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ABSTRACT: This paper presents a neural-based filtered-X least-mean-square
algorithm (NFXLMS) active noise control (ANC) system. The saturation of the power amplifier
in ANC system is considered. A method for compensating the saturation is proposed. On line
dynamic learning algorithms based on the error gradient descent method is carried out. The
convergence of the algorithm is proven using a discrete Lyapunov function. Simulation results
are provided for illustration.
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1. INTRODUCTION

ANC has received much attention in recent years. In ANC system, a secondary source is
introduced to generate anti-noise of equal amplitude and opposite phase with the primary
noise. The acoustic and electrical control basis of ANC system is introduced in [1]. The
filtered-x least mean square (FXLMS) algorithm is a popular adaptive filtering algorithm using
a finite impulse response (FIR) filters [1, 2], because it is simple and has relatively low
computational load. The development of digital signal processing (DSP) hardware allows
more sophisticated algorithms to be implemented in real time to improve the system
performance [3]. Linear ANC systems have been successfully used to cancel noise in air
conditioning duct systems, handsets, and others [1-3]. However, in a practical ANC system,
the secondary path and primary path of the ANC system may exhibit nonlinear behaviors. The
ANC system has to be adaptive because of changes in environment, degradation of system
components, and alteration of the noise source. The use of adaptive Volterra filter in ANC
system has been presented in [4]. The main drawback of this approach is that the size of the
filter increases exponentially with the number of inputs and the computation task is extremely
heavy. The use of neural networks has been suggested to cope with the case of nonlinear
system [5-8]. The major problem with an neural network based ANC is its relatively slow
learning process. In references [9-15] fuzzy-neural and recurrent neural networks have also
been used in nonlinear ANC system. Since the fuzzy neural network is a local approximate
model, the adaptive process can be accelerated.

This paper will focus on the active noise control problem for nonlinear acoustic path. A
feedback neural network controller is proposed, where the model of neural network is
simplified to meet the characteristic of an ANC system. The remainder of the paper is
organized as follows. Section 2 describes the traditional nonlinear ANC system and its
adaptive algorithm. In section 3, the proposed ANC system is presented. Section 4 analyses the
convergence of the proposed algorithm using a discrete Lyapunov function. Section 5 presents

simulation results to illustrate the proposed ANC system. The conclusions are given in section
6.
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2. TRADITIONAL ANC SYSTEM

The traditional adaptive feedback ANC system using neural network is presented Fig. 1. In
Fig.1, the primary noise x(k), generated by the noise source, propagates through the primary
path P(z). The secondary noise y(k), generated by the ANC system, propagates through the
secondary path G(z) and S(v), where S(v) stands for the saturation of the ANC system. The
primary noise and the secondary noise are combined to produce the residual noise, e(k) = d(k)
+ v(k), in the region where the noise is to be controlled. A microphone is placed in this region
to measure the residual noise e(k).
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Fig. 1. Adaptive feedback ANC system
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Fig. 2. The proposed ANC system with saturation compensation

The neural network is used to produce the secondary noise y(k). It is trained such that the
residual noise e(k) is minimized. The introduction of the secondary-path transfer function in
the system using the LMS algorithm may lead to instability. This is because, it is impossible to
compensate for the inherent delay due to G(z) if the primary path P(z) does not contain a delay
of equal length. Also, a very large FIR filter would be required to effectively model 1/G(z).
This can be solved by placing a model G(z) of the secondary path G(z) in the reference signal

path to the weight update of the LMS equation. Note that G(z) includes the digital-to-analog
converter, reconstruction filter, power amplifier, loudspeaker, acoustic path from loudspeaker
to residual noise, preamplifier, anti aliasing filter, and analog-to-digital converter.
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3. THE PROPOSED ANC SYSTEM

The proposed feedback ANC system is presented in Fig. 2, where $(v) is a model of S(v)

and is used to compensate for the saturation of the power amplifier. The ANC system can be
described by the following equations:

The residual noise is given by

e(k)=d(k)+v(k) (1)
The secondary noise can be approximated as
2
v(k) = T2 m® 1 ()

where the tansig function is used to describe the saturation of the system

M
u(k)=G(2)y(k) =Y g(m)y(k - m)
The neural network

y(k) = finet(k)) = net(k), (3)

(linear activation function), and

[/}

net(k) = i w,.d (k) =W (k)" D(k) 4)

(linear integration function)

where W(k) represents a column vector of all of the network weights and D(k) represents
the input signal, k is the time index and f is the activation function,

Wk =[w, (k) w(k) ... w (0],
pw=ldw) dk-1 ... dtk-n)|
Define the cost function as
V(k)=4e* (k) =$[d(k)+v(k)]’ ©)

The network weights update is based on a stochastic steepest descent which incrementaily
reduces the instantaneous squared error in the output of the neural network as:

oW (k)
where 7 is the learning rate. Applying the chain rule to (6):

W(k+1)=W(k)-nVV(k)=W(k)- q[ P } (6)

oV OV dedv ou _ dv ou

—_— —_— =

oW e Ovouow  ouoW

From (2), we obtain
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_ o 1-v(k) | ,
v 24 ® 2'1[1 - v(k)] |
v __ — = = 4[1- v(k)][l (k)] =4[1-v (k)] (8
ou  [l4e®]

1+ v(k)

ow o .,ay ow b

where g(m) are the coefficients of the Mth order FIR filter G(z) Thus, according to (6), the
network weights update is computed as

From (3) and (4), 2“ [ ] By] =|:ig(m)c?(k—m)]

.M .
W (k +1) = W (k) = nAe(k)[1 - v ()] g (m)d (k — m) 9)

m=0

4. CONVERGENCE OF THE PROPOSED ANC SYSTEM

Let V(k) as (5) be the dtscrete -type Lyapunov function candidate. Due to the training
process, we have

AV (k) =V (k+1) =V (k) = %[e2 (k+1) - e* (k)]
= Lle(k +1) - e(k)]le(k +1) + e(k)] = L Ae(k)2e(k) + Ae(B)] (1

The error difference resulting from the learning can be represented by

Ae(k) = e(k +1) — e(k) = {aa;/} AW (k) = [—————_] AW (k)

m=0 m=0

=[%(1—v2(k))fg(m>c?(k'—m)} x[—%ne(k)(l—vz(k))fg(m)a?(k—m)]
= — LnAe(k)[1 -v? (k)] 4° (k)
(11)
where A(k)=" g(m)d(k - m)

m=0

It follows from (11) that

AV (k) = - L nA2e(k)[1 - v (K)]* 42 (k) x {2e(k) - 1 nA2e(k)[1 - v* (k)] 4° ()}
=—%nﬂze’(k)u—vz(k)]zAz(k)x{2——nf[1 v ()] 42 (b))

If the learning rate 7 is chosen as

<< (12)

8
A=V (k)T 4 (k)
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then AV (k) < 0. Therefore, the control system is locally convergent.

5. SIMULATION RESULTS

In the following simulations, the noise source is a sinusoidal signal of frequency 150Hz.
The sampling frequency is chosen to be 8-KHz, the saturation level is +0.5, the learning rate
for Wis chosenas 7= 1.

An ANC example is selected to illustrate the effectiveness of the adaptive feedback ANC
system using neural network (NN). In oder to see the amount of attenuation, the result of
canceling noise is shown in frequency domain. Fig. 3(a) is the primary noise. Fig. 3(b) is the
noise canceling results by the NN algorithms.

It is clear that the proposed ANC system performs excellently in canceling the periodic
signal. The attentuation of periodic noise is about 20dB for the conventional NN method.
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Fig. 3. ANC of periodic noise: (a) primary noise, (b) ANC with NN

Fig. 4 and Fig. 5 show, respectively, the simulation results of neural network ANC system
with and without saturation compensation. Remark that, without saturation compensation, the
ANC system can not operates effectively (Fig. 3) when the noise level is high; with saturation
compensation, the ANC system operates effectively (Fig. 4) even when the noise level is high.
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Fig. 4. NN ANC system without saturation Fig. 5. NN ANC system with saturation
compensation compensation
6. CONCLUSIONS

This paper presents an ANC system using neural network. The saturation of the power
amplifier is compensated. The convergence of the proposed algorithm is proven using a
discrete Lyapunov function. Computer simulations show that the proposed system is effective.
The proposed algorithm is also versatile and can be used in other applications. Results in real
system as well as the case of multiple noise sources will be presented in a near future.
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HE THONG KIEM SOAT NHIEU TiCH CUC HOI TIEP DUNG
MANG NORON

Huynh Vin Tuian®, Nguyén Hiru Phuong”, Nguy&n Ngoc Long®
(1) Trudng Dai hoc Khoa hoc T Nhién, DHQG-HCM
(2)Truong Pai hoc Tén Puc Thing

TOM TAT: Bai bdo nay thuc hién giai thudt FxLMS (Filtered-x Least Mean Square)

trén co' s mang noron nhdn tao de kiém sodt nhiéu tich cuc (ANC). Van @é bao hoa ciia bo
khuéch dai cong sudt trong hé thong ANC duoc trinh bay. Phuong phdp bé chinh bdo hoa va
giai thudt hoc truc tuyen diea trén phwong phdp giam d¢ doc duoc thuec hién. Diéu kién hi tu
dugc chimg minh bang cdch sir dung ham Lyapunov roi rac. Cdc két qua mé phong dwoc trinh

bay.

hoi tu.
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