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ABSTRACT: This paper presents the stochastic approach using Monte Carlo simulation as
applied to compaction and subsidence estimation in an offshore oil and gas deep-water field in
the Gulf of Mexico. The results reveal both the impact of using probability distributions to
estimate compaction and subsidence for a disk shaped-homogenous reservoir as well as taking
into account Young's modulus, Poisson’s ratio and the reduction of pore fluid pressure.

The uncertainty reservoir model is also compared with numerical simulation using
commercial software — Eclipse 300. The stochastic-based simulation results confirm that the
deterministic results obtained from the coupled geomechanical — fluid flow model are in the
range of acceptable distribution for stochastic simulation. The sensitive analysis shown that
Young’s modulus has more impact on compaction than Poisson’s ratio. The results also
presented that values of Young’s modulus in this deep-water field in Gulf of Mexico lying beyond
140,000psi are insignificant to compaction and subsidence. Based on output results of
compaction and subsidence with the stochastic model, potential reservoirs presenting subsidence
and compaction are described as an uncertainty range within distribution of Young's modulus,
Poisson’s ratio and the reduction of pore fluid pressure in large-scale regional model.

Keywords: Risk Analysis, Subsidence, Compaction, Monte Carlo simulation and
Uncertainty

1. INTRODUCTION OF SUBSIDENCE, COMFPACTION AND OBJECTIVES

Sub-surface compaction due to fluid withdrawal from a reservoir (oil, gas or water) has been
well documented worldwide over the last few decades. Compaction of a reservoir can also lead to
subsidence at the ground surface or seafloor. Examples have been observed in Venezuela [1], the
Gulf of Mexico [2, 3] and Gippsland Basin [4]. In the Cooper Basin — Australia, this problem was
first investigated by Ta & Hunt [5]. The compacting reservoir can enhance oil and gas production
but it can cause excessive stress at the well casing and within the completion zone where collapse
of structural integrity could leads to failure and lost production. In addition, surface subsidence
also results in problems at the wellhead within pipeline system and platform foundations.

The need for more sophisticated prediction approaches in assessing the impact of subsidence
and compaction on production management of the reservoir has led to a continuous improvement
of numerical models employed an approach in using the continuum poroelastic theory. For
example, the use of advanced models for accurate prediction of land subsidence were documented
[6, 7]. However, although sophisticated poroelastic constitutive models have been developed for a
realistic description of the actual rock mass behavior [8, 9, 10], the geomechanical analysis of
producing fields is usually performed deterministically so that solutions to poroelastic equations
are subsequently limited. To overcome the limitation of the deterministic approach which would
require an extensive medium characterization, neither supported by the available data nor allowed
by the available resources, the properties of rock heterogeneity at the field and regional scale have
been incorporated stochastically into geostatistical models [11, 12]. While geostatistical models
have been extensively used over the last few decades for modeling flow and transport into
random porous media, only a limited number of works have addressed the influence of using
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stochastic approaches to assess the effect of rock properties on geomechanical behaviors of
reservoir [13]. In particular, there are few studies that have been incorporated a stochastic-based
approach when analyzing rock heterogeneous as applied to compaction and subsidence problem.
In addition, some of the most important paramaters controlling the compaction caused by pore
fluid pressure drawdown in a depleting reservoir usually have ignored magnitude variation when
modeling geomechanical parameters such as Young’s modulus (E), Poisson’s ratio (v), and even
reduction of pore fluid pressure (Apy) mainly as a result of limited field data.

This paper addresses the impact on subsidence and compaction prediction when taking into
account uncertainty of E, v and ApBg as applied to a deep-water petroleum field in the Gulf of
Mexico (i.e. location not revealed due to confidentially). The reservoir model modeled
stochastically is compared with the commercial numerical software-Eclipse 300. Finally,
potential reservoirs where subsidence and compaction could happen are presented in term of
describing the range of E and v within a stochastic' characterization of a large-scale regional
reservoir model

1.1. Stochastic Approach - Monte Carlo Simulation

In most engineering applications, the deterministic model is dominant over stochastic-based
models where a single output value is obtained for every input value for all variables. The
assumption made is that the input variable is known; in reality many input variables have
uncertainty attached to them, hence the need to be modeled as stochastically [14]. Murtha [15]
defined risk as “Potential gain or losses associated with each particular outcomes” and
uncertainty as “the range of possible outcome”. Risk and uncertainty estimate the input parameter
as a range instead of a single point.

The area of risk analysis is designed to handle uncertain variables through stochastic models
using the Monte Carlo simulation method. In this study, Monte Carlo simulation is applied for
evaluation of the compacting reservoir based on the analytical geomechanical-fluid flow equation
(General rock properties shown in Table 1).

Table 1. Rock and model properties

Variables Symbol | Values | Units
Distance from reservoir centre axis a 10000 ft
Average reservoir radius R 5000 ft
Reservoir depth of burial D 10000 ft
Average reservoir thickness h 160 ft
Dimensionless radial distance p= 2 -
Dimensionless depth n=D/R 2 -
Bessel function Alp,n) -- --
Poisson’s ratio v i -
Young’s modulus E -- psi
Biot’s constant o 0.95 -
Reduction of pore fluid pressure Apy 1500 psi
Bulk coefficient (base case) &Y 2.56E-5 | psi’
Rock density Dy 128 Ib/ft’

1.2. Numerical Reservoir Simulation

In this section, the coupled geomechanical-fluid flow model is used in a deep-water field in
the Gulf of Mexico within using the Eclipse 300 reservoir simulator. The modeling built is
simplistic and based on deterministic parameters. Theories used in calculating of compaction
problems are based on the mass balance equation, Darcy’s law of fluid flow, and Terzaghi’s
principal of effective stress [16]. Rock and fluid property constants used pertain to the Gulf of
Mexico. Compaction calculations here are made along a vertical cross-section parallel through
the model’s center position as described further below.
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1.2.1 Reservoir Rock Properties

The reservoir itself was discretised into 8 layers. The model measures 10000 x 10000 x 160ft-
in the x, y and z directions that are meshed with three-dimensional cube grid with grid size 500 x
500 x 20ft in the x, y and z direction, respectively.

Geomechanical rock properties includes E, v, Biot's constant (o) and density (ps): these
parameters describe a linearly elastic porous medium (Table 1). Here, the range of E and v data
come from two wells (Figure 1). The coupled numerical model can only be simulated with the
deterministic values of parameters extracted from the distribution of E and v parameters in which
the mean and medium values are considered.
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Figure 1. Distribution data for (a) Young’s modulus - E, (b) Poisson’s ratio — v and (c) Reduction of pore
fluid pressure ApBfB.

1.2.2. Fluid Properties

Generally, fluid properties are a function of composition, temperature, saturation and
pressure, and will vary spatially and temporally. Deterministic values of key fluid properties used
in the simulation are presented in Table 2. The simulation was run to ten years with a minimum
time-step of one day and maximum of 500 days.

Table 2. Fluid properties

Variables Symbol | Initial values | Unit
Reservoir temperature i 154.82 °F
Reservoir pressure Piss 11,580 psi
Oil viscosity at 9000psi TR 0.53 cp
Initial water saturation Siw 0.25 -
Oil gravity Do 128 Ib/ft’
Water gravity Pw lb/ft

‘ 63.02
Bubble point pressure at T Py 5,400 psi

2. COMPUTATIONAL METHODOLOGY

Monte Carlo simulation was applied to the calculation of compaction and subsidence. This
accounts for the fact that the key input parameters E and v have not been exactly presented or
properly calculated at the field scale. Reduction of Apf related to fluid production has been taken
into account. The practice of describing the input parameters with range is actually more realistic
because it captures our absence of information in estimating the true value of the input parameter.

In an attempt to verify the consistency from Monte Carlo simulation, the simplest model was
run for experiment-1 with all parameters required for the calculation fixed at the average or most
likely value as presented in Table 1. For each of the next three experiments, calculations were
used for the Monte Carlo simulation in which statistically generated values for each of the
uncertain input parameters were used. Experiment-2 takes E as uncertain. The experiment-3 is
the next experiment with addition of v as uncertain. The fourth experiment is the last experiment
with addition of pore fluid pressure reduction as uncertain.

Simplified coupled equations used here for stochastic-based simulations are based on
nucleus-of strain equations from rock mechanics as described by Geertsma [17] and Holt [18].
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The maximum vertical compaction (Ah) and subsidence (S) for a roughly disk-shaped oil and gas
bearing reservoir formation with Cb, v, R, h, and D (Table 1), can be estimated using the
equations 1 and 2

1-v-2v?

- (1-v)E Apch

)

&
§=—"Ap:hA(p,n)
2 2
The numerical results will be presented in the next section. The comparison process regarding
numerical results are used to confirm that the most likely level of compaction and subsidence (i.e.
that value of compaction arising from setting all parameters to their most likely value) is
comparable to the 50-percentile result from the Monte Carlo simulation. In other words, the result
of the deterministic model with simulator should then be comparable to the 50-percentile result
for the Monte Carlo simulation of the same experiments.

2.1 Numerical Results

2.1.1 Compaction versus Poisson’s Ratio

Fully coupled reservoir simulation shown that when fluid is withdrawn from the reservoir, the
pore fluid pressure will be reduced. In turn, effective stress will be increased [19]. Subsequently,
the reservoir will deform causing compaction as shown in the previous section. However, the
impact of rock properties was not taken into account. Figure 2 presents a case showing the
decrease in compaction for two reservoir models with different Poisson’s ratio but the same
Young’s modulus. When Poisson’s ratio increases from 0.21 (Case 1) to 0.29 in the sense the
mean values of Poisson’s ratio (case 2) extracted from the two-well dataset, the compaction at the
well location reduces from 2.74ft to 2.39ft. Simultaneously, the compaction at the boundary also
reduces from 2.58ft to 2.21ft. Therefore, higher Poisson’s ratio causes a lower compaction. This
result should be considered when planning of infrastructure development. A more sensitive
analysis is investigated in the next section.

2.1.2 Compaction versus various Poisson’s Ratio and Young’s Modulus

In this work, several numerical tests are undertaken to investigate the influence of Young’s
modulus and Poisson’s ratio on compaction. Table 3 shows minimum and maximum compaction
in each run for various E - v combinations.

As previously mentioned, it is clear that compaction is lower where the reservoir has a higher
Poisson’s ratio. In addition, compaction also reduces substantially when Young’s modulus
increases. For example, when Young’s modulus increases from 68000psi (base case) to 86500psi
(mean value of Young’s modulus), maximum compaction at production location falls from 3.27
to 2.74ft with the same Poisson’s ratio 0.21. In conclusion, high Poisson’s ratio and high Young’s
modulus reservoir cause a much lower compaction.
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Figure 2. The compaction profile measured in the cross section that intersecting cut through the center of
bowl compaction at the end of numerical simulation taking into account influence of Poisson’s ratio on
compaction. (Casel with E=86500psi, v=0.21, Case2 with E=86500psi, v=0.29).

Table 3. Sensitivity results of numerical reservoir simulation.

Young’s modulus Poisson’s ratio | Max compaction at well location | Min compaction
(psi) (ft) at boundary
(ft)
68000 0.21 3.27 3.18
68000 0.29 2.86 2.64
68000 04 1.99 1.82
86500 0.21 2.74 2.40
86500 0.29 2.39 221
100000 0.21 2.46 2.32
210000 0.3 1.21 1.13
210000 0.21 1.41 1.33
210000 0.4 0.79 0.72

2.1.3 Monte Carlo Simulation Results

The results of the Monte Carlo simulation are presented in comparison with results from
reservoir simulation. For experiment-1 with no uncertain value, the compaction result is 3.27ft
and subsidence is 0.91ft. The results of compaction lie exactly in accordance with results
provided by the Eclipse 300 simulation in base case (First case in table 3). This shows that
Geertsma’s equations (Equations 1 & 2) can be used as a good approximation for complicated
model such as Eclipse 300.

In experiment-2, Young’s modulus data collected from two wells of the deep-water field
were fitted with a distribution. The results show that the exponential distribution is the best fit
with Chi-square measure. The mean of Young’s modulus is 86,508.81psi and a standard deviation
is 41,17psi. (Figure 3)
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Figure 3: Compaction distribution for experiment-2. The mean of Young’s modulus used in the
experiment-2 is 86,508.81psi and a standard deviation is 41,17psi. The constant value of Poisson’s ratio is
0.21.

Once the exponential distribution was determined, it replaced the Young’s modulus single
value. Monte Carlo simulation approach was performed for 10,000 iterations. The results present
that the uncertainty in Young’s modulus results in a compaction distribution that has a mean of
3.11ft and a standard deviation of 1.24ft for both the probability and cumulative distribution
functions.

In addition, there is a 90% confidence interval where compaction falls between 1.28ft —
5.24ft. The distribution also indicates that due to the existence of uncertainty in Young’s
modulus, there is a 50% chance that the compaction is greater than 3.1ft. As a result, this should
help a decision maker to collect more data and try to reduce the range of uncertainty and the
possibility of greater compaction happening during the field life. These estimates should be
accounted for during the field development.

Furthermore, Monte Carlo simulation results yield subsidence values with the mean of 0.87f
and a standard deviation of 0.34ft. These results show that because of the uncertainty in Young’s
modulus, the subsidence impact could range with a 90% confidence interval from 0.36ft to 1.46ft
(Figure 4).
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Figure 4: Subsidence distribution for experiment-2. The mean of Young’s modulus used in the experiment-
2 is 86,508.81psi and a standard deviation is 41,17psi. The constant value of Poisson’s ratio is 0.21.
The results of Monte Carlo simulation provide the decision maker with possible scenario that

might happen and the right response to each subsidence outcome.
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Figure 5. The impact of Young’s modulus on compaction and subsidence

As shown in Figure 3, it is interesting to note values of E ranging approximately from 40,000
to 140,000psi impact the compaction and subsidence more than compared to E values lying
beyond 140,000psi where the impact is really small. This shows that uncertainty beyond
140,000psi is insignificant to values of compaction and subsidence.

In experiment-3, data for Poisson’s ratio from two wells were fitted with a normal
distribution as the best fit based on the Chi-square measure.

In this expenment Poisson’s ratio distribution has a mean of 0.29 and a standard deviation of
0.09 and it is truncated leaving a range of 0.02 — 0.5 as shown in Figure 1b. The impact of
introducing uncertainty in both Young’s modulus and Poisson’s ratio has resulted in a
compaction mean of 2.43ft and standard deviation of 1.24ft and a 90% confidence interval of 0.72
— 4.72ft (Figure 6).
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Figure 6. Compaction uncertainty for expcriment-3. The mean of Young’s modulus used in the
experiment-3 is 86,508.81psi and a standard deviation is 41,17psi. Poisson’s ratio distribution has a mean
of 0.29 and a standard deviation of 0.09.

The impact on subsidence as a result of allowing for both E and v has resulted in a mean of
0.60ft and standard deviation of 0.37ft. A 90% confidence interval was estimated to range from

0.12 — 1.33ft (Figure 7).
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Figure 7: Subsidence uncertainty for experiment-3. The mean of Young’s modulus used in the experiment-
3 is 86,508.81psi and a standard deviation is 41,17psi. Poisson’s ratio distribution has a mean of 0.29 and a
standard deviation of 0.09

It is important to emphasis that the difference between experiment-2 and experiment-3 is
treating Poisson’s ratio as uncertain. In the later case, compaction results with addition of
Poisson’s ratio as uncertain variable has reduced the mean but the standard deviation is the same.
Furthermore, the addition of Poisson’s ratio on subsidence has resulted in a decrease in the mean,
with approximately the same value for standard deviation. The mean values are consistent with
results found using numerical simulation methods. The advantage of Monte Carlo simulation is
that it has the ability to investigate the impact of variation of both E and v simultaneously,
compared to numerical simulation where each variable is changed while others are held constant.

A sensitivity analysis was performed to assess the impact of Young’s modulus and Poisson’s
ratio on compaction. The Tornado plot for compaction (Figure 8a) shows that Young’s modulus
has a greater impact than Poisson’s ratio implying that more effort should be directed toward
estimating Young’s modulus than estimating Poisson’s ratio. Similar sensitivity analysis was
done for subsidence (Figure 8b). Here we expected Young’s modulus to have a bigger impact,
however it was interesting to note that correlation coefficient for Poisson’s ratio are larger than
for Young’s modulus indicating that more effort should be directed toward estimating Poisson’s
ratio when estimating subsidence.
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Figure 8. T(Ertgado plot for (a) compaction, (b) subsidence.

When all the experiments were combined for the case of compaction (Figure 9), it is clear
that as we add the uncertainty of Young’s modulus, the compaction mean was reduced. In
experiment-3 when the Poisson’s ratio uncertainty was introduced, the mean compaction was
reduced which is reflected in the left shift of the cumulative distribution function. As we add the
uncertainty of pore fluid pressure reduction, compaction mean has increased again and the
standard deviation has increased due to the addition of uncertain parameter. This clearly shows
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that pore fluid pressure reduction increases the compaction mean, because it has positive impact
on compaction while both Young’s modulus and Poisson’s ratio have negative impacts.
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Figure 9. Compaction as uncertainty variables (E, v and Apf) are added.

3. DISCUSSION

Equation 1 enables us to recognize four parameters influencing reservoir compaction
behavior: (1) Poisson’s ratio, (2) Young’s modulus, (3) reduction of pore fluid pressure and (4)
thickness of reservoir. The numerical results showed that high Poisson’s ratio and high Young’s
modulus reservoir cause a much lower compaction. However, these parameters were measured at
ambient conditions, which can cause some skew error compared to measured values at in-situ
condition. So, the tests in overburden conditions should be conducted on measurement on
Young’s modulus and Poisson’s ratio to get more adequate data.

The stochastic results also showed that the reduction of pore fluid pressure has smaller impact
on compaction. In most cases, the drop in pore fluid pressure in gas field from beginning
production period to abandonment is small [17]. So, the consideration of reduction of pore fluid
pressure may be neglected in gas field. However, in other oil and gas fields, particularly for fields
with solution gas drive [17], the drop in pore fluid pressure should be considerable for a
compaction investigation, even if this field is a hard rock reservoir where Young’s modulus is
larger than 140,000psi.

The stochastic analysis is based on the fitted distribution of input data, which is chosen
automatically by computer. Different distribution could lead to big difference in standard
deviation results in both compaction and subsidence. To get the best results, validation process
should make on real subsidence and compaction data that is not easy to obtain in field.

4.CONCLUSIONS

The stochastic-based simulation of compaction and subsidence highlighted the following key
issues that are not generally mentioned in numerical simulation methods.

Young’s modulus has more impact on compaction than Poisson’s ratio. Values of Young’s
modulus in this deep-water field in Gulf of Mexico ranging beyond 140,000psi have an
insignificant effect on compaction and subsidence. This value could be used as a quantity for
prediction of other compaction reservoirs instead of soft rock definition.

The influence of Poisson’s ratio on subsidence is more important than the effect of Young’s
~modulus. So, it is better to use Poisson’s ratio when estimating subsidence in cases when there are
inadequate Young’s modulus data. Additionally, the reduction of pore fluid pressure has less
impact on subsidence and compaction although it is the main reason for increasing effective stress
when using the simplified equation for Monte Carlo simulation.
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Numerical simulation with deterministic parameters is still valid in purpose of comparison
with stochastic simulation. Although the type of reservoir model that has been built is simple, the
study shows that all compaction results of sensitive analysis are in the range of 50% confident
interval of stochastic simulation in which compaction problem could be happened in reservoir.
So, stochastic simulation could be a useful technique to quickly evaluate the compaction without
any complicated numerical simulation in deep-water field.

DANH GIA TAC PONG CUA YEU TO NGAU NHIEN TRONG VIEC DU BAO
SUT LUN VA CO KET

Ta Qudc Diing™; Al-Harthy, M.?; Hunt, S™;. Sayers, J. "
(1) Bai hoc Adelaide, SA, Australia
(2) Pai hoc Sultan Qaboos, Oman
(3) Geoscience Australia, ACT, Australia

TOM TAT: Nji dung bai bdo trinh bay phuo*ng phadp stochastic sic dung mé phong Monte
Carlo tng dung trong dy bdo sut liin va ¢é két tai mo dau khi nuéc séu tai vinh MeXiCo. Két qua
cho thdy anh hucng trong viéc xu dung cdc phan b6 ngdu nhién cho dir liéu ban dau nhu Young
modulus, ti I¢ Poisson va sut gidm dp sudt lo rong trong viéc du bdo sut lun va co j két. Dy bdo tir
mé hinh tinh todn ngdu nhién sut lin va cé két dugc so sanh véi két qua mé phong via xir dung
phan mém Eclipe 300. Két qua tinh todn dya trén phwong phdp stochastic két lugn: Cdc gid tri
xdc djnh cua mé phéng via nam trong khodang hgp ly ctia mé hinh ngau nhién. Cac phan tich
ciing chi ra Young modulus tdac dong nhiéu nhdt @én cdc tinh todn cé két so véi ti s6 Poisson. Hon
nita déi véi cde thanh hé co gia tri Young modulus lén hon 140.000 psz tai vinh Mexico, hién
twong sut lin va cé két sé it xay ra. Cubi cing, dia vao cde két qua tinh todn véi mé hinh
stochastic, cdc via cé kha ndng c6 két va sut lin s€ dugc di bdo trén toan viing mo.
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