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ABSTRACT: This paper introduces the novel inverse dynamic intelligent MIMO model which is 

applied for modeling and identifying the stepper motor dynamic model. Hence the highly nonlinear 

features of stepper motor system are modeled thoroughly based on the inverse neural NARX model 

identification process using experimental input-output training data. Consequently the proposed inverse 

neural NARX MIMO model scheme of the nonlinear stepper motor has been investigated. The results 

showed that the proposed inverse neural NARX MIMO model trained by the back propogation learning 

algorithm (BP) yields outstanding performance and perfect accuracy. 
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1. INTRODUCTION 

Nowadays stepper motor is popularly 

applied in the industry due to some significant 

advantages. First no feedback is conventionally 

required for both position control and speed 

control. In addition, positional error is not 

accumulative. Furthermore stepper motors are 

intrinsically compatible with modern digital 

equipment. Hence, various types and classes of 

stepping motor have been used in computer 

peripheral, automated machinery, and similar 

system [1]. The cost of the stepper system is 

significantly lower than that of the servo 

system. It is because of the removal of high 

cost of the position feedback device and 

complicated feedback control. Moreover, it 

does not require tuning of feedback control 

which needs extra expertise and support. 

 The nonlinear stepper motor driving 

system is belonged to highly nonlinear systems 

where perfect knowledge of their parameters is 

unattainable by conventional modeling 

techniques because of the time-varying inertia, 

external force variation. One of the most 

unfavorable features of stepper motor is 

mechanical resonance, particularly at low 

speed. Resonance prevents stepper motor to run 

steadily at certain speeds and reduce the 

motor’s usable torque. This prevents stepper 

motor to be used on application that requires 

smooth low-speed motion. 

Up to now much effort has been spent on 

improving the performance of stepper system 

in various ways. Brown and Srinivas [2] 

attempted to use resistance and capacitance to 

increase electric damping at particular 
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frequency. It showed some advantages at the 

expense of system efficiency and circuit 

complexity. Schweid et al. [3] developed a 

nonlinear analog position controller to regulate 

the velocity of hybrid stepper system. Zribi and 

Chiasson [4] demonstrated that stepper system 

could be fast and accurate with exact feedback-

linearized position control. They also showed 

that the linearization was the well-known 

direct-quadrature (DQ) transformation if the 

detent torque was not considered. Crnosija et 

al. [5] had implemented the optimal algorithm 

for closed-loop control. Chen et al. [6] 

improved profile tracking performance by 

using a model-based feedback controller with a 

least-squares-based identification procedure. 

Furthermore, they had exploited learning 

control for precision control at low speed [7]. 

Betin et al. [8] had applied fuzzy logic 

principle on closed-loop speed control of 

stepping motor. Hwang et al. [9] improved the 

position accuracy through a closed-loop control 

scheme. However, the performance of the 

mentioned algorithms was highly dependent on 

the resolution of the position feedback device. 

The feedback device also increased the system 

cost and was not commercially favorable. 

Recently, robust-adaptive control 

approaches combining conventional methods 

with new learning techniques are realized. 

During the last decade several neural network 

models and learning schemes have been 

applied to offline and online learning of 

nonlinear systems [10-11]. Ahn and Anh in 

[12-13] have successfully optimized a NARX 

fuzzy model of the nonlinear robot arm using 

genetic algorithm. These authors in [14] have 

identified the stepper motor based on forward 

recurrent neural networks. The drawback of all 

these results is related to consider the stepper 

motor as an independent decoupling system. 

Consequently, all intrinsic cross-effect features 

of the stepper motor have not represented in its 

recurrent neural model. 

 Nowadays artificial neural network 

(ANN) techniques have recently had an impact 

on power electronics and motor drives [15]. 

Sanchez et al. [16] proposed a sliding-mode 

control law based on the ANN identifier for 

trajectory tracking. Rubaai et al. [17–18] had 

exploited ANN-based techniques for high-

performance stepper motor drives. However, 

the developing ANN-based techniques are 

often facing challenges on convergence and 

overtraining. 

To overcome these disadvantages, in this 

paper, a new approach of intelligent multiple 

inputs – multiple outputs (MIMO) model, 

namely inverse dynamic neural MIMO NARX 

model, firstly utilized in simultaneously 

modeling and identification the stepper motor 

system. The results show that the proposed 

inverse dynamic neural MIMO NARX model 

trained by back propagation (BP) learning 

algorithm yields outstanding performance and 

very good accuracy. 

The rest of paper is organized as follows. 

Section 2 introduces to the learning algorithm 

applied to the modeling and identification of 

the stepper motor. Section 3 introduces to the 
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modeling of the stepper motor driving system 

based on the conventional state-space 

equations. Section 4 presents the experimental 

set-up configuration for Inverse dynamic neural 

MIMO NARX model-based identification. The 

results from the inverse dynamic neural MIMO 

NARX model-based identification are 

presented in Section 5. Finally, in Section 6 a 

conclusion remark is made. 

2.BACK PROPOGATION LEARNING 

ALGORITHM IN INVERSE NARX 

MODEL IDENTIFICATION 

The proposed inverse neural NARX model 

used in this paper is a combination between the 

Multi-Layer Perceptron Neural Networks 

(MLPNN) structure and the Auto-Regressive 

with eXogenous input (ARX) model. Due to 

this combination, the inverse neural NARX 

model possesses both of powerful universal 

approximating feature from MLPNN structure 

and strong predictive feature from nonlinear 

ARX model. 

Consider a 2nd order ARX model with 

noisy input, which can be described as 

)()()()()()( 111 teqCTtuqBtyqA −−− +−=     (1) 

with  

 

 

where e(t) is the white noise sequence with 

zero mean and unit variance; u(t) and y(t) are 

input and output of system respectively; q is 

the Inverse shift operator and T is the time 

delay. 

From equation (1), not consider noise 

component e(t), we have the general form of 

the discrete ARX model in domain z (with the 

time delay T=nk=1) 

(2) 

in which na and nb are the order of output 

y(z-1) and input u(z-1)  respectively. 

By embedding a 3-layer MLPNN (with 

number of neurons of hidden layer = 5) in a 2nd 

order ARX model with its characteristic 

equation derived from (2) as follows: 

  (3) 

We will obtain the resulting  Neural 

NARX11 model (na = 1, nb = 1, nk =1) with 6 

inputs (u11(t), u21(t), y1(t-1), u12(t), u22(t) and 

y2(t-1)), 2 outputs (y1hat, y2hat) and its structure 

shown in Fig. 1. 

The class of MLPNN-networks considered 

in this paper is furthermore confined to those 

having only one hidden layer and using 

sigmoid activation function: 

  (4) 

 

Fig. 1. Structure of neural MIMO NARX11 model 

The weights (specified by the matrices w 

and W) are the adjustable parameters of the 

network, and they are determined from a set of 

examples through the process called training. 
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The examples, or the training data as they are 

usually called, are a set of inputs, u(t), and 

corresponding desired outputs, y(t).  

The prediction error approach, which is 

the strategy applied here, is based on the 

introduction of a measure of closeness in terms 

of a mean sum of square error (MSSE) 

criterion: 

(5) 

Based on the conventional error Back-

Propagation (BP) training algorithms, the 

weighting value is calculated as follows: 

         (6) 

with k is kth iterative step of calculation 

and λ is the learning rate which is often chosen 

as a small constant value. 

Concretely, the weights Wij and wjl of 

neural NARX model are then updated as: 

          (7) 

with  is search direction value of ith 

neuron of output layer (i=[1  m]); Oj is the 

output value of jth neuron of hidden layer 

(j=[1  q]); yi and are truly real output 

and predicted output of ith neuron of output 

layer (i=[1  m]), and 

      (8) 

in which  is search direction value of jth 

neuron of hidden layer (j=[1  q]); Oj is the 

output value of jth neuron of hidden layer 

(j=[1  q]); ul is input of lth neuron of input 

layer (l=[1  n]). 

3. MATHEMATICAL MODEL OF THE 

STEPPER MOTOR SYSTEM 

 

Fig. 2. Block diagrams of one full revolution of the 

two phases stepper motor. 

In this paper, the two-phases stepper motor 

model is chosen for its good electrical and 

mechanical performances rather than other 

stepper motor models. The stepper motor is 

driven by applied voltage. Fig. 2 shows the 

block diagrams of the one full revolution of the 

investigated two phases stepper motor. 

The characteristic equations of the stepper 

motor are represented as:  

(9) 

We see that in (7) (in this paper 

composed of and ) represented the 

two control current values Ia and Ib in (9) 
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which are the currents applied to the two coils 

of the two phases stepper motor; likewise ul in 

(8) represents the angular velocity  [rad/s] 

used in equations (9) of the two phases stepper 

motor, respectively. 

Mathematical model expressed by the 

equations (9) can be presented by the 

MATLAB model. The model of the two phases 

stepper motor in SIMULINK is shown in Fig. 

3. Used symbols are tabulated in Table 1. 

Various parameters of the stepper motor are 

shown in Table 2. 

Table 1. Used symbols 

 

 

Fig. 3. Model of the two phases stepper motor 

Table 2. Parameters of the Stepper motor 

system. 

 

4. EXPERIMENT CONFIGURATION OF 

THE STEPPER MOTOR 

A general configuration and the schematic 

diagram of the stepper motor and the 

photograph of the experimental apparatus are 

shown in Fig.4 and Fig.5, respectively. 

A commercial 1.8◦ stepper motor is chosen 

for our studies. It is a 50-pole-pair motor with 

coil resistance of 0.9 Ω, coil inductance of 2.2 

mH, rotor inertia of 0.36 × 10−4 kg · m2, rated 

current of 3 A, holding torque of 1.27 N·m, and 

force constant (Km) of 0.3 N·m/A. The motor is 

optimized for microstepping control. An 

optical encoder (1000 lines, 4000 pulses/rev) is 

attached to the motor for performance 

monitoring. It is also used as position feedback 

for the position loop in servo mode. A 

photograph of the hardware platform is shown 

in Fig. 5. 
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Fig. 4. Block diagram of step motor inverse neural 

MIMO NARX model identification 

 

Fig. 5. Photograph of the Stepper motor driving 

system 

5. RESULTS OF INVERSE NEURAL 

MIMO NARX MODEL STEPPER MOTOR 

IDENTIFICATION 

In general, the procedure which must be 

executed when attempting to identify a 

dynamical system consists of four basic steps. 

• STEP 1 (Getting Training Data)  

• STEP 2 (Select Model Structure )  

• STEP 3 (Estimate Model)  

• STEP 4 (Validate Model) 

 To realize Step 1, Fig.6a presents the 

input voltage signal applied to the stepper 

motor armature and the responding rotation 

speed. This experimental input-output data is 

used for training and validating the stepper 

motor Inverse neural MIMO NARX model (see 

Fig.6b). 

 

Fig. 6. (a) Stepper motor estimation Input-Output 

Training data 

 



Science & Technology Development, Vol 13, No.K6- 2010 

 

Trang 40 

Fig. 6. (b) Stepper motor validation Input-Output 

Training data 

The 2nd step relates to select model 

structure. A nonlinear inverse neural MIMO 

NARX model structure is attempted. The full 

connected Multi-Layer Perceptron (MLPNN) 

network architecture composes 3 layers with 5 

neurons in hidden layer is selected (results 

derived from Ahn and Anh, 2006 [12]). The 

final structure of proposed Inverse neural 

MIMO NARX22 model of Stepper motor is 

shown in Fig.7. 

 

Fig. 7. Structure of proposed inverse neural MIMO 

NARX22 models of the investigated step motor 

The proposed inverse neural MIMO 

NARX22 model structure is defined as a 

nonlinear neural MLPNN integrated a 2nd order 

ARX model (with nA=2; nB=2 and nK=1) 

possessed 5 neurons in hidden layer. The 

activating function applied in neurons of 

hidden Layer and of output layer is hyperbolic 

tangent function and linear function 

respectively. Fig.4 represents the block 

diagram for identifying stepper motor inverse 

neural MIMO NARX22 model. 

 

Fig. 8. Fitness convergence of the step motor inverse 

neural MIMO NARX model 

The 3rd step estimates trained stepper 

motor inverse neural MIMO NARX22 model. 

A good minimized convergence is shown in 

Fig.8 with the minimized Mean Sum of Scaled 

Error (MSSE) value is equal to 0.003659 after 

number of training 500 iterations with the 

proposed Inverse neural MIMO NARX model. 

An excellent estimating result, which proves 

the perfect performance of resulted inverse 

neural MIMO NARX22 model, is shown in 

Fig.9. 

The last step relates to validate 

investigated nonlinear neural Inverse MIMO 

NARX models. Applying the same 

experimental diagram in Fig.8, an excellent 

validating result, which proves the performance 

of resulted Inverse Neural MIMO NARX 

model, is shown in Fig.10. A good minimized 

convergence is shown in Fig.10 with the 

minimized Mean Sum of Scaled Error (MSSE) 

value is equal to 0.005577 after a number of 

training equal 500 iterations. 
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Fig. 9. Estimation of proposed step motor inverse 

neural MIMO NARX Model 

 

 

Fig. 10. Validation of stepmotor inverse neural 

MIMO NARX Model 

Table 3. Resulted weights of step motor inverse neural MIMO NARX22–Total Number of weighting 

values=47. 

  

wji – weights of Input Layer 

wj0 – 

weights of 

Bias Input 

Layer 

Wkj – 

weights 

of Hidden 

layer 

 

Wk 0 – 

weight 

of Bias 

Hidden 

layer 

 

Wkj – 

weights 

of Hidden 

layer 

 

Wk 0 – 

weight 

of Bias 

Hidden 

layer 

 

i 

j 

1 2 3 4 5 6 0 k=1 k=2 

1 -0.0031 -1.0561 1.0231 0.0816 -1.0563 1.023 0.016019 2.5682  2.5299  

2 -0.0196 0.1474 -0.0957 0.00911 0.14689 -0.0948 0.003387 -51.636  -13.859  

3 -0.0036 -0.2834 0.31051 0.0196 -0.2834 0.31085 0.0084819 3.4736  41.918  

4 -0.027 0.01427 -0.1092 0.00469 0.0136 -0.1094 -0.01051 -31.64  -5.7829  

5 0.00593 -0.3565 0.32875 -0.0193 -0.3562 0.32937 0.0030561 -28.851  -45.182  

0         -6.1159  -12.906 

Finally, in summary, Table 3 tabulates the 

resulted weights of the proposed step motor 

inverse neural MIMO NARX22 model  

6. CONCLUSIONS 

In this paper, a new approach of inverse 

dynamic neural MIMO NARX model firstly 

utilized in modeling and identification of the 

stepper motor. Training and testing results 

show that the newly proposed inverse dynamic 

MIMO NARX model presented in this study 

can be used in online control with better 

dynamic property and strong robustness. This 
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proposed intelligent model is quite suitable to 

be applied for the modeling, identification and 

control of various MIMO plants, including 

linear and nonlinear MIMO process without 

regard greatly change of external 

environments. 

NHẬN DẠNG HỆ ĐỘNG CƠ BƯỚC SỬ DỤNG MÔ HÌNH ĐỘNG NGƯỢC NƠ RÔN 

NARX ĐA BIẾN VÀO – RA 

Hồ Phạm Huy Anh(1), Nguy�n Hữu Phúc(1), Phan Huỳnh Lâm(2) 

(1) Trường Đại học Bách Khoa, ĐHQG-HCM 

(2) DCSELAB, Trường Đại học Bách Khoa, ĐHQG-HCM 

 

TÓM TẮT:  Bài báo đề xuất mô hình thông minh động ngược đa đầu vào – ra (MIMO) dùng mô 

hình hóa và nhận dạng hệ động học động cơ bước. Các yếu tố phi tuyến của hệ truyền động dùng động 

cơ bước qua đó sẽ được mô hình và nhận dạng trọn vẹn nhờ sử dụng mô hình nơ rôn ngược MIMO 

NARX mới được đề xuất với tập dữ liệu huấn luyện vào – ra được thu thập từ hệ động cơ bước thực 

nghiệm. Từ đó mô hình nơ rôn ngược MIMO NARX được đề xuất của hệ truyền động dùng động cơ 

bước đã được mô hình hóa và nhận dạng thành công. Kết quả cho thấy mô hình nơ rôn ngược MIMO 

NARX được đề xuất huấn luyện bằng thuật toán học lan truyền ngược (BP) đạt khả năng đáp ứng động 

rất cao với độ chính xác hoàn hảo. 

Từ khoa: mô hình thông minh động ngược đa đầu vào – ra (MIMO),  mô hình nơ rôn ngược 

MIMO NARX. 
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