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ABSTRACT: Memetic algorithm, a combination of genetic algorithm with local search,
is one of the most successful metaheuristics to solve complex combinatorial optimization
problems. In this paper, we will introduce an object-oriented framework which allows the
construction of memetic algorithms with a maximum reuse. This framework has been
developed in Java using design patterns to allow its easy extension and utilization in different
problem domains. Our framework has been experimented through the development of a
memetic algorithm for solving set covering problems.
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1. INTRODUCTION

_Memetic algorithms (MAs), introduced by P. Moscato ([7],[8]), are genetic algorithms that
apply a separate local search process to refine individuals (e.g. improve their fitness by hill
climbing). MAs represent one of the most successful emerging metaheuristics in the ongoing
research effort to solve effectively NP-complete combinatorial optimization problems ([1], [6],
[8]). From an optimization point of view, MAs are hybrid genetic algorithms that combine
global and local search by using a genetic algorithm to perform exploration while the local
search method performs exploitation.

In this paper, we introduce an object-oriented framework for developing MA applications.
Such a framework is very useful and effective in designing and implementing a memetic
algorithm rapidly, since it aims to achieve a high degree of design reuse. The framework is a
set of interrelated classes that embody an abstract design for solutions to combinatorial
optimization problems using MA. The framework establishes a reference application
architecture (“skeleton”), providing not only reusable software clements but also some type of
reuse of architecture and design patterns, which may simplify application development
considerably. It is not the main objective of the framework to provide with a fast “running
system” but with a fast “design and implementation system”. This framework will serve
object-oriented programmers and evolutional computation developers that want to reuse not
only at the code level but also at the design level.

The basic idea of the framework is to capture the essential features of most MA techniques
and their possible compositions. The user’s application is obtained by writing derived classes
for the selected subset of the framework classes. Such user-defined classes contain only the
specific problem description, but no control information for the algorithms.

The organization of the paper is as follows. Section 2 describes the framework for MAs,
including the details of the components in the framework architecture. Section 3 introduces
briefly an actual application of the framework: the development of a MA for solving the set
covering problem. Section 4 gives some discussion on related works. Conclusion and future
works are given in Section 5.
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2. FRAMEWORK FOR MEMETIC ALGORITHMS
2.1 Memetic Algor'ithm
A general schema of a memetic algorithm is given in Figure 1.

procedure MA
begin
for j = 1 to popsize do // popsize: size of population P
i = generateSolution(); // an initial solution
i = LocalSearch(i); add individual i to P;
endfor;
repeat
for j =1 to #recombinations do
select two parents i,, i, € P randomly;
ic = Recombine(i,, i,);
ic = LocalSearch(i.); add individual ic to P;
endfor;
+ for j =1 to #mutations do
select an individual i € P randomly;
im = Mutate(i);
im = LocalSearch(i,,); add individual i, to P;
endfor;
P = select(P);
until terminate = true;
end;

Figure 1. General schema of a memetic algorithm

2.2 Background on Design Patterns and Object-Oriented Framework

Design patterns are abstract structures of classes that are commonly presented in object-

oriented applications and that have been precisely identified and classified. Design patterns are

used to capture experiences in the design of solutions to difficult but ubiquitous problems and
to describe best practices in such a way that other designer can reuse not only “computer code”
but also basically “designs”. A software framework is a reusable architecture, which provides
the skeleton and basic behavior of a certain kind of software product. In general, a framework
is a collection of tightly related classes whose interrelation is usually given by the design
patterns that the framework implements. The user needs only to define suitable derived
classes, which implement the operations of the abstract classes in the framework. The
framework relies extensively on the three following design patterns from Gamma et al. ‘s book

[4]:
- Abstract Factory which provides an interface for creating families of related or
dependent objects without specifying their concrete classes.

- Strategy defines a family of algorithms, encapsulates each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients that use it.
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— Template Method defines the skeleton of an algorithm in an operation, deferring some
steps to subclasses. Template Method lets subclasses redefine certain steps of an
algorithm without changing the algorithms.

2.3 Architecture of the Framework for Memetic Algorithms

In Figure. 2 we show the main components of the framework, using UML notation. If a
class B is connected to class A by a line with an open triangle pointing toward A, then B is
derived from A. If class A has a filled arrow to class B, then an instance of class A “has” one
or more instances of an object of class B. The main design patterns used in this architecture are
Template Method, Abstract Factory, and Strategy.

Template Method

The Template Method patterns provide with a general-purpose algorithm which can be
easily tailored to different situations. A component of the framework using this design pattern
is illustrated in Figure 3. In the figure, AbstractMemeticAlgorithm is an abstract class
providing the general memetic algorithm with several necessary operations: localSearch(...)
for local search step, mutate(...) for mutation operator, crossover(...) for crossover operator,
parentSelection(...) for parent selection strategy, selectNextGeneration(...) for survivor
selection strategy.

The derived class AbstractMA inherits the class AbstractMemeticAlgorithm will hook into
the process of memetic algorithm by overriding all these above-mentioned operations.
AbstractMA overrides all the methods of the class AbstractMemeticAlgorithm: localSearch(...),
mutate(...), crossover(...), parentSelection(...), selectNextGeneration(...),
initializePopulation( ...).

AbstractMA is still an abstract class since it has not implemented the stoppingCondition()
method.
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Figure 2. Architecture of the framework
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Figure 3. A component in the framework using Template Method pattern
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Abstract Factory

The class MAComponentFactory implements an Abstract Factory pattern. It defines an
interface to create objects in the three classes: LocalSearch, ParentSelectionStrategy, and
ReplacementSitrategy. :

The classes LocalSearch, ParentSelectionStrategy and ReplacementStrategy, which are
abstract, define an interface for local search step in the memetic algorithm, an interface for
parent selection strategy and an interface for survivor selection strategy, respectively.

There are several sorts of local search objects. HillClimbing, TabuSearch, and
SimulatedAnnealing are the subclasses derived from the LocalSearch class and each of these
objects will know how to implement a specific local search technique selected by the user. The
specific local search method can be hill climbing, Tabu search, or simulated annealing.
MyHillClimbing is a subclass that is derived from the HillClimbing class and implements the
hill climbing local search method. This class will be completed by the user and it overrides the
necessary methods.

There exist subclasses of the abstract class ParentSelectionStrategy that will create the
appropriate  instance of a parent selection object:  FitnessPropotionalSelection,
TournamentSelection and RankBasedSelection.

There exist subclasses of the abstract class ReplacementStrategy that will create the
appropriate instance of replacement selection object: ParentsChildrenStrategy —and
ParentsPlusChildrenStrategy. These classes can implement one of the following survivor
selection strategies. (1) ParentsChildrenStrategy implements the survivor selection strategy
(1, A) in which 7 parents will be replaced by 4 best children. (2) ParentsPlusChildrenStrategy
implement the survivor selection strategy (77+4) in which 7 best individuals will be selected
from the population consisting of 7 parents and A children.

AbstractMA plays the role of a client who uses the interfaces MAComponentFactory,
LocalSearch, ParentSelectionStrategy, and ReplacementStrategy. These interfaces will be
used in implementing the methods [ocalSearch(..), mutate(...), crossover(...),
parentSelection(...), selectNextGeneration(...) and initializePopulation(...) of the class
AbstractMA.

To develop a memetic algorithm, the user has to define a concrete class MyMA derived
from the class AbstractMA (or the class AbstractMemeticAlgorithm) and implement the
necessary methods. For example, if MyMA inherits from the class AbstractMA, the user needs
to implement the method stoppingCondition(...) to specify the terminating condition of the
memetic algorithm and the method createMAAbstractFactory(...) to create an AbstractFactory
object of the class MAComponentFactory.

MAOperator provides the interface for the class AbstractMA. It implements the operations
mutate(...), crossover(...), etc. It provides the interface for implementing the basic genetic
operators: one-point crossover, two-point crossover, uniform crossover and mutation.

Strategy

Some examples of the use of Strategy pattern in our framework are described as follows.
The classes HillClimbing, TabuSearch, and SimulatedAnnealing have been factored into the
class LocalSearch, as already described in the above subsection Abstract Factory. The classes
FitnessProportionalSelection, TournamentSelection, and RankBasedSelection have been
factored into the class ParentSelectionStrategy.
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The main data representations used in the framework are population and individual. The
class Population represents the population and the class Individual represents the individuals
in a population of the memetic algorithm (see Figure 4 and Figure 5).

The class Individual provides the interface for implementing an individual. The class
consists of only one abstract operation objectiveFunction(...) that will be completed by the
user later. The objectiveFunction(...) is the objective function defined in the problem under
consideration. The instantiation of an Individual object is through an IndividualFactory object
which plays the role of an AbstractFactory. For example, in Figure 7 the user defines the class
MylIndividualFactory, which is derived from the class IndividualFactory, to instantiate a
MylIndividual object. The class Mylndividual is a concrete class derived from the class
Individual.
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Figure 4. Some other components of the framework
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Figure 5. Some other components of the framework

3. AN APPLICATION OF THE FRAMEWORK: THE SET COVERING PROBLEMS

In this section, we present the application of the framework for developing a MA to solve
one well-known combinational optimization problem: set covering problem.
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The set covering problem (SCP) is the problem of covering the rows of a m row, n column,
zero-one matrix (a;), by a subset of the columns at minimum cost. Defining x; = 7 if column j
(with cost ¢; > 0) is in the solution and x; = 0 otherwise, the SCP is

Minimize Y 8.%, ‘ (1)
J=1

Subject to pa B i=1, 5 0 2)
J=1
x; € {0,1} j=1,...,n (3)

Equation (2) ensures that each row is covered by at least one column and equation (3) is
the integrality constraint. If all the cost coefficients ¢; are equal, the problem is called the
unicost SCP. The SCP is NP-complete. It has many practical applications including crew
scheduling, location of emergency facilities, assembly line balancing and boolean expression
simplification.

3.1 Memetic Algorithm for Set Covering Problems -
Representation and Fitness Function

We use a n-bit binary string as the chromosome structure where » is the number of
columns in the SCP. A value of 1 for the i-th bit implies that the column i is in the solution.
The fitness of an individual is directly related to its objective function value. With the binary
representation, the fitness f; of an individual 7 is calculated simply by

= Zn:cfsu' )
j=1

where s;; is the value of the j-th bit (column) in the string corresponding to the i-th individual
and ¢; is the cost of bit (column) ;.

Parent Selection Technique

We choose the tournament selection method. It works by forming two pools of individuals,
each consisting of 7 individuals drawn from the population randomly. Two individuals with
the best fitness, each taken from one of the two tournament pools, are chosen for mating. Here
we apply the binary tournament selection (i.e. 7= 2) as the method for parent selection.

Population Replacement model

Once a new feasible child has been generated, the child will replace a randomly chosen
member in the population. This type of replacement method is called incremental replacement
or steady-state replacement.

Variable Mutation Rate

We select to utilize a variable mutation rate rather than a fixed, small mutation rate and
this mutation rate should depend on the rate at which the MA converged.

Heuristic Feasibility Operator

The solutions generated by the genetic operators may violate the problem constraints (i.e.
some rows may not be covered). To make all solution feasible, one additional operator is
needed. We apply the heuristic feasibility operator proposed by Beasley et al. [3]. This
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operator involves the identification of all uncovered rows and the addition of columns such
that all rows are covered. The steps are listed as follows:

Let
I = the set of all rows
J = the ser of all columns
= the set of columns that covers row i, i € [

3 = the set of rows covered by column j, j € J
S = the set of columns in a solution
U = the set of uncovered rows
= the number of columns that coverrow i, i € /in §
1. Initializew;=|Sne|,Viel
2. Initialize U= {i|w;=0,V i e I}.
3. For each row i in U (in increasing order of i }
~ (a) find the first column ; (in increasing order of /) in that minimizes
¢/\UNG |,
(b) addjto Sandsetw,=w;+1,Vie f SetU=U- B.
Step 1 and 2 identify the uncovered rows. Step 3 is a heuristic in the sense that columns
with low cost-ratios are being considered first.
Hill-Climbing Operator
We use a hill climbing operator as a local search technique in our MA for SCP. The hill
climbing operator is as follows:
For each column j in S (sorted in decreasing column cost), if w; 2 2, Vi € fthenset S=5—
jand set w;=w;— 1, Vi € £ Now S is a feasible solution that contains no redundant columns.
Generating Initial Population
To generate initial populat:on we also use a method proposed by Beasley et al. [3]. Each
of the initial solutions is generated randomly and then it is made feasible by eliminating
redundant columns by a method similar to that used in the heuristic feasibility operator except
that the redundant columns are dropped in a random manner rather than by cost.
To summarize our memetic algorithm for the SCP, the following steps are used:
1 — Generate randomly an initial population with a given size N.
2 — Select two parents P, and P, from the population using the binary tournament
selection.
3 — Recombine (crossover) the parents P; and P; to produce an offspring C.
4 — Mutate k genes randomly selected from an offspring C where k is determined by a
variable mutation schedule.
5 — Perform local search on the offspring C to improve its fitness.
6 — Repeat the steps 2-5 until the fixed number of offspring is reached.
7 — Select individuals for the next generation using (77+A) replacement strategy.
8 — If the population incurs premature convergence, restart another initial population.
9 — Repeat the steps 2-5 until the termination condition is satisfied. The best solution
is the solution with the largest fitness value in the population.
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3.2 Code Example
Let us look at a piece of code needed to run an application of the framework to solve the
SCP using MA.

The framework has implemented for us all the main parts of the MA. Therefore we do not
need to code the whole MA for SCP from the scratch. We have to implement just some
concrete classes derived from the abstract classes necessary for the algorithm, including the
class HillClimbingFSCP which implements the concrete local search step in the MA for SCP.
Here, the concrete classes consists of the following:

- The class IndividualSCP, derived from the abstract class Individual, represents
concrete individuals in the MA for SCP.

— The class MASCPFactory, derived from the abstract class MAComponentsFactory,
helps to create the LocalSearch, ParentSelectionStrategy, and ReplacementStrategy
objects.

- The class Individual SCP_Factory, derived from the abstract class
IndividualFactory helps to create the /ndividual objects.

- The class MA_SCP, derived from the abstract class AbstractMA, includes the code
which is modified to incorporate the heuristic used for generating only feasible
initial solutions and some heuristics used for the mutation operator in the MA for
SCP.

The main Java code for running the main program is given as follows:
1- import java.util;
2- public class Test {
3-  public static void main(String [Jargv)
4
5- int numbersOfCol = 1000,
6- int iNumbersOfChildrenAtEachGeneration = 100;
7- int sizeOfPopulation = 100;

8- IndividualFactory individualFactory = new
Individual_SCP_Factory(numbersOfCol);

9- AbstractMA maSCP =new MA_SCP(sizeOfPopulation,
iNumbersOfChildrenAtEachGeneration, individualFactory);
10- maSCP.setMutationProb(mutationProb);
I1-  maSCP.setMutationRate(mutationRate);
12- maSCP.setRestartMutationProb(mutationProbRestart);
13- maSCP.setRestartMutationRate(mutationRateRestart);
14- maSCP start();
15-  Individual indiv = maSCP.getOptimallndividual();
16- }
17- }
Some variables used in the above code are explained as follows. Let numbersOfCol denote
the number of columns in the SCP under consideration, sizeOfPopulation the population size

and iNumbersOfChildrenAtEachGeneration the number of offspring generated in each
generation, respectively.
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Chromosome encoding is implemented through an individualFactory object, which is
instantiated at line 8. The memetic algorithm for SCP is executed through the maSCP object
belonging to the abstract class AbstractMA. The concrete class corresponding to the abstract
class is MA_SCP.

Lines 10, 11 set the mutation probability, the mutation rate for the memetic algorithm
when the population has not converged. Lines 12, 13 reset the mutation probability for the
memetic algorithm when the population has already converged. Here we apply the variable
mutation rate technique as mentioned in subsection 3.1.

3.3 Experiments

The experiments of the MA for set covering problems using the framework have been
done on the PC Pentium III 700Mhz, 256 MRAM. All the benchmark problems for SCP were
obtained electronically from the OR-Library [2], available at the website:
http://people.brunel.ac.uk/~mastjjb/jeb/jeb.html.

We have tested 15 benchmark problems downloaded from the website, namely scp47,
scp42, scpd3, scpdd, scp45, scp46, scpd7, scp48, scp49, scpbl, scp62, scp63, scpb4, and
scp65. For each problem, we have performed 10 runs. Runs are terminated whenever the
expected number of generations has reached. The experiments show that the MA can find near
optimal solutions for the benchmark SCP instances in not more than 200 generations. This
number of generations is much less than that required by pure genetic algorithms in order to
obtain the same high quality solutions of the same SCPs. (For more details about experimental
results, readers can refer to [9]). Note that this framework serves also to develop pure genetic
algorithms where no local search is involved.

We have developed two versions of the MA algorithm for SCP: the MA implementation
for SCP without using the framework and the one that utilizes the framework. The former is
composed of 674 lines of Java code whereas the latter consists of only 123 lines. This confirms
that the user can save a lot of effort when using the framework to develop a MA application in
comparison to what is required for design and implementing a MA application from the
scratch. The framework exhibits several advantages, not only in terms of code reuse by also in
methodology and conceptual clarity. However, the framework approach still has one potential
drawback: the performance of the MA implementation which applies the framework may be
slower than that of the MA developed from scratch.

4. DISCUSSION

A few of object-oriented frameworks for MA applications have been already developed
and are described in literature, notably in [5] and [10].

The framework developed by Wu [10] is a C++ framework for MA algorithms. This
framework is based on only two design patterns: Template Method and Strategy. It does not
include the important classes that support parent selection strategy, population replacement
strategy, and genetic operators and it focuses mainly to the logic of local search and memetic
algorithm. In our framework, we use more design patterns: Abstract Factory, Template
Method and, Strategy and offer more abstract classes in order that it requires less effort from
the user to develop a MA application. In short, our framework aims at a higher level of
abstraction than the Wu’s framework.

The framework MAFRA by Krasnogor et al. [3] is a Java framework for MA algorithms.
This framework is based on five design patterns: Abstract Factory, Factory, Template Method,
Strategy, and Visitor and therefore offers more abstract classes than our framework does.
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However, examining closer at the architecture of MAFRA, we feel difficult to know where
and how a particular design pattern is utilized in the framework. In term of this aspect, our
framework is clearer, more recognizable, and therefore easier to use.

5. CONCLUSIONS

In this paper, an object-oriented framework was presented to be used as a general tool for
the development and implementation of MAs in Java. The basic idea of framework is to
capture the essential features of most MA techniques and their possible compositions. The
user’s application is obtained by writing derived classes for a selected subset of the framework
classes. Such user-defined classes contain only the specific problem description, but no control
information for the algorithms.

As an example of actual use of the framework, we present the development of the MA for
solving a well-known combinatorial optimization problem: set covering problem. The
development of this application shows that it is very useful and effective to use the framework
for solving a specific problem by MA.

One direction of our future works is to apply the framework in developing MA
applications for several other problems such as Traveling Salesman Problem, Vertex Cover,
Bin Packing, Set Partitioning and some typical timetabing problems.

MOQT KHUNG THUC CHO GIAI THUAT MEMETIC

Phan Anh Tuén, Dwong Tuéin Anh
Truong Pai Hoc Bach Khoa, PHQG-HCM

TOM TAT: Gidi thudt Memetic, su két hap giai thuat di truyén véi tim kiém cuc bé, la
mot trong nhu’ng siéu-heuristic kha manh dé giai nhimg bai todn t6i wu t6 hop phiic tap. Trong
bai bao nay, chung t6i gici thiéu mot khung thirc huong c‘z’oz tugng ma hé trg cho viéc xdy
dung nhiing giai thudt memetic véi kha ndng tdi sir dung t6i da. Khung thirc nay dwogc phat
trién bang Java, sir dung nhitng mau thiét ké cho phép mo réng dé dang va tién dung trong
nhiéu lanh vic ung dung. Khung thirc nay da dugc thi nghiém qua viéc xdy dung mot gidi
thudt memetic dé gzal bai toan phu tap.

Tir khoa: giai thudt memetic, giai thudt di truyen tim kiém cuc bé, khung thitc hwong
doi twong, bai todn phii tdp.
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