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ABSTRACT

In this paper, we study a concept on the calm B-differentiability, a new kind of generalized differen-
tiabilities for a given vector function introduced by Ye and Zhou in 2017, of the projector onto the
circular cone. Then, we discuss its applications in mathematical programming problems with circu-
lar cone complementarity constraints. Here, this problem can be considered to be a generalization
of mathematical programming problems with second-order cone complementarity constraints,
and thus it includes a large class of mathematical models in optimization theory. Consequently, the
obtained results for this problem are generalized, and then corresponding results for some special
mathematical problems can be implied from them directly. For more detailed information, we will
first prove the calmly B-differentiable property of the projector onto the circular cone. This result is
not easy to be shown by simply resorting to those of the projection operator onto the second-order
cone. By virtue of exploiting variational techniques, we next establish the exact formula for the reg-
ular (Fréchet) normal cone (this concept was proposed by Kruger and Mordukhovich in 1980) to
the circular cone complementarity set. Note that this set can be considered to be a generalization
of the second-order cone complementarity set. In finally, the exact formula for the regular (Fréchet)
normal cone to the circular cone complementarity set would be useful for us to study first-order
necessary optimality conditions for mathematical programming problems with circular cone com-
plementarity constraints. Our obtained results in the paper are new, and they are generalized to
some existing ones in the literature.
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optimality condition
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INTRODUCTION
The second-order cone programming (SOCP) prob-

cone complementarity set. Unfortunately, the ob-
tained results were shown to be inexact in!l. In

lem plays an important role in the optimization the- that paper, Ye and Zhou gave exact formulas for the

proximal/regular (Fréchet)/limiting normal cone to

Dong Thap University

Correspondence

Vo Duc Thinh, Dong Thap University
Email: vdthinh@dthu.edu.vn
History

® Received: 2020-07-30

o Accepted: 2020-09-06
o Published: 2020-10-10

DOl : 10.32508/stdj.v23i4.2426
‘W) Check for updates

Copyright

© VNU-HCM Press. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution 4.0 International license.

A

—
VNU-HCM Press

ory and has attracted much attention from mathe-
maticians, see, e.g., 1-7 " We refer the reader to 1247
and the references therein for some remarkable re-
sults on optimality conditions and stability analysis of
(SOCP).

Inspired by the second-order cone, many researchers
have investigated optimization and complementar-
ity problems where their constraints are involved in
second-order cones. It is called the second-order
cone complementarity problem (SOCCP), which in-
cludes a large class of optimization problems such
as quadratically constrained problems (see®), the
second-order cone programming, and nonlinear
complementarity problem (see”). In particular, re-
cent attention is paid to the second-order cone com-
plementarity set.

Let us now mention some existing results concern-
ing this set. In'?, Liang et al. provided formula-
tions for Fréchet normal cone to the second-order

the second-order cone complementarity set by us-
ing the projection operator onto second-order cones
and the generalized differentiability called the calm
B-differentiability. Some first-order optimality con-
ditions for mathematical programs with second-order
cone complementarity constraints were obtained in !2
and sufficient conditions for error bound property of
second-order cone complementarity problems were
established in 3.

thors used the symmetric and self-dual property of the

To obtain these results, the au-

second-order cone.

Recently, generalizations of second-order cones and
second-order cone complementarity sets have been
examined by many authors>'4-22, For example, au-

141922 -onsidered circular cones, which are

thors in
generalizations of second-order cones and are, in gen-
eral, nonsymmetric and non-self-dual cones. The

generalized differentiability of the projection operator
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onto the circular cone was provided in'#?2. More-
over, the differentiability and calmness of vector-
valued functions associated with the circular cone
were also studied in!*%3. In particular, authors in2!
showed that the results of the projection operator onto
a circular cone could not be shown by simply resort-
ing to the results of the projection operator onto the
second-order cone, and hence, it is necessary to study
the results of circular cone directly.

To the best of our knowledge, there is no result on
the calmly B-differentiable property concerning the
circular cone and its extension. In this paper, in-

spired by11’13’22

, we first study in Section 3, the calm
B-differentiability of the circular cone. We then pro-
vide in Section 4 the formula for the Fréchet normal
cone to a circular cone complementarity set, which
can be considered as a generalization of the second-
order cone complementarity set. This formula would
be useful for us to study optimality conditions for
mathematical programming problems with circular
cone complementarity constraints.

PRELIMINARIES

Throughout the paper, if not otherwise specified,
fit)=0(t) (f1)=0(t)) means L — 0 (resp, L1
is uniformly bounded) as + — 0, and (f(x))+ :=
max{£(x),0}, and (f(x)) = min{f(x),0}.B,(x
stands for the closed ball centered at x € R” with ra-
dius r > 0. Given x,y € R”, xTy stands for the scalar
product of x and y. For x := (xp,x, ) € R x R" ™!,

we use the following notation

¥t = {y e R?*xTy =0} and

. my  ifxr#0,

X, = x|

any unit vector e € R*! if otherwise.

Let CCR" be a nonempty subset, cIC denotes its clo-
sure. The polar cone C° and the dual cone C* of C
are

C°:={yeR"y'x<0,¥x € C} and
C :={yeR"y"x>0,VxeC}

respectively.

The Fréchet normal cone to C at x € clC are defined

respectively by, see?4,

Ne(x) :=
{x* e R*x*,x' —x) <o(|| ¥ —x||),Vx € C}.

Lemma 2.1 (24, Theorem 1.14) Let D={x | h(x)€ C}
and let Vh(x) be surjective. Then

Np(x) = Vh(x)"Ne(x).
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Let f:R" — (—oo, o] and x € R" such that f (}) is

finite. The Fréchet subdifferential of f at x is defined
by, see [24, pages 89 and 90],

If(x) = {x* e R}
lim sup__ w <0
x—X

The indicator function of a set C C R" is denoted by

Sc(x) == {

It is known from [ 2, Proposition 1.18] that §8c (x)=
Ne(x)
foranyx € C.

0ifx¢C,
oo otherwise.

Let F:R" = R™ be a set-valued mapping, the domain
and the graph of F are

domF := {x e R"|F(x) # @},
gphF = {(x,y) e R" xR™|y € F(x)}.

The Fréchet coderivative of F at (x, y) € gphF are re-
spectively defined by, see [%4, Definition 1.32], for
each y*eR",

D*F(x,y)(y*) -
= {x" e R (x*,—y*) € nghF(x7Y)}~

When F(x) is single-valued, y can be omitted in the
above notations. Moreover, if F is continuously dif-
ferentiable, then for all y*€R™, we get

Dx F(x)(yx) = {VF(x)*yx}.

The derivative in the directionh € R" of F at x is defined
by
F h)—F
F’(x;y) = lim M

t—0*" t

The circular cone is defined (cf. 1419-23) by

Hp =

2.1
{x = (x0,%) € RXR™|xptan 6 > ||x,||} 1)

with angle 6 € (0,5). When 6 = %, it re-
duces to the second-order cone defined by % =
{x=(x0,x,) € Rx R™|xp > ||x,||}. In this case, the
set

Q:={(x,y)xe#,yex xTy=0}, (2.2)

is called the second-order cone complementarity set. If
6 # % then %} is a nonsymmetric and non-self-dual
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cone. The boundary and the interior of .y are given
respectively by

bd 7y :=
{x=(x0,%) € RxR™|xptan 6 > ||x,||},
int Ay := Jp\(bd Ap).

The positive dual cone and the polar cone of %y are
defined respectively by, see [ %0, Theorem 2.1],

Ho ={y = (y0,yr) € RxR"|ygcot 8 > ||y,[|},

%* = 7%* —
{y=(=y0,—yr) € RxR"|ygcot 6 = [|y|[}.

A relation between the boundary of %3 and that of
' is established as follows.

Proposition 2.2 Let x € bdJp\{0}
y € bd #g\{0}. Then, y x =0

if and only if x = k(yocor*6,—y, ) with k =

and

;% tan? 6 (equivalently, y = k(xgtan 8, —x,) with k =
%cotz 6.).

Proof. Let x € bd.#5\ {0} and y € bd.#5"\ {0}.

“ If”: Suppose that there exists k € Ry := (0,0)
with x = k(ygcot?8,—y, ), then y' x = 0.

“ Only if”: Let yTx = 0, then we get xotan 6 =|| x, ||
yotan(% —0) =||y-|| and xgyo +y{ xr = 0. Thus, one
has

yIx, = —xoy0 = (||x/|| cot ) x
(Iyllcot (5 —6)) = = el |- |yl

which implies the existence of k¥ € R such thatx, =
—Ky,. Consequently, we obtain

xptan 6 = K‘yotan(g —0),

ie., xgtan®® = Kkyy. Hence, x = K(ypcot>6,—y,)
with x = )y% tan® 0, and the proof is completed. [J
We recall that for any given x := (xg,x,) € R x R™, it
can be decomposed by (see [2°, Theorem 3.1])

x=2A(x) u}c +l2(x)u)2(,

where the spectral values A (x), A5 (x) and the spectral
1

X

vectors ul, u2 are defined respectively by

24(x) =50 — [l cot®,
Az (x) :=x0 + ||x||tan 6,

1 1 1 0 1
Uy ‘= ——F

X I+cot?8 |0 cot - )
2 1 1 0 1

X7 14+tan’6 |0 tan @ 3 :

The metric projection of x onto %y, denoted by
IT 4, (x), is defined as follows

I1 4, (x) := argmin,¢ 4, ||x — z||
={zeHp| || x—z|<[[x—u|,Vue Hp}.

From?? and the convexity of .#p, we get that IT , (x)
is a single-valued set and

T, (x) = (A1 (x)+)ug + (A2 (%) 4 3.

Moreover, [2°, Proposition 2] states that, for all x €
Rm+l

(2.3)

x:H%(x)+H%c(x)
and (IT (x),H,%o (x))=0.

Since I1(#p ) (x),I1(#y ) (x), one gets
H% (X) = 7H%0(7X).
Let us define the circular cone complementarity set as

U= {(x,y)lxe Ay, ye Ay x"y=0}, (24

which is a generalized type of (2.2). Given (x,y)e’
and an arbitrary u € J#p, it holds that

10— y) —ul? =[x —y) —I>

= [I(x— ) = yI1> = |Iy[I?

= [l —ulP —2(x—u,y)

= [le—ul? =2(x,3) +2(u,y) >0,
which means that x = IT 4, (x —y). Similarly, we get
that y € Iz (y —x).
The above observation allows us to obtain a relation
between the complementarity set I', and the projec-
tion onto .#j as follows.
Proposition 2.3 Let I" be as in (2.4). Then, we get

[(x,y) €T <= [x € LA (x — y)]
= yelly, (y—x)] <[y eIl (x—y)].

By Proposition 2.3, I can be expressed by

['={(x,y)|(x —y,x) € gphIl, }.

Let £ : R™+T xR R+ 5 R™F1 be defined by
Fx,y) := (x—y,x) for all (x,y) € R x R"1 we
can check that f is continuously differentiable and

Inv1 =l
Viy) =" :
Iny1 0
where I, is the unit matrix of the degree m+1, has

full rank. It follows from [ %7, Exercise 6.7] that

ﬁr(%)’) = N

(VG y) ("5 (3, 57) € Nephrt, (F (7))}
= {74y, =) (7, 5%) € Ngphr ) (x = y,x)}
={(u,v)| —v €D Ty, (x—y)(—u—v)}.
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From the above discussion, one obtains the following
result, which plays an important role in computing the
Fréchet normal cone to complementarity set.
Proposition 2.4 Let I" be as in (2.4) and (x,y)€l”
Then, we get
Nr(x,3) (2.5)
= {(u.v)| =v € DTy, (x—y)(~u—)}.

CALM B-DIFFERENTIABILITY OF THE
PROJECT MAPPING ONTO A
CIRCULAR CONE

In this section, we first show that the projection oper-
ator I1 4, is calmly B-differentiable at any x € R 1.
Then, we provide a characterization for a proximal
normal vector of T.

Definition 3.1 (!!) The function F : R” — R™ is
called calmly B-differentiable at x if, for all h suffi-
ciently close to 0, we get

Fx+h)—F(x) - ol n ).

Theorem 3.2 The projection mapping IT y, is calmly
B-differentiable for any x € R"*1,
Proof.Given an arbitrary x € R™1, it is enough to

F'(x;h) =

show that, for & sufficiently close to 0,

ILy, (x) — nf%(x;h)
=0=0(|h|?).

Ht%(x—b—h) G.1)

We consider the following cases.

Case 1: x € int#p. Then, we have Iy, (x) =
x, My (x +h) = x4+ h
from the definition of the directional derivative that
I, (x;h) = h. So, (3.1) is fulfilled.

Case 2: x € —int.Z*. We get, in this case that
IT 4, (x) = 0, I1 4, (x+ k) = 0. On the other hand, by
the definition of H% (x;h), one has H% (x;h)
(3.1) holds.

Case 3: x € bd ¥\ {0}. It implies that A; (x) = 0 and
A2(x) > 0. By (2.3) and Lemma 3.2(b) in?2, we have

I1 4, (x) :xJT% (x;h)
=h—(1+cot® 0)((u})Th)_uf,

Moreover, it follows

=0, so

((x0+ho— || x4y || cot8) 1)

1
(=x,—h,)cot
[+
+((x0 +ho+ || Xy + 1y || tan ) 1)

H%(erh):

*7 +cot? 6

1
X m (xr+h,)tan9:| . (3.2)
[+, 1]
Let IT" = (IT4,I17) € R"*! be defined by
" =T, (x+h) =Tl (x) =TT, (k) (3.3)
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we now show computations for ﬁg and IT". By (3.2)
and (3.3), ﬁg is given by Figure 1.

By the expression of || x, ||, for all A, sufficiently close
t0 0, we get | 2, + hy [|=]| %, || +(rs ) + O(| iy [P,
which implies that

xo+ho— || xr+hy || cot®

5 (3.5)
= ho — (&, 1) cot@ +O(|| by ||?).

It follows from (3.4), (3.5), and the Lipschitz property
of the function (-)_ with modulus 1 that

| — (xo +ho— || xr+ Ay || cotB)_
+(ho — (Xr,hr) cot0)_| < O(|| h_r ||2)

On the other hand, we also get equation 3.7 in Figure 2

(3.6)

Using the Taylor expression of the function H;—H, one
has
Xr + hy
[|xr + Ay | 3.8)
= gy (37 e 0 (1)

Thus, (3.7) is given by Figure 3
Moreover, from (3.5) and (3.6), we obtain

h — (thT)hr"‘O(H hy ||
" | xr || (cot® +tanB)
((ho — (xr,hy) cot® + O(|| hy ||*))_)

+c0t6 —l—tane(H " H ))-

(3.10)

It is necessary to show that || TI || < O(|| & ||2). In-
deed, it follows from (3.10) that

= T
it 1< LG TR+ O R |P) 1],
H IT; HS - Hx,H £0t9+ldn9)r

(Iln I Vi+eoZe+o(| k)
+o(l[h[?) = o(l 1 |).

Combining to (3.6), we get || TT" | = O(||  ||* ), which
means that (3.1) holds.

Case 4: x € —bd 5\ {0}. Itis obvious that IT 4, (x) =
0. Then, for each & € R"™*! sufficiently close to 0,
we have A (x) < 0,A2(x) =0 and A; (x+h) = (xo +
ho)— || xr+ hy || cot® < 0.. It follows from (2.3) and
Lemma 3.2 in?? that

Ty (x+ ) = ((xo + ho + tan 8 [xr + hr[[)+ Yty
I, (x;h) = (1+tan® 0)((uz, h)) +us,
where
o 1
* 7 14tan20 |X tan0|’
2= 1
x+h ™ 1+tan’ er+Z I tan
2y Lo 0 )
¥ 4tan®f W(x,xT)h,—i—O(Hh,H)
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1
Il x, + A, || (cotf + tand)

[tan& ||l x, + A, || ((xo + Ry

=l %y + Ay I cot8),)

+coth || x, + hy || (xg + Ro+ll 2, + R, || tand) ;] —xg — Ro + ((uz) "H)_

1

=% +h, || (cotd + tand)
_(Xo + hy—|

xg —hy + ———=(h
T tZG( )
__ (xotho—lley +hylcotd)_ 0

1+cot2d 2g Vo

1+co

[tand || x, + R, || ((xg + ho—
| X+ Ay |l cotd) ) + cotf || x, + Ry || (g + ho+ll - + - || tand), ]
— (¥, hyycotd) _

Il x. + Ak |l cotd)

— (&, hy)ootf) _. (3.4

Figure 1: Equation 3.4

fin = x-+h,
" x4+ h Il (cotf + tand)
X,

=™ cotd + tand
Il x, +h, |l cotd)_

Xpt+hy

— 7T  (x h .
er+hrll(cot8+tan6‘]( o ki ¢

(o
S BY

cotf+tant

[(xg + ho+ll 2, + b || tand) — (xg + ho—Il x, + R, |l cotd),]

— (&, cotd, h.y)_

o — (Xycotd i )) . (3.7

Figure 2: Equation 3.7

~ i e 2
fin = St e OW?) gy b cotf) ) —

cotd +tan9

(ho — (%cotf), b))

c0t6‘+tan6‘

= (x() + h() ! Xt h’r l COtG) (ho—{Zrcotf hy )

c0t|9+taru9
(& & e +0(Ine 1)

llxy I{cotd + tand) (xo - ho_

I 3¢ + iy Il cotd) .

(3.9)

Figure 3: Equation 3.9

Thus, one gets

o — (xo+h0+tan9I\xr+hr\|)+%2f+h
— (1+tan®0) ((u2,h)) +
(ho + (X, tan 8, h,) + O(| | h, H )+

+ (X tan 0, h,)) + 12 (3.11)

(3.11), we obtain

7] < o 1)+ 2|
(o -+ (i tan 8) + Ol I12)) +

() | et v oty
1+tan® 6 I H(xrx Y+ O(h]]7)
<o(||h|*) + (Hh||V1+taH29+0(||hrH2)

2
~ 4
x (119\/ (o) + 0 ))

= O(||h|*).

Y 0
+ Trae T @A+ O] )
—(ho

Note that the last inequality holds by | k|| <|| A].
Consequently, (3.1) is implied.
Case 5: x=0. Then, for all h € R"t! we get

~ , A1(x) =22(x) =0 and
ith IT" := 1, h) =Tl (x) =TI, (x;h). Si
wi Ao (X+h) =Ty, (x) =T, (x;h). Since My, (x) — 0, Ty (x+ ) = Ty, (),
the function (-)4 is Lipschitz with modulus 1, from H/% (x) =Ty, (h).
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Thus, one has

[Tt (4 h) =Ty, (x) = Ty (B[ = O,

which means that (3.1) holds.

Case 6 x € R™M\(#p U (—%")).  Since
R™HI\ (g U (—#,%)) is open, for h sufficiently
close to 0, one has x+h € R\ (g U (—08,)).
Moreover, we can check that A; (x) <0, A; (x+h) <0
and A»(x) > 0, A2(x+ h) > 0. Thus, it follows from

(2.3) and [?2, Lemma 3.2(a) and (3.6)] that

Iy, (x) = (xo+tan 6 | |x,[|) uz,
T, (x+h) = (xo+ ho +tan 0 Hx,—Q—h,H) we

ho
I3 ||"fxT] [h] '

By directly computations, we get

H% (x h) tan 6+cot6 X
cotf xr

7 x0+Hx,||tan91
4 (T[]

by = ol |+ o) 0 (I P

X +h, Xy
et T — Ty

1 5T 2
] H([ XrX )hr+0<|\hr\|>>

and

T, (x;h) =
m (ho +tan 6 (X, h,))

1 ~ | Xo+||x]|tan O
cotO+tan (hOXr + [1x] hr) +B

By letting I =

(1+tan®0) (H% (x+h) =TIy, (x) fH;% (x;h)),
then one has

m=o(InP)=o(kP), G
0(\|h,||2) — (xo+tan 0|x,|| % tan §)
- tan 0 tanZ 6
—hotanex,—xo an HH)‘TH an r
Xy
Xotan @ — (3.13)
el e
r

= o (&hr) + 0 (1)

—o(|InlP),
where the last equation holds by the fact that

o (Erhl| < [hol-|bxr]l: HhrH

P = ||h|\
2

LA™ _

< er
= 2P

l\)

Thus, (3.1) is fulfilled. (J
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APPLICATION

In this section, we first establish the formulation for
the Fréchet normal cone to the circular cone comple-
mentarity set I'.

Theorem 4.1 Let I be defined as in (2.4) and (x, ) €
I'. Then, we get Figure 4

Proof . We consider the following cases.

Case 1: x=0 and y € int JZ}'.
which implies that

Mx—y)=
L(x—y)=

Then, we get x-y=-y,

—yo —||yr|[cot® <0,
—yo+ ||y-||tan 6.

Since y € int J#, we get yotan(%fe) >
Irll, ie., yo > |[yr||tan®.
has

Consequently, one

M(x—y)=

It follows from [%2, Lemma 3.1(a) and (3.6)] that

0+ Ily| tan 6 < 0.

Ip (Mg ) (x—y) = {VILy, (x—y) } =0.
By [?2, Theorem 3.5(a)], we have
D*H/e(x ¥)( {VH/ex yy} 0.
Consequently, from (2.5), one obtains
Nr(x,y) = {(u,v) lue R™ vy = O} .
Case 2: x € int #p and y=0. Then we get x-y=x, so

Aa(x—y) = x0— [Jx]|cot <0,
Aa(x—y) = xp+ ||xr||tan 6.

It follows from [ 22, Lemma 3.1(a), (3.6) and Theorem
3.5(a)] that

33(11%)(96 y
D*Hle(x ¥)(

{VHJ/GX =1,
{VH,(B)C yy}—y

Therefore, by (2.5), we have
Nr(x,y) = {(u,v) lue R™1 y e R } .

Case 3: x € bd #p\{0},y € bd #5\{0} and yTx =
0. We get from Lemma 2.2 that y = k(xotan? 8, —x;)
with k = %cotze > 0, which implies that

x—y=(xp,x)—k (xotan2 0, —xr)
=((1- ktan® 8)xo, (1 +k)x;) .
Moreover, we have

Ai(x—y)
= (1 —ktan® 8)xg — (1 +k)||x||cot @
= —k(1 —tan®6)xp < 0

(4.1)
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f(u,v) | ue R™L v =0}
{(wv) |u=0,v e R™
f(wv)lulxvly and

ifx =0,y € int K3;

ifx € intKy, v =0;
if x € bd 7C5\{0}

and y € bd Z\{0};

ifx = 0,y € bd KZ\{0};
if x € bd Kp\{0},y = 0;
ifx=0y=0.

R™ 1\ {0}, we put @(x) = xotan6— || x, || if x #0
and ¢(0)=1. Then, bd %5\ {0} can be expressed by

NrQey) = { xgu + yo(vg, —cot®81) € R(x,tan?@, —x,)}
{(wv) | u € (yocot?d, —y,)",v € R_(yocot®0, —y,J}
{(u,v) | v € (xgtan®0, —x,)°, u € B_(x tan?0, —x, )}
f(w,v) | u€ —K;,v € —Kg}
Figure 4: Theorem 4.1
and
Aa(x—y)

(1—ktan? 8)xo + (1 +k) ||x||cot 8
= (1—tan?8)xq > 0.

(4.2)

By (3.6) in 22, we get

_ 1
VI, (x—y)= tan@1cotd <
cot@ xr }

~ a2 Crtan2 @ ~ ~T | -
% 1+tan” 6 171 ktan” 6 T

tan 0 (1+k) (1+k) tan gXrXr

On the other hand, it follows from [22, Theorem 3.5]
and (2.5) that

u, )|—v€]3*H,%(x—y)(—u—v)}
u,v) | —v € VILy, (x—y)(—u—v)}.

(4.4)

Let (u,v) € Np(x,y) and ¥ € bd #\{0}, ¥ €
bd 75 \{0} withy’ = k(xytan® @, —x,). Theny'Tx' =
0, which implies that (x}y’ )eI'. Consequently, one
has

(), (Y )=(xy) _ (X —x)+(y' —y)
16y )=yl 1 =y =)l

() —x)+(kv,(xy tan® 8,—x, ) — (xo tan? 6,—x,))

T || —xk(xy tan2 8,—x,) —k(tan2 0,—x, ) )| ‘
(u+k(vytan® 8,—v:) ' —x)

= VIHR2|x x| (4.5)

Since (u,v) € Nr(x,y), passing to the limit in (4.5), we

get
(u+k(vitan® 0,—v?) ¥ —x) <
[ —x] =
VIR (1), () —(x,y))) <0

1y )= ()]

limsup 4 Hp\{0}
X —

;
HSUP ) L o)

which implies that

u+k(vitan? 0, —v7) € Nog ;.\ (0} (¥) (4.6.)

By x € bd g\ {0}, there exists r>0 such that 0¢ B(x,r)
and up#0, u,#0 for all u € B(x,r). For each x €

bd 25\ {0} = {x|@(x) = 0} = ¢~ '(0).

Moreover, we can check that @ is continuously differ-
entiable on B(x,r), so V ¢(u) has the full rank when-
ever u € B(x,r). It follows from [ %7, Example 6.8] that

{Vo(x)*ulu e R}

Noa 5\ {0} (¥) =
=R (xptan’6,—x,).

Taking (4.6) with k = 372 into account, we have

u+t 32 cot 6 (vjjtan® 6, —v})
€R(xotan?6,—x;).

On the other hand, for each n € N, let x,, 1= x,y, :=
(1+ %)y =(1+ %)k(xo tan” @, —x,), then (x,,y,) €T
for all n € N. Similarly to (4.5), one gets
1
((19), (o, 30) = () 5
11(xn,n) — (2, ¥)]

1
H|

Passing to limsup, it follows from the definition of reg-
ular normal cone that (v,y) < 0. Otherwise, if we take
X, =, vy = (1— %)y for each n € N then by the simi-
lar method, we obtain (v,y) > 0. Therefore, (v,y) =0,
i.e, v.Ly. Similarly, one gets u_Lx. Consequently,

Nr(x,y) € {(u,v)|u Lx,v Ly and
xou+yo(viy, —cot? Ovi) € R(xptan® 6, —x,) }.

For the inverse of the above inclusion, let (u,v) be
satisfied # L x,v L y and xou + yo (v, —cot Ov;) =
a(xgtan® 6, —x,) with some & € R. We need to prove
that —v € VILy, (x — y)(—u —v) with VII(x) as in
(4.3). Indeed, one has

COte(fu() - VO) + <fr7 —Ur — Vr>

2
— tan” 0
= cotO(—up— vo) + RO TYOOENT 47
Xotan 6

= —(cotO +tanB)vy.
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1+tan?8 1—ktan?8

A= (—u - )+ tanf{1+k) (- —w) - (1+k)tand e~y — V%
- 1—ktan®d cotf+tand
=&y —v) + i il {(—(uo + vy)cotd + vo(cot@ + tand) )%, + ax, — — (cotd + tan@)y,
1—ktan?8 cotf+tanb
= (—uu =~ W e (— (g + vo)cot6 + vy (cotf + tand)) + a||x,| |—) — (cot® + tand)v,..

Figure 5: Equation 4.9

Moreover, since u, — kv, = —0tx,, we get

ur+vr = (1+k)vy — ax,. (4.8)

It follows from (4.7) and (4.8), we have equation 4.9

in Figure 5
We next show that
| —ktan’ 0
~Vo+t (ITk) an6
(— (uo +vg)cotB +vg(cotd +tan6))

"HZHX;»H cotelitkane —0.

X

By replacing | x, ||= xptan® and axptan®@ =
upx00 + kv tan? 0, the above equality is equivalent to

_ 1+tan’0 _ _1—ktan’@
“0( T+ o wnte (1+k)tan29>

n2 ran2
g (1 4+ kRO 4 Iokw?o) o,

which is always fulfilled by the fact that

if there exists @ > O satisfying

1 1 0 1
V= 0 nTe tan O

= (col9+tan9 ] { ]
y

= (0019+tan9 (cot6+tan 0)][y,]]

N R T
1+tanZ 6 0 tan6 _57 u

— 1 5
~ (cot6+tan6)][y,|] (,u) <0.

and

This is equivalent to v € R_yand u € y°, which implies
that

Ne(x.y) = {(v)]u € (yocor? 6, —y,)°,
vER_(yocor? 6, —y,)}.

Case 5: x € bd 7\ {0} and y=0. Similarly to Case 4,

14 1+tan’@ _ 1—ktan’0 __
(1+k) tan? 6 (1+k) tan’6 ~ 7 we get
1+tan’@ _ 1—ktan’ 6
—I+ e % =0

Taking (4.9) into account, one gets

A= —v,(tan6+coth). (4.10)

It follows from (4.3), (4.7) and (4.10) that VIT 4, (x —
Y)(—u—v) = —v, s0 (u,v) € Nr(x,y). Hence, in this
case, we get

Nr(x,y) = {(u,v)|u Lx,v Ly and
xou +yo (v, —cot? Ov) € R(xgtan? 0, —x,)}.

Case 4: x = 0,y € bd %, \{0}. In this case, we get
x—y=—y=(—yp,—yr). Thus, one has A; (x —y) =

]/\\]F(xvy) = {(M,V)‘V € (xotan2 97 7xr)07
u€eR_(xptan® 0, —x,)}.

Case6: x=0,y=0. Then, wehave A (x —y) = Ay (x —
y) = 0, and thus from [?2, Theorem 3.5(d)], one gets

D'y, (x —y)(—u—v) = {w e R"*!
lwe Ay, —u—v—we g}

It follows from (2.5) that (u,v) € Nr(x,y) if and only

if —v € J#p and —u € #,*. Consequently, we obtain
Ne(x,y) = {(u,v)|u € Hg',ve —Ap .0

In what follows, we present necessary conditions for

;zoe_zu(;)r Il coté < 0and Az(x—y) = —yo+ [l v | the following mathematical program with circular
2 ’ . cone complementarity constraints:

By [**, Theorem 3.5(c)], we obtain
o~ B - Min f(x) (MPCCC)
DLy (x=y)(—u—v) = {w e R""| (4.11) subjectto #y > G(x) L H(x) € g

we R+u)%,y, (—u—v—wu2_

1 0 1
1
e {0 wan 9] [ } It follows

from (2.5) and (4.11) that (1,v) € Nr(x,y) if and only

y>} > 07

2 _
where uy_, =

739

where 6, € (0, %) and f: R" - R, G, H : R" — R"*!

are contmuously differentiable and .75 C R"+! is a
circular cone. The problem (MPCCC) is a generaliza-
tion of the mathematical program with second-order
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cone complementarity constraints (MPSOCC) stud-
ied in 101513 The feasible set of (MPCCC) is defined
by

E:={x|F (x) €T},

where I is given as (2.4) and F(x) = (G(x),H (x)).

Definition 4.2 Let x be a feasible solution of
(MPCCC). We say that x is a local optimal solution
of (MPCCQC) if there exist there exists § > 0 such that

fx) = f(x) Vxe Bs(x)NE.

Theorem 4.3 Let x be a local optimal solution of
(MPCCC) and let VF(x) be surjective. Then

0 € Vf(x)+VF(x)"Ne(F(x)).

Proof. It is easy to observe that x is a local optimal so-

lution of (MPCCC) if x is a local optimal solution the
function f(x) 4 8z (x). We have from [2°, Proposition
1.10] that

0€d(f+8)(x).
Using [%, 1.12.1], we  get
0 € Vf(x) + 55:()?) which is equivalent to
0 € Vf(x) 4+ Nz(x). Using Lemma 2.1, we obtain
0eVf(x)+VF(x)"™Ne(F(x)). 0O.
Finally, we give an example to illustrate Theorem 4.3.

Corollary

Example 4.4 Consider the following problem
Min x? +2x3

subject to

Hpaa (] =60 LH®)
X2

X1

*
= € %/4

It is easy to check that x := is a local solution of

this problem. By direct computations, we get
V£ (x) = (0,0) and VF(x) = (L.T),

where f(x) = x} + 223, F(x) = (G(x),H(x)), I =
1 0 ~ 1 0

ndI=

a . Therefore,
0 1 0 -1

(0,0) € V£(x)+ VE(x)™Nr (G(x),H(x))
=(0,0) + A7 4 X (—Hz/4)-

CONCLUSION

In this paper, we have first shown the calmly B-
differentiable property of the projector onto a circular
cone. Then, we presented the exact formula for com-
puting the Fréchet normal cones to the circular cone
complementarity set. Finally, we have provided first-
order necessary conditions for local optimal solutions
to mathematical programs with circular cone comple-
mentarity constraints.

For possible developments, we are planning to em-
ploy the obtained results in calculating the direction-
ally limiting normal cone of the circular cone com-
plementarity set. Moreover, inspired by '3, sufficient
conditions for the error bound property of circular
cone complementarity problems would be established
by using the current approach.
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