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ABSTRACT: This paper proposes a novel approach to design a controller in discrete
time for the class of uncertain nonlinear systems in the presence of magnitude constrains of
control signal which are treated as the saturation nonlinearity. A associative law between
reinforcement learning algorithm based on adaptive NRBF neural networks and the theory of
robust control H, is set up in a novel control structure, in which the proposed controller

allows learning and control on-line to compensate multiple uncertain nonlinearities as well as
minimizing both the H tracking performance index function and the unknown nonlinear

dynamic approximation errors. The novel theorem of robust stabilization of the closed-loop
system is declared and proved. Simulation results verify the theoretical analysis.
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1. INTRODUCTION _ _ )
Direct adaptive controllers for a class of nonaffine and affine uncertain nonlinear discrete-

time systems with input constraints using reinforcement learning neural networks are proposed
in [1-2]. The performance index functions of the long term tracking error are predicted and
minimized by reinforcement learning algorithms. As results, some of nonlinear components
such as unknown dynamic functions, the control inputs constrained saturation and unknown
but bounded disturbance are compensated. In addition, the tracking error and the functional
approximation error of neural networks are uniform ultimate bounded (UUB) using Lyapunov
approach.

In the theory of robust control, available knowledge of system is to exploit absolutely such
as nominal models or the upper bound of uncertain parameters to design robust stable
controllers. However the robust controllers trend to become “hard” controller because they
contain constant parameters. On the other hand, reinforcement learning (RL) methods can be
learn online to find better control laws without the available knowledge. However, RL
methods deal with processes of try and error, therefore at the intermediate stage of learning
and control the RL systems may go through periods of unstable behavior.

Recently, to solve the above problem, some methods of robust RL have been proposed as
(1) a RL algorithm using neural networks (NN) combines with the concept of sliding mode
control [4]. This method makes the system be oscillated by the chattering phenomenon,
although the learning system is robust. (2) A tool of robust control theory, Integral Quadratic
Constraints (IQCs), is used in robust reinforcement learning [5-6]. By replacing the nonlinear
and time-varying components of the NNs with IQCs, NN’s weights are analyzed and
constrained in stable dynamic ranges. As results, NNs generate control signals which make the
system be robust stable during learning and control online. (3) Another method is designed

based on theory of H_, control for the system whose modeling errors can be pre-interpreted as
unknown but bounded disturbance [7]. The main purpose of this method is that an online
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function known as Hamilton-Jacobi-Isacc (HJI) is approximated to drive the worst disturbance
and the optimal control simultaneously.

This paper contributes some novel points of view as follows

Combining a reinforcement learning algorithm based on neural networks and the theory of
H_, control to propose a novel robust adaptive control structure diagram for a class of the
nonlinear discrete time system with input constrains.

The new robust adaptive reinforcement learning controller is analyzed and designed.

The new robust stable theorem is shown and proved.

The remainder of this paper is arranged as follows. Section 2 describes properties of the
function approximator using NN as adaptive normalized RBF. A description of the uncertain
nonlinear discrete time system with input constrains is presented in section 3. Small gain
theorem in robust control theory is reviewed in section 4. In section 5, a novel control structure
diagram is shown and a novel theorem of robust stabilization of the closed-loop system is
declared and proved, subsequently. The results of simulation in section 6 verify the effects of
the proposed controller and conclusions are drawn in'section 7.

2. APPROXIMATION PROPERTY OF ADAPTIVE NORMALIZED RBF -ANRBF

Choosing suitable function approximators in RL is essential for speedmg up learning and
control. ANRBF with ability to adapt centers and widths of basic functions give approximation
performance better than other neural networks [8].

A continuous function f'(x(k)) € C(S) within a compact subset S € R" is approximated
by ANRBF as

f(x(k)=W"D(x(k))+e(x(k)) (1)

Where W is a target weight matrix of the hidden layer to the output; @('x(k)) is vector
of the basis functions at instant k; &(x(k)) is vector of functional approximation error. The
actual ANRBF output is defined as

F(x(k)=WT (k)D(x(k)) )
Pfr’( k) is a weight matrix updated online at instant k; #,, is number of hidden-layer nodes,
an element j of @(x(k)) is defined as

2
iy

@ (x(k)) = - J =12,

@i
ZfEPlh £

Where c; eR" | o € R denotes the vector of center and the value of width of

@;(x(k)) respectively and n; is number of input-layer nodes.

Remark: with limited 1, , the following inequality is always satisfied

a®” (x(k))P(x(k )< Va:as ni 3)
h
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3. UNCERTAIN NONLINEAR DISCRETE TIME SYSTEM DESCRIPTION
Consider the following uncertain nonlinear discrete time system
: )
x,(k+1)= f(x(k))+u(k)+d(k)
T
Where x(k)= [x,T(k Yol Ok )T (R )] eR™  x,(k)e®R", i=1,..,n is the vector of
state at instant k ; f(x(k))eR" is the unknown nonlinear dynamics of the system;

u(k)eR™ is the control input constrained saturation; and d(k)eR" is the unknown but
bounded disturbance.

Given a reference trajectory x,,(k) € R”™ and its past values, the vector of tracking error

e,(k)eR" is defined as
ei(k):xi(k)—xrrd(k+i_n) (5)
Define the filtered tracking error r(k)e®R"™ as
r(k)=[AIle(k) (6)

e(k)s[ef(k),e{(k)....,ef(k)]r;el(k)=e2(k) With e, (k +1) is the next value of ¢(k);
e, (k)...e(k) are the past values for e, (k) ; 1eR™" is an identity matrix;
A=A Ay g ] €R™CTVT with 4, € R, i=1,.0(n=1) is constant diagonal positive
definite matrix chosen so that its eigenvalues are within the unit circle. Consequently, if
lim (k) =0 then e(k)will go to zero. Combining (4) (5) and (6) we get

k—w
r(k+1)=f(x(k))—x,,d(k+1)+Ale,,(k)+...,+ﬂ,,+lez(k)+u(k)+d(k) @)
The control purpose is to make the tracking error of the system (7) achieve the H robust
performance index.

4. H_,CONTROL FOR DISCRETE TIME SYSTEMS

H_, Robust control deals with a system shown in Fig. 1, where G is the controlled plant,
K is the controller, u(k) is the control input, y(k) is the output of plant supposed

measurement available to the controller. The controller K is designed to stabilize the closed
loop system based on model G. However there is difference between the model and actual
plant dynamics, the feedback loop could be unstable. The effect of modeling error can be seen
as an unknown disturbance &(k)e€ LZ[O,OO] generated by unknown mapping 4 from e( k)

to&(k).
According to the Small Gain Theorem, the system in Fig. 1 will be stable if the condition
as follows is satisfied.
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Figure 1. The Small Gain Theorem
2leCk ) < oY ek +7 ®)
k=0 k=0

Where |4] <—l-, p is a specified attenuation level; 7 is the positive constant depending
)

on initial conditions; N is number of steps to the final state.

5. DESIGN ROBUST ADAPTIVE REINFORCEMENT LEARNING CONTROLLER

5.1. Basic control law

At early stages of learning online, the control loop using NN whose weights are selected
random from [0,1] will be unstable. Therefore using a basic control law to make system be

stable is necessary [1-2]. This control law provides the supervised signals which allow the
reinforcement learning system turning NN’s weights online rather than offline training. To

find it, the auxiliary control input v(k ) e R™ is defined as ‘
W(k) =%y (k+1) = F(x(k )= A&, (k) =....~Aes(k )+ Lr(k) )

Where f (x(k)) is the function approximation of f(x(k)) and L e R™" is a diagonal
matrix. The actual control input constrained saturation is defined

_ v, O < e
U= { Up SER(V(K)), ”V(k)" > Uy (10)

Where u,,,, € R is the upper bound for u('k ). The closed loop system can be written as

r(k+1)=Lr(k)-f(x(k))+d(k)+ du(k) (11)
And
F(x(k)= f(x(k)- f(x(k)) (12)

Au(k)=u(k)-v(k) , du(k)eR™ . Two auxiliary signals e(k)eR™ and
e,(k) e R" are defined as follows to reject the effect of Au(k)

e(k+1)=Le(k)+Au(k) (13)

e (k)=r(k)-2(k) (14)

Combining (11) (13) and (14) we get
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e,(k+1)=Le,(k)-f(x(k))+d(k) (15)
Where Le, (k) is the basic control law.
5.2. Robust Adaptive Reinforcement Learning -RARL

Fig. 2 represents a RARL system based on the special structure known as actor-critic [2-3].
Here, the actor and critic are based on ANRBFs5.

Remark: e(k) in Eq. (8) is replaced by e, (k) and &(k) is defined as
E(k)=e(x(k))+d(k) (16)
Where g(x(k)) is the total of the functional approximation error of both actor and critic.
5.2.1. Value function

The performance index J(k)eR™ at instant & is proposed as

T 2T
ﬂw=Qaﬁhﬁ)ii%WM@ (17
1, e (ke,(k)-p-d (k)d(k)>0
And the value function at instant k& becomes
N
(k)= y" " (i) (18)
i=k

Where y, (0<y <1), is a discount factor which makes Q(k) converge when N — . The
optimal value function Q" (k ) satisfies the Optimal Bellman Equal as

O (k )=Z§£:}(yQ'(k~l )-V*(k)) (19)

Solution of Eq. (19) could not be found by analytic or the bellman meshed diagram
because the model is not available. Hereafter Q‘ (k) is approximated based on the actor-critic
system, in which the output of crific is used to approximate Q(k), and the output of actor
generates the control signal to approximate O (k). Weights of actor are updated by the signal

from critic.
5.2.2. Critic

The critic is used to approximate the value function Q(k ) to Q( k). In RL, the prediction
error [10] is defined as

&.(k)=a"""J(k)-aQk-1)+Qk) (20)
O(k)=W,(k)®,(x(k)) @1)

And &,.(x(k)) e R™;0(k)e R™"; Wc(k) e R™™" is the weight matrix, @, (k)e R™ is the
vector of actor functions, #, is the number of hidden-layer nodes, x(k)e R™ is the input to the
critic. The law for updating weights is proposed as

AW, (k) = -, @,(x(k ) (k)= ~a,@,(x(k ). k )b, (x(k))
+a" (k)= W (k+1)@,(x(k-1))f

Where o, €% is the positive constant representing learning rate.

(22)
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5.2.3. Actor
The function f(x(k)) in Eq. (4) is approximate to f (x(k)) by the Actor. It can be seen
f (x(k)) as an optimal control input % (k) which makes Q(k ) converge to Q' (k)

(k) =W, (k) (x(k)) (23)
Where Wa( k)eR"™™, @ (k)eR™ ,n,, x(k) e R™ are the weight matrix, the vector of

actor functions, number of hidden-layer nodes and the input to the actor respectively. The law
updating weights is proposed as

AW, (k+1) = —a,@,(x(k )x(O(k ) + Le,(k) - e, (k +1)) (24)
Where a, € R is the positive constant representing learning rate.

5.2.4. Robust stability

Theorem: given the bounded reference trajectory x,,(k ) and its past value, defined the

auxiliary control input in Eq. (9), the L, is the maximum singular value of the gain matrix
L in Eq. (15) satisfies as

L <3/-§- (25)
max 3

And the function of performance index in Eq. (17), actor-critic structure base on ANRBF,
the laws of updating weight for critic as Eq. (22) and actor as Eq. (24) then during learning
and control online, the tracking error of the closed loop system will be achieving the H_robust

stability.

Proof: See the Appendix.
6. SIMULATION

Nonlinear system for simulation to verify proposed controller is given by Eq. (26)

x(k+1)=x,(k) -

X, (k+1)=f(x(k))+u(k)+d(k)

k
Where f(x(k)=—2| 2B 1 03e k)
8\ 1+ p,x,”

p, €N i=123 is uncertain parameter bounded as p =[—5, 5] i pz=[—1, 1] - p3:[0, 5]

respectively. The control objective is to design RARL so that X, tracks desired trajectory x,,

with considering saturated gain phenomenon of the control input. x,, is given as

sin(O. lkr+%], 0 <k <3000

X, =4-1, 3000 < k <4000 (27)
= 5000 < k <6000

1, 4000 < k <5000
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The sampling interval is taken as 7'=0.05s and the white Gaussian noise with a standard
deviation of 0.005 is added to the system. The time duration of simulation is taken 300s. The
unknown disturbance is chosen as

0 k<2000
d(k)=
1.5, 2000< k <6000

The gain of the basis control input is chosen as L =—0.15. Both number of hidden-layer
nodes of critic and actor are selected as n, =n, =10; the update rates are @, =a, =0.1. The
activation functions are the same for both of them, where o; =0.1,i=1,..,10, x,, is uniformly
partitioned within [— 1,I]. All of weights are initialized at random from[O,I]. The gain of the
control input is constrained within [— 3,3]. The discount factor is selected as ¥ =0.5.

First, to show the effect of proposed controller, the RARL controller is removed out of the
closed loop. The uncertainty parameters are selected as p, =1, p, =1, p, =2. In Fig.3 it can be

seen that the tracking error given by the basic controller are bounded but the performance is
Very poor.

Now we add the RARL controller to the closed loop. The H_ robust tracking performance
is presented in Fig. 4 and Fig. 5. Because of the activation of disturbance, at the second of 100
the tracking error e(k) is overshoot but it quickly goes to zero asymptotically. The Flg 6
presents the control input in which its gain is constrained in range of +3.

The H, robust tracking performance with P =-35,p, ==L p; =0 is presented in Fig. 7,

with p; =1, p, =1, p; =2 in Fig. 8. From Fig. 4, 7 and 8 we can see that they are robust for all
the parameters.

7. CONCLUSION

This paper proposes the method which combined reinforcement learning based on neural
network ANRBF and the robust theory H_, to design a robust adaptive reinforcement learning

controller for a class of the uncertain nonlinear discrete time system with input constrains
which are treated as the saturation nonlinearity. The proposed controller not only compensates
some uncertainty nonlinear components but also gives the robust tracking performance.

m eural
An Adaptive controller with robust tracking performance using the recurrent CMAC neural

network to get rid of chattering phenomenon for a class of multivariable uncertain nonlinear
system is proposed in [9]. Develop a RARL controller using CMAC is next research. In
addition applying RARL to control for real plants is considered next.
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PIEU KHIEN THICH NGHI BEN VONG DUNG HQC CUNG CO CHO HE
THONG PHI TUYEN VOI RANG BUQC NGO VAO

Nguyén Tén Liiy”, Nguyén Thi¢n Thanh”), Nguyén Thi Phuong Ha®
(1) PTN Trong diém Qudc gia Diéu khién so & K¥ thuét hé thong, PHQG-HCM
(2) Truong Pai hoc Bach Khoa, PHQG-HCM

TOM TAT: Bai béo dé xudt phiwong phdp méi dé thiét ké bg diéu khién thich nghi bén
viing cho lop hé thong phi tuyén roi rac bat dinh voi r::‘mg bugc vé bién do cua tin hiéu diéu
khién dugc xu Iy nhue la d6 phi tuyén bdo hoa. Ludt két hop giita thudt toan hoc cing 6 sir
dung mang than kinh nhan tao NRBF thich nghi va ly thuyé't khién bén vilng H dwroc thiét ldp
trong ccfu triic diéu khién mdi trong do b diéu khién dé xudt cho phép hoc va diéu khién truc
tuyen de bu da thanh phdn phi tuyén ciing nhu 18i thiéu phiém ham chi tiéu chat lwgng bam
H, va sai so woc lugng dong phi tuyén khéng biét. Pinh Iy moi vé sw 6n dinh bén viing ctia
hé tho";'fg vong kin duwgc phit biéu va chimg minh. Két qua mé phong da kiém chimg cdc phan
tich vé ly thuyet.

Tir khéa: Reinforcement learning, robust control, neural network control
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APPENDIX

Proof of the theorem in section 5.2.4:
Remark: in following equations x(k )is replaced by k
Selected the Lyapunov function candidate

V(k)=—e,” (k e, (k) +—trliT.7 (W, (k)4
71 ac

LT ek (k)

},Zaa (28)
sy k-f + N1k w2

Y3 i

cmax =~ cmax

Where W,,., @.,,, denote the upper bounds of # and @, respectively. y; >0,i=123;
e(k=1),_, =0, N is the final step.

The differences of AV (k) form Eq. (28) is decomposed as

AV(k)=AV,(k)+AVZ(k)+AIQ(k)+AIQ(k)+AV5(k) (29)

Combining (1),(2)(15) and (23) we get

AV (k) =—((Ley (k) =y (k) + o, (k) +d(k))

x(Le, (k)= (k) + £,(k)+d(k))—e, (ke (k)) -
= %((mez(L) - %) leu (N +lwa (k) +|ea (k) + d(k)“z)
1

Where w,(k)=W,(k)®D,(k); L, .. €N is the maximum singular value of L.
AV, (k) is presented as
- 5 =
AV, (k)= a—zr(WcT(k SLW, (k+1) =] (k7. (k) 31)

e

Substituting (22) into (31) and rewrite them we get
av,(k) < -\l-a, @ (k)o,(k))

o (k)W ()@, (k) + 7T (k)= T (k=) (k-]

(32)
e + 2 k) + ¥ k) - T (k1)@ (k-
+27 (k-1
AV5(k ) is presented as
AV, (k)= ;Ltr(ﬁ?j(k + W, (k+1)-WT (k)W (k )) (33)
2

Substituting (24) into (33) and rewrite them we get
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avs(k) s (i@, @ (k)0 (b)) Jyu (k)W (K)e.(k)
~ (e, (k)+d(k) [~y o()f ) (34)
+% W (), (k) ~(e,(k)+d(k) |+l 6

AV, (k) and AVy(k )are presented as

av; = -yt~ 1f ) 69

AV, = i(N +1-(k+1)W2 @2 - A N+1-k W2 @ = .. w2 @2
2 V2 V2

(36)
Now, substituting (30), (32), (34), (35) and (36) into (29) we get

05013 {12 (L2
N r Y2 h

—[i—zyz]nm-unz
V3

(=, @7 ()@, (k) lw. (k) + W (k)@ (k) + 7 (k)

P (k-1)0,(k-1)| —yi{(l—aacbf(k)qﬁa(k))
2

Wa(k)+ W] (k)@ (k)—(e,(k)+d(k)) HZ}

X

+2

2
+__._
V2

W (k)D.(k)+ "I (k) T (k=)@ (k-1)|

W7 (k).(k)~(eu(k)+ (k) +y3||e,,(k) +d(k)f —;i W@
1 2
(37)

2 1
1272 853,22

L

i TS and simplifying we get

Selecting ¥, >3y,, 7, >
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AV (k)< (132, e, (k)
V4

NS (k)= (k-1)0, (k1)

2 (38)
~(e(k)+d(k))|

+—-||g (k)+ d(k)|| —;V—W2 @2

cmax = ¢ max

Combining (20)(21) and (22) to (38) we get
AV (k)< ~———(1 3L e (k) + 2ol

T )@, (k)|

+[-;f—+—]||e (k)+d(k)f —y—WCfnﬂ@fm (39)

s—i(l—sf.? ek [ 2+1f}3*+}7J le.(k)+e,k)+d(k )

. T (k)D, (k)" <_W’~ D’

cmax ™= cmax *

Takmg sum of (39) we get

N
ZAV(k) V(N +1)- V(0)<——(1 3L W)Z"e,,(k)[]z

k=0

(40)
[m _+_}Z lec(k)+eu(k)+d(k)|

72 Jk=0
Apply (25) and remarking on F{N+1)20 and V{0)=0 we get

N 5 g N . |

e o)) < p* 2Nk +7 (41)
k=0 k:o
Where

) P = __Nh
- \/1 32 (IJ’\/: J & =le.(k)+eu(k)+d(k)[, m = o)

The inequality (41) satisfies (8). So the proof of the theorem is given.
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