstepping Kinematics into Dynamics,
Journal of Robotic Systems 14(3),
pp.149-163, (1997). ' :

Trang 94



