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ABSTRACT
In this paper, we study a concept on the calm B-differentiability, a new kind of generalized differen-
tiabilities for a given vector function introduced by Ye and Zhou in 2017, of the projector onto the
circular cone. Then, we discuss its applications inmathematical programming problemswith circu-
lar cone complementarity constraints. Here, this problem can be considered to be a generalization
of mathematical programming problems with second-order cone complementarity constraints,
and thus it includes a large class ofmathematical models in optimization theory. Consequently, the
obtained results for this problem are generalized, and then corresponding results for some special
mathematical problems can be implied from them directly. For more detailed information, we will
first prove the calmly B-differentiable property of the projector onto the circular cone. This result is
not easy to be shownby simply resorting to those of the projection operator onto the second-order
cone. By virtue of exploiting variational techniques, we next establish the exact formula for the reg-
ular (Fréchet) normal cone (this concept was proposed by Kruger and Mordukhovich in 1980) to
the circular cone complementarity set. Note that this set can be considered to be a generalization
of the second-order cone complementarity set. In finally, the exact formula for the regular (Fréchet)
normal cone to the circular cone complementarity set would be useful for us to study first-order
necessary optimality conditions for mathematical programming problems with circular cone com-
plementarity constraints. Our obtained results in the paper are new, and they are generalized to
some existing ones in the literature.
Key words: calmly B-differentiable, circular cone, complementarity set, Fréchet normal cone,
optimality condition

INTRODUCTION
The second-order cone programming (SOCP) prob-
lem plays an important role in the optimization the-
ory and has attracted much attention from mathe-
maticians, see, e.g., 1–7. We refer the reader to1,2,4–7

and the references therein for some remarkable re-
sults on optimality conditions and stability analysis of
(SOCP).
Inspired by the second-order cone, many researchers
have investigated optimization and complementar-
ity problems where their constraints are involved in
second-order cones. It is called the second-order
cone complementarity problem (SOCCP), which in-
cludes a large class of optimization problems such
as quadratically constrained problems (see 8), the
second-order cone programming, and nonlinear
complementarity problem (see 9). In particular, re-
cent attention is paid to the second-order cone com-
plementarity set.
Let us now mention some existing results concern-
ing this set. In10, Liang et al. provided formula-
tions for Fréchet normal cone to the second-order

cone complementarity set. Unfortunately, the ob-
tained results were shown to be inexact in 11. In
that paper, Ye and Zhou gave exact formulas for the
proximal/regular (Fréchet)/limiting normal cone to
the second-order cone complementarity set by us-
ing the projection operator onto second-order cones
and the generalized differentiability called the calm
B-differentiability. Some first-order optimality con-
ditions formathematical programswith second-order
cone complementarity constraints were obtained in 12

and sufficient conditions for error bound property of
second-order cone complementarity problems were
established in13. To obtain these results, the au-
thors used the symmetric and self-dual property of the
second-order cone.
Recently, generalizations of second-order cones and
second-order cone complementarity sets have been
examined by many authors5,14–22. For example, au-
thors in 14,19–22 considered circular cones, which are
generalizations of second-order cones and are, in gen-
eral, nonsymmetric and non-self-dual cones. The
generalized differentiability of the projection operator
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onto the circular cone was provided in 14,22. More-
over, the differentiability and calmness of vector-
valued functions associated with the circular cone
were also studied in19,23. In particular, authors in21

showed that the results of the projection operator onto
a circular cone could not be shown by simply resort-
ing to the results of the projection operator onto the
second-order cone, and hence, it is necessary to study
the results of circular cone directly.
To the best of our knowledge, there is no result on
the calmly B-differentiable property concerning the
circular cone and its extension. In this paper, in-
spired by11,13,22, we first study in Section 3, the calm
B-differentiability of the circular cone. We then pro-
vide in Section 4 the formula for the Fréchet normal
cone to a circular cone complementarity set, which
can be considered as a generalization of the second-
order cone complementarity set. This formula would
be useful for us to study optimality conditions for
mathematical programming problems with circular
cone complementarity constraints.

PRELIMINARIES
Throughout the paper, if not otherwise specified,
f(t)=o(t) (f(t)=O(t)) means f (t)

|t| → 0 (resp., f (t)
|t|

is uniformly bounded) as t → 0, and ( f (x))+ :=
max{ f (x),0}, and ( f (x))− := min{ f (x),0}.Br(x)
stands for the closed ball centered at x ∈ Rn with ra-
dius r > 0. Given x,y ∈ Rn, xTy stands for the scalar
product of x and y. For x := (x0,xr ) ∈ R×Rn−1,

we use the following notation

x⊥ := {y ∈ Rn|xTy = 0} and

x̃r :=

{
xr

||xr || if xr ̸= 0,

if otherwise.any unit vector e ∈ Rn−1

Let C⊂Rn be a nonempty subset, clC denotes its clo-
sure. The polar cone C◦ and the dual cone C⋆ of C
are

C◦ := {y ∈ Rn|y⊤x ≤ 0,∀x ∈C} and
C⋆ := {y ∈ Rn|y⊤x ≥ 0,∀x ∈C}

respectively.
The Fréchet normal cone to C at x ∈ clC are defined
respectively by, see24,

N̂C(x) :=
{x∗ ∈ Rn⟨x∗,x′− x⟩ ≤ o(∥ x′− x ∥),∀x′ ∈C}.

Lemma 2.1 (24, Theorem 1.14) Let D={x | h(x)∈ C}
and let ∇h(x) be surjective. Then

N̂D(x) = ∇h(x)T N̂C(x).

Let f :Rn → (−∞, ∞] and −
x ∈ Rn such that f

(−
x
)
is

finite. The Fréchet subdifferential of f at −x is defined
by, see [24, pages 89 and 90],

∂̂ f (
−
x) := {x∗ ∈ Rn}|

limsup
x→−

x
⟨x∗,x−

−
x⟩− f (x)+ f (

−
x)∣∣∣∣∣∣∣∣x−−

x
∣∣∣∣∣∣∣∣ ≤ 0

The indicator function of a setC ⊂ Rn is denoted by

δC(x) :=

{
0 if x ̸∈C,

∞ otherwise.

It is known from [ 25, Proposition 1.18] that ∂̂ δC(x) =
N̂C(x)
for any x ∈C.
Let F:Rn ⇒ Rm be a set-valued mapping, the domain
and the graph of F are

domF := {x ∈ Rn|F(x) ̸=∅},
gphF := {(x,y) ∈ Rn ×Rm|y ∈ F(x)}.

The Fréchet coderivative of F at (x, y) ∈ gphF are re-
spectively defined by, see [24, Definition 1.32], for
each y∗∈Rm,

D̂∗F(x,y)(y∗)
:= {x∗ ∈ Rn|(x∗,−y∗) ∈ N̂gphF (x,y)}.

When F(x) is single-valued, y can be omitted in the
above notations. Moreover, if F is continuously dif-
ferentiable, then for all y∗∈Rm, we get

D̂∗F(x)(y∗) = {∇F(x)∗ y∗} .

The derivative in the directionh∈Rn ofF at x is defined
by

F ′(x;y) := lim
t→0+

F(x+ th)−F(x)
t

.

The circular cone is defined (cf.14,19–23) by

Kθ :=
{x = (x0,xr) ∈ R×Rm|x0 tanθ ≥ ||xr||}

(2.1)

with angle θ ∈
(
0, π

2
)
. When θ = π

4 , it re-
duces to the second-order cone defined by Kθ :=
{x = (x0,xr) ∈ R×Rm|x0 ≥ ||xr||}. In this case, the
set

Ω :=
{
(x,y)|x ∈ K ,y ∈ K ,xTy = 0

}
, (2.2)

is called the second-order cone complementarity set. If
θ ̸= π

4 then Kθ is a nonsymmetric and non-self-dual
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cone. The boundary and the interior of Kθ are given
respectively by

bd Kθ :=
{x = (x0,xr) ∈ R×Rm|x0 tanθ ≥ ||xr||} ,
int Kθ := Kθ\(bd Kθ ).

The positive dual cone and the polar cone of Kθ are
defined respectively by, see [ 20, Theorem 2.1],

Kθ := {y = (y0,yr) ∈ R×Rm|y0 cotθ ≥ ||yr||} ,

K ∗
θ :=−K ∗

θ =

{y = (−y0,−yr) ∈ R×Rm|y0 cotθ ≥ ||yr||} .

A relation between the boundary of Kθ and that of
K ∗

θ is established as follows.
Proposition 2.2 Let x ∈ bdKθ\{0} and
y ∈ bdK ∗

θ \{0}. Then, yT x = 0
if and only if x = κ(y0cot2θ ,−yr ) with k =
x0
y0

tan2 θ (equivalently, y = k(x0 tan2 θ ,−xr) with k =
y0
x0

cot2θ .).
Proof. Let x ∈ bdKθ\{0} and y ∈ bdK ∗

θ \{0}.
“ If ”: Suppose that there exists κ ∈ R++ := (0,∞)

with x = κ(y0cot2θ ,−yr ), then yT x = 0.
“ Only if ”: Let yT x = 0, then we get x0 tanθ =∥ xr ∥
,y0 tan( π

2 −θ) = ||yr|| and x0y0+yT
r xr = 0.Thus, one

has

yT
r xr =−x0y0 = (||xr||cotθ)×(
||yr||cot

( π
2 −θ

))
=−||xr|| . ||yr|| ,

which implies the existence ofκ ∈R++ such that xr =

−κyr . Consequently, we obtain

x0 tanθ = κy0 tan(
π
2
−θ),

i.e., x0 tan2 θ = κy0. Hence, x = κ(y0cot2θ ,−yr)

with κ = x0
y0

tan2 θ , and the proof is completed. □
We recall that for any given x := (x0,xr) ∈R×Rm, it
can be decomposed by (see [ 20, Theorem 3.1])

x = λ1(x) u1
x +λ2(x)u2

x ,

where the spectral valuesλ1(x),λ2(x) and the spectral
vectors u1

x ,u
2
x are defined respectively by

λ1(x) := x0 −||xr||cotθ ,
λ2(x) := x0 + ||xr|| tanθ ,

u1
x := 1

1+cot2 θ

[
1 0
0 cotθ

][
1

−x̃r

]
,

u2
x := 1

1+tan2 θ

[
1 0
0 tanθ

][
1
x̃r

]
.

The metric projection of x onto Kθ , denoted by
ΠKθ (x), is defined as follows

ΠKθ (x) := argminz∈Kθ ||x− z||
= {z ∈ Kθ | ∥ x− z ∥≤∥ x−u ∥,∀u ∈ Kθ}.

From22 and the convexity of Kθ , we get that ΠKθ (x)
is a single-valued set and

ΠKθ (x) = (λ1(x)+)u1
x +(λ2(x)+)u2

x. (2.3)

Moreover, [ 26, Proposition 2] states that, for all x ∈
Rm+1,

x = ΠKθ (x)+ΠK ◦
θ
(x)

and ⟨ΠKθ (x),ΠK ◦
θ
(x)⟩= 0.

Since Π(Kθ )(x),Π(K ◦
θ )(x), one gets

ΠKθ (x) =−ΠK ◦
θ
(−x).

Let us define the circular cone complementarity set as

Γ := {(x,y)|x ∈ Kθ ,y ∈ K ∗
θ ,xTy = 0}, (2.4)

which is a generalized type of (2.2). Given (x,y)∈Γ
and an arbitrary u ∈ Kθ , it holds that

||(x− y)−u||2 −||(x− y)− x||2

= ||(x−u)− y||2 −||y||2

= ||x−u||2 −2⟨x−u,y⟩
= ||x−u||2 −2⟨x,y⟩+2⟨u,y⟩ ≥ 0,

which means that x = ΠKθ (x− y). Similarly, we get
that y ∈ ΠK ∗

θ
(y− x).

The above observation allows us to obtain a relation
between the complementarity set Γ, and the projec-
tion onto Kθ as follows.
Proposition 2.3 Let Γ be as in (2.4). Then, we get

[(x,y) ∈ Γ]⇐⇒ [x ∈ ΠKθ (x− y)]
⇐⇒ [y ∈ ΠK ∗

θ
(y− x)]⇐⇒ [−y ∈ ΠK ◦

θ
(x− y)].

By Proposition 2.3, Γ can be expressed by

Γ = {(x,y)|(x− y,x) ∈ gphΠKθ }.

Let f : Rm+1 ×Rm+1 → Rm+1 ×Rm+1 be defined by
f (x,y) := (x− y,x) for all (x,y) ∈ Rm+1 ×Rm+1, we
can check that f is continuously differentiable and

∇ f (x,y) =

[
Im+1 −Im+1

Im+1 0

]
,

where Im+1 is the unit matrix of the degree m+1, has
full rank. It follows from [ 27, Exercise 6.7] that

N̂Γ(x,y) =
{∇ f (x,y)∗(x∗,y∗)| (x∗,y∗) ∈ N̂gphΠKθ

( f (x,y))}
= {x∗+ y∗,−x∗)| (x∗,y∗) ∈ N̂gphΠKθ

)(x− y,x)}
= {(u,v)|− v ∈ D̂∗ΠKθ (x− y)(−u− v)}.
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From the above discussion, one obtains the following
result, which plays an important role in computing the
Fréchet normal cone to complementarity set.
Proposition 2.4 Let Γ be as in (2.4) and (x,y)∈Γ.
Then, we get

N̂Γ(x,y)
= {(u,v)|− v ∈ D̂∗ΠKθ (x− y)(−u− v)}.

(2.5)

CALMB-DIFFERENTIABILITY OF THE
PROJECTMAPPINGONTO A
CIRCULAR CONE
In this section, we first show that the projection oper-
ator ΠKθ is calmly B-differentiable at any x ∈ Rm+1.
Then, we provide a characterization for a proximal
normal vector of Γ.
Definition 3.1 (11) The function F : Rn → Rm is
called calmly B-differentiable at x if, for all h suffi-
ciently close to 0, we get

F(x+h)−F(x)−F ′(x;h) = O(∥ h ∥2 ).

Theorem 3.2 The projection mapping ΠKθ is calmly
B-differentiable for any x ∈ Rm+1.
Proof.Given an arbitrary x ∈ Rm+1, it is enough to
show that, for h sufficiently close to 0,

ΠKθ (x+h)−ΠKθ (x)−Π′

Kθ
(x;h)

= 0 = O(∥ h ∥2).
(3.1)

We consider the following cases.
Case 1: x ∈ intKθ . Then, we have ΠKθ (x) =

x, ΠKθ (x + h) = x + h. Moreover, it follows
from the definition of the directional derivative that
Π′

Kθ
(x;h) = h. So, (3.1) is fulfilled.

Case 2: x ∈ −intK ∗. We get, in this case that
ΠKθ (x) = 0, ΠKθ (x+h) = 0. On the other hand, by
the definition ofΠ′

Kθ
(x;h), one hasΠ′

Kθ
(x;h) = 0, so

(3.1) holds.
Case 3: x ∈ bdKθ\{0}. It implies that λ1(x) = 0 and
λ2(x)> 0. By (2.3) and Lemma 3.2(b) in22, we have

ΠKθ (x) = x,Π′

Kθ
(x;h)

= h− (1+ cot2 θ)((ux
1)

Th)_ux
1,

ΠKθ (x+h) = ((x0 +h0− ∥ xr +hr ∥ cotθ)+)

× 1
1+cot2 θ

[
1

(−xr−hr)cotθ
||xr+hr ||

]
+((x0 +h0+ ∥ xr +hr ∥ tanθ)+)

× 1
1+tan2 θ

[
1

(xr+hr) tanθ
||xr+hr ||

]
. (3.2)

Let Π̃h = (Π̃h
0,Π̃

h
r ) ∈ Rm+1 be defined by

Π̃h = ΠKθ (x+h)−ΠKθ (x)−Π′

Kθ
(x;h) (3.3)

we now show computations for Π̃h
0 and Π̃h

r . By (3.2)
and (3.3), Π̃h

0 is given by Figure 1.
By the expression of ∥ xr ∥, for all hr sufficiently close
to 0, we get ∥ xr +hr ∥=∥ xr ∥+⟨x̃r,hr⟩+O(∥ hr ∥2),
which implies that

x0 +h0− ∥ xr +hr ∥ cotθ
= h0 −⟨x̃r,hr⟩cotθ +O(∥ hr ∥2).

(3.5)

It follows from (3.4), (3.5), and the Lipschitz property
of the function (·)_ with modulus 1 that

|− (x0 +h0− ∥ xr +hr ∥ cotθ)_
+(h0 −⟨x̃r,hr⟩cotθ)_| ≤ O(∥ h_r ∥2).

(3.6)

On the other hand, we also get equation 3.7 in Figure 2
Using the Taylor expression of the function x

∥x∥ , one
has

xr +hr

||xr +hr||
= x̃r +

1
||x||

(
x̃r, x̃T

r

)
hr +O

(
||hr||2

)
.

(3.8)

Thus, (3.7) is given by Figure 3
Moreover, from (3.5) and (3.6), we obtain

Π̃h
r =

(x̃r, x̃T
r )hr +O(∥ hr ∥2)

∥ xr ∥ (cotθ + tanθ)
×

((h0 −⟨xr,hr⟩cotθ +O(∥ hr ∥2))_)

+
x̃r

cotθ + tanθ
(∥ hr ∥2)).

(3.10)

It is necessary to show that ∥ Π̃h
r ∥≤ O(∥ h ∥2). In-

deed, it follows from (3.10) that

∥ Π̃h
r ∥≤

∥ (x̃r, x̃T
r )hr +O(∥ hr ∥2) ∥
∥xr∥(cotθ+tanθ) ×(

∥ h ∥
√

1+ cot2 θ +O(∥ h ∥2 )
)

+O(∥ h ∥2 ) = O(∥ h ∥2 ).

Combining to (3.6), we get ∥ Π̃h ∥= O(∥ h ∥2 ), which
means that (3.1) holds.
Case 4: x∈−bdK ∗

θ \{0}. It is obvious thatΠKθ (x)=
0. Then, for each h ∈ Rm+1 sufficiently close to 0,
we have λ1(x) < 0,λ2(x) = 0 and λ1(x+ h) = (x0 +

h0)− ∥ xr +hr ∥ cotθ < 0.. It follows from (2.3) and
Lemma 3.2 in22 that
ΠKθ (x+h) = ((x0 +h0 + tanθ ||xr +hr||)+)u2

x+h
Π′

Kθ
(x;h) = (1+ tan2 θ)(⟨u2

x ,h⟩)+u2
x ,

where

u2
x =

1
1+ tan2 θ

[
1

x̃r tanθ

]
,

u2
x+h =

1
1+tan2 θ

[
1

xr+hr
||xr+hr || tanθ

]

= u2
x +

1
1+tan2 θ

[
0

1
||xr || (x̃r x̃T

r )hr +O(||hr||2)

]
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Figure 1: Equation 3.4

Figure 2: Equation 3.7

Figure 3: Equation 3.9

Thus, one gets

Π̃h = (x0 +h0 + tanθ ||xr +hr||)+u2
x+h

−
(
1+ tan2 θ

)
(⟨u2

x ,h⟩)+u2
x

= (h0 + ⟨x̃r tanθ ,hr⟩+O(||hr||2))+(
u2

x +
1

1+tan2 θ

[
0

1
||xr || (x̃r x̃T

r )hr +O(||hr||2)

])
−(h0 + ⟨x̃r tanθ ,hr⟩)+u2

x (3.11)

with Π̃h := ΠKθ (x+h)−ΠKθ (x)−Π′

Kθ
(x;h). Since

the function (·)+ is Lipschitz with modulus 1, from

(3.11), we obtain∣∣∣∣∣∣Π̃h
∣∣∣∣∣∣≤ O(||hr||2)+

∣∣∣∣u2
x
∣∣∣∣

+||(h0 + ⟨x̃r tanθ⟩+O(||hr||2))+(
1

1+tan2 θ

)[ 0
1

||xr || (x̃r x̃T
r )hr +O(||hr||2)

]
||

≤ O(||hr||2)+(||h||
√

1+ tan2 θ +O(||hr||2)

×

(
1

1+tan2 θ

√(
1

||xr ||2
x̃r,hr

)2
+O(||hr||4)

)
= O(||h||2).

Note that the last inequality holds by ∥hr∥≤∥ h∥.
Consequently, (3.1) is implied.
Case 5: x=0. Then, for all h ∈ Rm+1, we get

λ1(x) = λ2(x) = 0 and
ΠKθ (x) = 0,ΠKθ (x+h) = ΠKθ (h),
Π′

Kθ
(x) = ΠKθ (h).
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Thus, one has

||ΠKθ (x+h)−ΠKθ (x)−Π
′

Kθ
(x;h)||= 0,

which means that (3.1) holds.
Case 6: x ∈ Rm+1\(Kθ ∪ (−K ∗

θ )). Since
Rm+1\(Kθ ∪ (−K ∗

θ )) is open, for h sufficiently
close to 0, one has x + h ∈ Rm+1\(Kθ ∪ (−K ∗

θ )).
Moreover, we can check that λ1(x)< 0, λ1(x+h)< 0
and λ2(x) > 0, λ2(x+ h) > 0. Thus, it follows from
(2.3) and [ 22, Lemma 3.2(a) and (3.6)] that

ΠKθ (x) = (x0 + tanθ ||xr||)u2
x ,

ΠKθ (x+h) = (x0 +h0 + tanθ ||xr +hr||)u2
x+h

Π′

Kθ
(x;h) = 1

tanθ+cotθ ×[
cotθ x̃T

r

x̃r
x0+||xr || tanθ

||xr || I − x0
||xr || x̃r x̃T

r

][
h0

hr

]
.

By directly computations, we get

||xr +hr||= ||xr||+ ⟨x̃r,hr⟩+O
(
||hr||2

)
,

xr+hr
||xr+hr || =

xr
||xr ||

+ 1
||xr||

(
I − x̃r x̃T

r
)

hr +O
(
||hr||2

)
,

and

Π′

Kθ
(x;h) =[ 1

1+tan2 θ (h0 + tanθ⟨x̃r,hr⟩)
1

cotθ+tanθ

(
h0x̃r +

x0+||xr || tanθ
||xr || hr

)
+B

]
B =− x0

||xr || ⟨x̃r,hr⟩x̃r.

By letting Π̃h :=(
1+ tan2 θ

)(
ΠKθ (x+h)−ΠKθ (x)−Π′

Kθ
(x;h)

)
,

then one has

Π̃h
0 = O

(
||hr||2

)
= O

(
||h||2

)
, (3.12)

O
(
||hr||2

)
− (x0 + tanθ ||xr|| x̃r tanθ)

−h0 tanθ x̃r −
x0 tanθ + ||xr|| tan2 θ

||xr||
hr

+
x0 tanθ
||xr||

⟨x̃r,hr⟩x̃r

= h0⟨x̃r,hr⟩+O
(
||hr||2

)
= O

(
||h||2

)
,

(3.13)

where the last equation holds by the fact that

||h0⟨x̃r ,hr⟩||
||h||2

≤ |h0|.||xr||.||hr||
||h||2

≤ ||xr ||.||h||2
2||h||2

=
||xr ||

2 .

Thus, (3.1) is fulfilled. □

APPLICATION
In this section, we first establish the formulation for
the Fréchet normal cone to the circular cone comple-
mentarity set Γ.
Theorem 4.1 Let Γ be defined as in (2.4) and (−x,−y) ∈
Γ. Then, we get Figure 4
Proof . We consider the following cases.
Case 1: x=0 and y ∈ int K ∗

θ . Then, we get x-y=-y,
which implies that

λ1(x− y) =−y0 −||yr||cotθ < 0,
λ2(x− y) =−y0 + ||yr|| tanθ .

Since y ∈ int K ∗
θ , we get y0 tan

( π
2 −θ

)
>

||yr|| , i.e., y0 > ||yr|| tanθ . Consequently, one
has

λ2(x− y) =−y0 + ||yr|| tanθ < 0.

It follows from [22, Lemma 3.1(a) and (3.6)] that

∂B(ΠKθ )(x− y) =
{

∇ΠKθ (x− y)
}
= 0.

By [22, Theorem 3.5(a)], we have

D̂∗ΠKθ (x− y)(y∗) =
{

∇ΠKθ (x− y)y∗
}
= 0.

Consequently, from (2.5), one obtains

N̂Γ(x,y) =
{
(u,v) |u ∈ Rm+1,v = 0

}
.

Case 2: x ∈ int Kθ and y=0. Then we get x-y=x, so

λ1(x− y) = x0 −||xr||cotθ < 0,
λ2(x− y) = x0 + ||xr|| tanθ .

It follows from [22, Lemma 3.1(a), (3.6) andTheorem
3.5(a)] that

∂B(ΠKθ )(x− y) =
{

∇ΠKθ (x− y)
}
= I,

D̂∗ΠKθ (x− y)(y∗) =
{

∇ΠKθ (x− y)y∗
}
= y∗.

Therefore, by (2.5), we have

N̂Γ(x,y) =
{
(u,v) |u ∈ Rm+1,v ∈ Rm+1

}
.

Case 3: x ∈ bd Kθ\{0},y ∈ bd K ∗
θ \{0} and y⊤x =

0. We get from Lemma 2.2 that y = k(x0 tan2 θ ,−xr)

with k = y0
x0

cot2θ > 0, which implies that

x− y = (x0,xr)− k
(
x0 tan2 θ ,−xr

)
=
(
(1− k tan2 θ)x0,(1+ k)xr

)
.

Moreover, we have

λ1(x− y)
= (1− k tan2 θ)x0 − (1+ k) ||xr||cotθ
=−k(1− tan2 θ)x0 < 0

(4.1)
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Figure 4: Theorem 4.1

and

λ2(x− y)
= (1− k tan2 θ)x0 +(1+ k) ||xr||cotθ
= (1− tan2 θ)x0 > 0.

(4.2)

By (3.6) in 22, we get

∇ΠKθ (x− y) = 1
tanθ+cotθ ×[

cotθ x̃T
r

x̃r
1+tan2 θ

tanθ(1+k) I − 1−k tan2 θ
(1+k) tanθ x̃r x̃T

r

]
.

On the other hand, it follows from [22, Theorem 3.5]
and (2.5) that

N̂Γ(x,y)

=
{
(u,v) |− v ∈ D̂∗ΠKθ (x− y)(−u− v)

}
=
{
(u,v) |− v ∈ ∇ΠKθ (x− y)(−u− v)

}
.

(4.4)

Let (u,v) ∈ N̂Γ(x,y) and x′ ∈ bd Kθ\{0}, x′ ∈
bd K ∗

θ \{0}with y′ = k(x
′

0 tan2 θ ,−x
′
r). Then y′T x′ =

0, which implies that (x’,y’ )∈Γ. Consequently, one
has

⟨(u,v),(x′,y′ )−(x,y)⟩
||(x′,y′ )−(x,y)|| =

⟨u,x′−x⟩+⟨v,y′−y⟩
||(x′−x,y′−y)||

=
⟨u,x′−x⟩+⟨kv,(x

′
0 tan2 θ ,−x

′
r)−(x0 tan2 θ ,−xr)⟩

||(x′−x,k(x′0 tan2 θ ,−xr)−k(0tan2 θ ,−xr ))||
≥ ⟨u+k(v∗0 tan2 θ ,−v∗r ),x

′−x⟩√
1+k2||x′−x|| . (4.5)

Since (u,v)∈ N̂Γ(x,y), passing to the limit in (4.5), we
get

limsup
x′

bd Kθ \{0}−−−−−−−→x

⟨u+k(v∗0 tan2 θ ,−v∗r ),x
′−x⟩

||x′−x|| ≤

limsup
(x′,y′)

Γ−→(x,y)

√
1+k2(⟨(u,v),(x′,y′ )−(x,y)⟩)

||(x′,y′ )−(x,y)|| ≤ 0

which implies that

u+ k(v∗0 tan2 θ ,−v∗r ) ∈ N̂bd Kθ \{0}(x) (4.6.)

By x∈ bd Kθ\{0}, there exists r>0 such that 0̸∈B(x,r)
and u0 ̸=0, ur ̸=0 for all u ∈ B(x,r). For each x ∈

Rm+1\{0}, we put φ(x) = x0 tanθ− ∥ xr ∥ if x ̸= 0
and φ(0)=1. Then, bd Kθ\{0} can be expressed by

bd Kθ\{0}= {x|φ(x) = 0}= φ−1(0).

Moreover, we can check that φ is continuously differ-
entiable on B(x,r), so ∇ φ(u) has the full rank when-
ever u ∈ B(x,r). It follows from [ 27, Example 6.8] that

N̂bd Kθ \{0}(x) = {∇φ(x)∗u|u ∈ R}
= R

(
x0 tan2 θ ,−xr

)
.

Taking (4.6) with k = y0
x0

into account, we have

u+ y0
x0

cot2 θ
(
v∗0 tan2 θ ,−v∗r

)
∈ R

(
x0 tan2 θ ,−xr

)
.

On the other hand, for each n ∈ N, let xn := x,yn :=
(1+ 1

n )y = (1+ 1
n )k(x0 tan2 θ ,−xr), then (xn,yn)∈ Γ

for all n ∈ N. Similarly to (4.5), one gets

⟨(u,v),(xn,yn)− (x,y)⟩
||(xn,yn)− (x,y)||

=
⟨v, 1

n
y⟩

1
n
||y||

Passing to limsup, it follows from the definition of reg-
ular normal cone that ⟨v,y⟩ ≤ 0. Otherwise, if we take
x
′
n := x, y

′
n = (1− 1

n )y for each n∈N then by the simi-
lar method, we obtain ⟨v,y⟩ ≥ 0. Therefore, ⟨v,y⟩= 0,
i.e., v⊥y. Similarly, one gets u⊥x. Consequently,

N̂Γ(x,y)⊂ {(u,v)|u ⊥ x,v ⊥ y and
x0u+ y0(v∗0,−cot2 θv∗r ) ∈ R(x0 tan2 θ ,−xr)}.

For the inverse of the above inclusion, let (u,v) be
satisfied u ⊥ x,v ⊥ y and x0u + y0(v∗0,−cotθv∗r ) =
α(x0 tan2 θ ,−xr)with some α ∈ R. We need to prove
that −v ∈ ∇ΠKθ (x − y)(−u − v) with ∇Π(x) as in
(4.3). Indeed, one has

cotθ(−u0 − v0)+ ⟨x̃r,−ur − vr⟩

= cotθ(−u0 − v0)+
u0x0 − v0x0 tan2 θ

x0 tanθ
=−(cotθ + tanθ)v0.

(4.7)
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Figure 5: Equation 4.9

Moreover, since ur − kvr =−αxr , we get

ur + vr = (1+ k)vr −αxr. (4.8)

It follows from (4.7) and (4.8), we have equation 4.9
in Figure 5
We next show that

−u0 − v0 +
1−k tan2 θ
(1+k) tanθ ×

(−(u0 + v0)cotθ + v0(cotθ + tanθ))
+α ||xr|| cotθ+tanθ

1+k = 0.

By replacing ∥ xr ∥= x0 tanθ and αx0 tan2 θ =

u0x00+ kv0 tan2 θ , the above equality is equivalent to

u0

(
−1+ 1+tan2 θ

(1+k) tan2 θ − 1−k tan2 θ
(1+k) tan2 θ

)
+v0

(
−1+ k 1+tan2 θ

1+k + 1−k tan2 θ
1+k

)
= 0,

which is always fulfilled by the fact that

−1+ 1+tan2 θ
(1+k) tan2 θ − 1−k tan2 θ

(1+k) tan2 θ = 0,

−1+ 1+tan2 θ
1+k − 1−k tan2 θ

1+k = 0.

Taking (4.9) into account, one gets

A =−vr (tanθ + cotθ) . (4.10)

It follows from (4.3), (4.7) and (4.10) that ∇ΠKθ (x−
y)(−u− v) = −v, so (u,v) ∈ N̂Γ(x,y). Hence, in this
case, we get

N̂Γ(x,y) = {(u,v)|u ⊥ x,v ⊥ y and
x0u+ y0(v∗0,−cot2 θv∗r ) ∈ R(x0 tan2 θ ,−xr)}.

Case 4: x = 0,y ∈ bd K ∗
θ \{0}. In this case, we get

x− y = −y = (−y0,−yr). Thus, one has λ1(x− y) =
−y0− ∥ yr ∥ cotθ < 0 and λ2(x− y) = −y0+ ∥ yr ∥
tanθ = 0.
By [22, Theorem 3.5(c)], we obtain

D̂∗ΠKθ (x− y)(−u− v) = {w ∈ Rm+1|
w ∈ R+u2

x−y,⟨−u− v−w,u2
x−y⟩} ≥ 0,

(4.11)

where u2
x−y = 1

1+tan2 θ

[
1 0
0 tanθ

][
1
−ỹ

]
. It follows

from (2.5) and (4.11) that (u,v) ∈ N̂Γ(x,y) if and only

if there exists α ≥ 0 satisfying

−v = α 1
1+tan2 θ

[
1 0
0 tanθ

][
1
−ỹ

]

= α
(cotθ+tanθ)||yr ||

[
y0

−yr

]
= α

(cotθ+tanθ)||yr || ŷ

and

1
1+tan2 θ

[
1 0
0 tanθ

][
1
−ỹ

]
u

= 1
(cotθ+tanθ)∥yr∥ ⟨ŷ,u⟩ ≤ 0.

This is equivalent to v∈R_ŷ and u∈ ŷ◦, which implies
that

N̂Γ(x,y) = {(u,v)|u ∈ (y0 cot2 θ ,−yr)
◦,

v ∈ R_(y0 cot2 θ ,−yr)}.

Case 5: x ∈ bd Kθ\{0} and y=0. Similarly to Case 4,
we get

N̂Γ(x,y) = {(u,v)|v ∈ (x0 tan2 θ ,−xr)
◦,

u ∈ R_(x0 tan2 θ ,−xr)}.

Case 6: x= 0,y= 0. Then, we haveλ1(x−y)= λ2(x−
y) = 0, and thus from [22, Theorem 3.5(d)], one gets

D̂∗ΠKθ (x− y)(−u− v) = {w ∈ Rm+1

|w ∈ Kθ ,−u− v−w ∈ K ∗
θ }.

It follows from (2.5) that (u,v) ∈ N̂Γ(x,y) if and only
if−v ∈ Kθ and−u ∈ K ∗

θ . Consequently, we obtain

N̂Γ(x,y) = {(u,v)|u ∈ K ∗
θ ,v ∈ −Kθ}.□

In what follows, we present necessary conditions for
the following mathematical program with circular
cone complementarity constraints:

Min f (x) (MPCCC)
subject to Kθ ∋ G(x)⊥ H(x) ∈ K ∗

θ

where θi ∈ (0, π
2 ) and f :Rn →R, G,H :Rn →Rm+1

are continuously differentiable and Kθ ⊂ Rm+1 is a
circular cone. The problem (MPCCC) is a generaliza-
tion of the mathematical program with second-order
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cone complementarity constraints (MPSOCC) stud-
ied in10,11,13. The feasible set of (MPCCC) is defined
by

Ξ := {x|F (x) ∈ Γ} ,

where Γ is given as (2.4) and F(x) = (G(x),H(x)).
Definition 4.2 Let −

x be a feasible solution of
(MPCCC). We say that −x is a local optimal solution
of (MPCCC) if there exist there exists δ > 0 such that

f (x) ≥ f (
−
x) ∀x ∈ Bδ (

−
x)∩Ξ.

Theorem 4.3 Let −
x be a local optimal solution of

(MPCCC) and let ∇F(−x) be surjective. Then

0 ∈ ∇ f (
−
x)+∇F(

−
x)TN̂Γ(F(

−
x)).

Proof. It is easy to observe that −x is a local optimal so-
lution of (MPCCC) if −x is a local optimal solution the
function f (x)+δΞ(x). We have from [25, Proposition
1.10] that

0 ∈ ∂̂ ( f +δΞ)(
−
x).

Using [ 25, Corollary 1.12.1], we get
0 ∈ ∇ f (

−
x) + ∂̂ δΞ(

−
x) which is equivalent to

0 ∈ ∇ f (
−
x) + N̂Ξ(

−
x). Using Lemma 2.1, we obtain

0 ∈ ∇ f (
−
x)+∇F(

−
x)TN̂Γ(F(

−
x)). □.

Finally, we give an example to illustrate Theorem 4.3.
Example 4.4 Consider the following problem

Min x2
1 +2x2

2

subject to

Kπ/4 ∋

(
x1

x2

)
=: G(x)⊥ H(x)

:=

(
x1

−x2

)
∈ K ∗

π/4

It is easy to check that −x :=

(
0
0

)
is a local solution of

this problem. By direct computations, we get

∇ f (
−
x) = (0,0) and ∇F(

−
x) = (I, Î),

where f (x) = x2
1 + 2x2

2, F(x) = (G(x),H(x)), I =[
1 0
0 1

]
and Î =

[
1 0
0 −1

]
. Therefore,

(0,0) ∈ ∇ f (
−
x)+ ∇F(

−
x)TN̂Γ (G(

−
x),H(

−
x))

= (0,0)+Kπ/4 × (−Kπ/4).

CONCLUSION
In this paper, we have first shown the calmly B-
differentiable property of the projector onto a circular
cone. Then, we presented the exact formula for com-
puting the Fréchet normal cones to the circular cone
complementarity set. Finally, we have provided first-
order necessary conditions for local optimal solutions
tomathematical programswith circular cone comple-
mentarity constraints.
For possible developments, we are planning to em-
ploy the obtained results in calculating the direction-
ally limiting normal cone of the circular cone com-
plementarity set. Moreover, inspired by13, sufficient
conditions for the error bound property of circular
cone complementarity problems would be established
by using the current approach.
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