TAP CHi PHAT TRIEN KH&CN, TAP 12, $01 14 - 2009

DARTSVIEW, A TOOLKIT FOR DARTS IN LABVIEW

Ngo Khanh Hieu”, Grolleau Emmanuel®
(1) University of Technology, VNU-HCM
(2) Laboratory of Applied Computer Science, LISI-ENSMA, France

ABSTRACT: DARTS (Design Approach for Real Time Systems) [4] is a software
design method for real time systems. LabVIEW (Laboratory Virtual Instrument Engineering
Workbench) is a graphical application development environment developed by National
Instruments Corporation based on the dataflow representation of the “G” language [6][2].
LabVIEW is implicitly — multithreaded and has high level functions for
communication/synchronization, allowing it to be used as a programming language for
control/command and soft real-time applications. In order to help a designer to develop a
real-time application, we propose the library DARTSVIEW, which simplifies the passage from
the conception of a “multitasking” application to the implementation [8]. One can use
DARTSVIEW in different phases of the life cycle of real-time system software. The last version
of DARTSVIEW, allows to define in XML several real-time programming normalized
languages, and to generate a part of the code for different specific programming languages
(Ada, POSIX 1003.1, VxWorks, OSEK/VDX, etc.). The flexibility introduced by the use of XML
allows a designer also to generate some code targeting real-time scheduling analysis tools in
order to achieve the temporal validation. The objective of this article is to present an overview
of DARTSVIEW, a Toolkit for DARTS in LabVIEW, the role of DARTSVIEW in the software

“life-cycle, and some perspectives for the extensibility of this Toolkit in the future.

Keywords: DARTSVIEW, Toolkit for DARTS in LabVIEW.

1. INTRODUCTION

The “concurrency” is one of the problems that we have to face frequently in real time
systems. A concurrent system has many activities (or tasks) occurring in parallel. Usually, the
order of incoming event is not predictable and these events may overlap [4]. So several tasks
may handle the data-acquisition at different rates, some other tasks may be dedicated to the
calculation of commands, and some others to the commands of several devices. When these
activities (or tasks) synchronize and communicate, the conformance with rules of the mutual
exclusion, of the synchronization, and of the communication is actually a key issue to be
addressed:

- Mutual exclusion is the mechanism for ensuring that only one process at a time
performs a specified action. Hence, it guarantees shared access to data (or resources)
to the tasks.

- Synchronization is the control of the execution of two or more interacting processes so
that they perform the same operation simultaneously. It allows to block a task until
another one awakes it,

- Communication is a mechanism permitting the tasks to exchange the data.

DARTS (Design Approach for Real Time Systems) is a software design method, which
emphasizes the decomposition of a real-time system into concurrent tasks and defines the
interfaces between these tasks. In a DARTS diagram, each task is presented by a parallelogram
(Fig. 1). It can be either a hardware task (released by an external event, such as an interrupt or
a real-time clock), or a software task (released by another task) [8]. DARTS can be used as a

Trang 69

Science & Technoloyy Development, Vol 12, No.14 - 2009

conception method for multitask systems (including real-time and control/command systems),
since it focuses on the task decomposition, and thus is really close to the implementation
process [2].

—

D Task Tnformation Hiding Modnle
3 | of
£Z__, Evenl (uientupt_IT. rea-tlime dock_HRT....)
Lowsely-coupled
ﬂ]]_' Meccage Queue
—_i— Rendez-vous
E’— Syucluonizalion Vs

Figure 1. Elements of a DARTS diagram

LabVIEW (Laboratory Virtual Instrument Engineering Workbench) is a graphical
application development environment in the G language. LabVIEW is very well suited for
data-acquisition, signal processing, and (soft real-time) control/command of process. The
LabVIEW programming language is naturally parallel: when parts of the data flow are
independent, the runtime can map them in several system threads. However, the difference
between the notion of parallelism in LabVIEW and the semantics of dataflow associated in the
G language does not allow to make a direct communication between them by a dataflow (in
this case, the second function has to wait for the completion of the first one in order to start its
execution). Therefore, following the work of [3], LabVIEW integrates intertask
communication tools.

During several case studies, we realized that it was quite interesting to help the designer to
create a multitask application in LabVIEW with DARTS based bricks provided as a Toolkit
named DARTSVIEW, in order to get past of the classic multitask implementation process, and
to focus on the behaviour of the tasks.

One of the important roles of DARTSVIEW is to help the designer to represent a DARTS
diagram directly in LabVIEW. And in the software life-cycle like the classic V model given on
Figure 2, the functional aspect of the system may be tested.

M\

il s O
Architectural
Design
DARTS
Detailed
Design
\

Figure 2. Software life-cycle in V

The temporal validation usually consists in a schedulability analysis based on a temporal
model of the tasks [1]. The target programming language will likely be an imperative language
(like C-based, Ada), and several tools can be used, Response-Time Analysis based, like MAST
[MASTO1], or building a feasible schedule, like PENSMARTS [5]. The choice that has been
made for DARTSVIEW was to use the flexibility of XML for the temporal validation in the

Trang 70

TAP CHi PHAT TRIEN KH&CN, TAP 12, S 14 - 2009

same way as it has been used to generate program in several programming standards: an XML
model can be used to output a task model in the required format of several validation tools.

Therefore, in this case the software life-cycle based on a classic V model would be
extended with the second V porting the workstation code whose parallel behavior has been
tested on the workstation, and on the embedded target. The Figure 3 represents a software life-
cycle in W, and the role of DARTSVIEW in this life-cycle.

Architectural
Design

Ada,
WWarks,
POSIX,
OSEXNVDX,

- | Implementatian
e DARTSVIEW

Figure 3. Software life-cycle in W

In the sequel, the following aspects of DARTSVIEW approach will be presented: section 2
presents the main multitasking LabVIEW concepts, and how these concepts are used in
DARTSVIEW v7.1. The DARTSVIEW Toolkit and a case study are presented in section 3.
Section 4 presents some perspectives.

2. DARTS AND MULTITASKING LABVIEW CONCEPTS

The implicit notion of parallelism inherent in LabVIEW allows multitask programming
transparently: in fact, two loops running in parallel are mapped on different threads, and hence
are executed in parallel. This characteristic permits to implement directly an abstraction of the
tasks based on a DARTS representation. So, in LabVIEW a task DARTS can be simply
modelled by an infinite While loop. However, the difference between the notion of parallelism
in LabVIEW and the notion of data flows in G language does not allow exchanging the data
directly between the tasks. Then this section presents how LabVIEW implements the
interfaces between these tasks.

3. TASK SYNCHRONIZATION

Synchronizing two tasks consists in introducing a precedence constraint at a certain place
of code: the destination task has to wait for an event sent by the source task in order to execute
an action. In DARTS, synchronization between two tasks is presented on Fig. 4. For this type
of synchronization, programming languages usually use a counting semaphore [2]. However
the Semaphore tools proposed after LabVIEW v7.1 are bounded semaphore (LabVIEW
requires that a semaphore can not have a count greater than its initial count). In order to solve
this problem, we had to modify the implementation of the task synchronization in the way that
firstly we decrease the count of a semaphore to 0, and then the release of semaphore must be
verified to insure that the count is always smaller than or equal to the initial count.

4. LOOSELY-COUPLED COMMUNICATION

The communication is the transfer of data from one task to another. It is either based on a
send and forget paradigm (see Fig. 4) when the size of the message queue is unbounded, or
when a recent message replace the oldest one, or on a producer/consumer paradigm when the

Trang 71

Science & Technology Development, Vol 12, No.14 - 2009

size of the queue is bounded and no message can be lost (default behaviour of the message
queue tool in LabVIEW).

We notice that after LabVIEW 7.1, the data is casted to a variant data type, and allows
sending a message of any data type to the message queue. Retrieving the message consists in
casting back the variant to the original data type. LabVIEW is checking the coherence when
casting from a variant type to another data type, so the user can not make any typing mistake
without being warned at runtime.

Send and Forget
paradgm

s Wait Until
" Next ms
7 Multiple

Wait for & message, and
cast back the variant lo
the onginal data type

Figure 4. Message queue with replacement

In the send and forget paradigm (see Fig.4), the writing consists in emptying first, and then
writing into the message queue in order to replace the oldest message in the case it would not
have been read by the time the new message is sent. So the producer could send a message and
then continue its execution without care of the reception of it in the consumer. This
communication is very useful in the case of dense task producer; it allows to control the
reception-rate in the task consumer.

Tightly-coupled message communication

The synchronous message communication, represented by the tightly-coupled message
communication (Ada 83 rendez-vous), is a mechanism with which the producer sends a
message to the consumer, and then immediately waits for a response (a message, or an event).
In LabVIEW, this kind of communication can be implemented by two message queues (hence
one for the producer, another for the consumer). A model of producer is presented on Figure 5:
the producer firstly sends a message to the queue of the consumer, and then waits for the
response sent by the consumer in order to continue its execution. The model of consumer is
symmetric.

Send a message Wiail for a response

Figure 5. Producer, Tightly-coupled message communication with response

In the case of the tightly-couple message communication without response, the message
queue for the consumer might be replaced by a tool of synchronization (i.c . a semaphore in
LabVIEW) for the signal of the consumer to the producer when it receives successfully the
message sent by the producer.

Trang 72

TAP CHi PHAT TRIEN KH&CN, TAP 12, S0 14 - 2009

5. INFORMATION HIDING MODULE (IHM)

Information hiding is used as a criterion for encapsulating data stores. In DARTS, [HMs
are used for hiding the contents and representation of data stores and state transition tables.
When an THM is accessed by more than one task, the access procedures must synchronize the
access to the data [4]. The Figure 6 represents a simple implementation of IHM in LabVIEW.
An IHM for encapsulating data stores of type “Reader/Writer” is compounded of two atomic
operations, Read and Write, acting on an internal data. Note that we use a message queue of
size | to store this data, and a counting semaphore of size 1 too in order to insure atomicity.

7
Read the message without detroying it

Figure 6. Communication by IHM

Hence, writing consists in emptying the message queue firstly, and then inserting the new
value, while reading consists in getting the data value without destroying it. For the other
IHMs (i.e., IHM de type Multiple-Readers/Writer, State Transition Modules, Device Interface
Modules, etc.), thanks to the VIs in the palettes “Queue” and “Semaphore” of LabVIEW, we
could implement them easily and intuitively.

6. DARTSVIEW TOOLKIT

The DARTSVIEW Toolkit is presented on the Figure 7. It is a LabVIEW library
abstracting the DARTS concepts into LabVIEW programming elements. The library has four
mains palettes, named “Hardware Task™ (task is activated by either a real-time clock or an
external event), “Software Task™ (task is activated by another by means of the
synchronization/communication tool), “Communication Tool”, and “Generate Code”.

Figure 7. DARTSVIEW Toolkit

The designer of a real-time application can program his system directly from the DARTS
conception, and will obtain a program that can be tested, and used in order to generate some
code targeting different real-time programming standards or temporal validation tools. To
illustrate the role of DARTSVIEW in a W life-cycle, a simple example is presented on Figure
8. This is a building’s heating system; its brief behavior is the following: the ignition system is

Trang 73

Science & Technology Development, Vol 12, No.14 - 2009

run if the air (controlled by a fan) and the gas (controlled by a valve) are supplied. If during
the operation of the system one of these two sources is closed, or the combustion is turned off,
an alarm will be raised.

Thus, depending on the states of the sensors (the toggle switch state, the thermostat, the
thermocouples, the flow meters, etc.), a central control task decides to send the commands to
the tasks commanding the actuators, while another task is in charge of calculating the
difference between the actual temperature and the required one.

Ehibamiakiessininzeia e BRI = EPSRS ARk mtollad aY SINESUS daZ nuwRar S 8IB Fuk ui

W W

Wl
ir

Figure 8. DARTSVIEW diagram of a heating system

The DARTSVIEW diagram on Fig. 8 is really similar to the DARTS diagram. Thanks to
the simple and intuitive implementation, the designer could create in LabVIEW a software
simulator in order to test the global behavior (the functional aspect) of the tasks system in the
first V of the W life-cycle by means of the DARTSVIEW diagram. Moreover, all of the
information about the tasks system will be recorded, and will be generated to the designer in
form of a XML document (see Fig. 9) for the use in the second V of the W life-cycle: code
generation.

LabVIEW allows a rapid development of a control/ command or soft real-time application,
but it is less used for embedded hard real-time systems. Several standards and proprietary
extensions are used, depending on the application area (aerospace, aeronautics, car,
manufacturing, UAV, electronic devices...): Ada, ARINC 653, OSEK/VDX, POSIX 1003.1,
VxWorks, TRON, etc.

" | [}
poratev o0 .
k< TH_ T Sabached | sl 1N Vo Submcied 1y zet s ~

|*Derurer Fuckoer 3

i L_=2=

“Cruwuse_Vabve_Commmaned |;peCrswes] Qi Vaive Command | et i bal

¢ oL = Cuamm,_§ o Comwmand” | 0o G _f i Command” 1 petsl el

i o G Abarnn_Comtrard el s _Qreews_Masm_Comemand” .ot s bl
sl G _hgion,_ Camamaral’ el emes|_Quense_Igrtinn_Comumard ©iyetsi s bl
i e Caasd Cterece” ©yy o =L et Dt ereecn | i el

=N Quewn_Fon_ Biele’ | petas-Taal modedel L
e l_Quee_Valve_ate’ |petels el

Hpattrrars1_Queis_Comus_Siate” ©jpebiss Bl

e I e

Figure 9. XML representation

Trang 74

TAP CHi PHAT TRIEN KH&EN, TAP 12, S0 14 - 2009

So it is convenient to find a flexible way to be able to generate the specific multitask code
parts targeting these languages/standards from DARTSVIEW. The same problem arises when
we want to generate the code in order to validate the application by a third-party tool. A
flexible choice seems to be the use of XML in a schema of the code generation from
DARTSVIEW like the one shown on Figure 10. A new standard or third-party tool is then
targeted by LabVIEW using an XML file to describe the code generation for the tests, the
calculation of the temporal parameters of each task, and the feed-back of these results to the
DARTSVIEW model. Consequently, thanks to DARTSVIEW the time-to-market of the
development of system will be better than the one using the traditional approach.

dof—d—y e/

An XML file independent of
any progranuning languag:

DARTSVIEW

Generate XML file

(XML file for the m
!pecuﬁc [a'w;agi_‘/
[

Generation of Generate C Code Generate Ada Code Generate code
code speafic to == for the temporal
a programming, L mi"::t’ [Aol Gluion] validation toals

language - OSEK/VDX

Figure 10. Schema of code generation from DARTSVIEW
7. CONCLUSION

DARTSVIEW Toolkit is a helpful tool for the DARTS development of control-command
applications in LabVIEW, as well as a helpful tool for the development of embedded
- applications using a target language based on a specific standard or proprietary library. The
use of XML-DTD facilitates the generation of code from the DARTSVIEW model, and allows
the designer to choose a third-party tool for the validation of the timing requirements.
DARTSVIEW Toolkit is already used as a first multitasking environment for students in
two French schools.

DARTSVIEW, CONG CU HO TRQ THIET KE DARTS TREN LABVIEW

Ngd Khanh Hiéu™, Grolleau Emmanuel®
(1) Truong Dai hoc Bach Khoa, PHQG-HCM
(2) Phong Thi nghiém Khoa hoc May tinh ing dung, LISI-ENSMA, Phap

TOM TAT: DAR TS (Design Approach Jor Real Time Systems) [4] la mdt phuwong phap
thiét ké cau triic phan mém cho cdc hé Ihong thoi gian thuc. LabVIEW (Laboratory Virtual
Instrument Engineering Workbench) la mot ung dung lap trinh do hoa dwa trén cdu triic dong
dit liéu (dataflow) cua ngon ngit G duoc phat trién boi tap doan National Instrument [i 6][2]
LabVIEW la ngén ngw lap trinh da nhiém (multithreaded) va hé tro cdc phwong thirc gitip
thiét lap dé dang cac giao tzep “task”, cho phép sir dung né nhu la mét ngén ngit Idp trinh cho
hé diéu khién cung nhir cdc ung dung thoi gian thuc c6 rang budc long (soft real-time
applications). Dé co thé hé tro nguoi thiét ké trong viéc phat trién cdc tng dung thoi gian
thuec, ching t6i diea ra mgt thie vién cdc cong cu thiét ké DARTS da trén nén tan ngon ngir

Trang 75

Science & Technology Development, Vol 12, No.14 - 2009

LabVIEW, dwoc goi la thw vién DARTSVIEW, nhé véo cong cu nay viéc chuyén doi tir cdc
khai niém ung dung da nhiém (multitgsking) cua thiét ké DARTS sang LabVIEW c6 thé dwoc
trién khai dé dang [8]. Hon thé nita, DARTSVIEW cé thé duoc dimg vao cac - giai doan khac
nhau trong vong phdt trién phan mém ciia hé thoi gian thuc. Phién ban gan ddy nhét cia
DARTSVIEW con cho phép xuat code XML cuia cdc ing dung thoi gian thuc da dugc xdy dung
tic LabVIEW béng DARTSVIEW, nhdm phuc vu cho muc dich chuyén d6i sang code ciia cde
ngon ngit ldp trinh vi xir Iy hé tro ldp trinh da nhi¢m nhu Ada, POSIX 1003.1, VxWorks,
OSEK/VDX, vw. Va nho do, viéc kiém tra truc tiép trén vi xir Iy vé dap ung cdc rang bugc thoi
gian 6 thé dioc tién hanh nhanh chong, thugn loi. Muc tiéu ctia bai vzet nay la 1ong quan ve
cong cu DARTSVIEW, vai tro cia DARTSVIEW trong chu trinh phat trién cau triic phian mém

cua hé thoi gian thuc, va cuéi cimg Ia mot vai hudng mo réng cho cong cu nay trong thoi gian
sdp 10i.

Tir khéa: cong cu DARTSVIEW, céng cu thiét ké DARTS,

REFERENCE

[1]. F. Cottet, J. Delacroix, C. Kaiser, Z. Mammeri, Scheduling in Real-Time Systems, I W &
Son, (2002).

[2]. F. Cottet, E. Grolleau, Systémes temps réel de contréle-commande, Conception et
Implémentation, Dunod, 561 (2005).

[3]. Emmanuel Gerveaux, Conception d'un environnement de développement des applications
de contréle de procédé basé sur le modeéle formel GRAFCET et fondé sur un langage
graphique flot de données, rapport de These, LISI-ENSMA (1998).

[4]. Hassan Gomaa, Sofiware Design Methods for Concurrent and Real-Time Systems,
Addison Wesley, SEI Series in Software Engineering (1993).

[5]. Emmanuel Grolleau, Ordonnancement temps réel hors-ligne optimal a I'aide de réseaux

de Pelri en environnement monoprocesseur et multiprocesseur, rapport de Thése, LISI-
ENSMA (1999).

[6]. National Instruments, LabVIEW™ 5 Software Reference and User Manual (1998).

[7]. M. G. Harbour, J.J. G. Garcia, J.C. P. Gutierrez, .M. D. Moyano, MAST: Modeling and
Analysis Suite for Real-Time Applications, Proc. Of the 13" IEEE Euromicro Conference
in Real-Time Systems (2001).

[8]. KH. Ngo, E. Grolleau, La Méthode DARTS et La Programmation Multitiche en
LabVIEW, FuturVIEW 2003, ENSMA (2003).

'Trang 76

