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ABSTRACT
Introduction: The survival rate of oral cancer, like other types of cancers, has not been improved
regardless of the early diagnosis and the introductionof advanced therapies. Treatment for oral can-
cer includes surgery, radiation therapy, and chemotherapy. However, the effectiveness has been
limited due to recurrence and undesirable side effects. Metabolites from plant sources have been
shown to be relatively less toxic and thus are considered as potential anti-cancer agents. Interest-
ingly, curcumin isolated from the rhizome of Curcuma longa L. possesses broad-spectrum bioac-
tivities. We focused on the synthesis of curcumin-based analogs bearing -OH/-OCH3/-F groups
on the phenyl rings in our continuous efforts to search for curcumin-based anti-cancer agents. The
synthesized compounds were subsequently evaluated for the cytotoxic activities against KB cancer
cell line (an epidermal carcinoma of the mouth).
Methods: The desired curcuminoids were synthesized via aldol reactions between benzaldehyde
derivatives and pentane-2,4-dione using n-butylamine as a catalyst. Structures were distinguished
byNMRandMS spectra. The cytotoxic activity against KBwasdetermined through thehalf-maximal
inhibitory concentration (IC50 , µM).
Results: Six curcumin analogs (1-6) were successfully synthesized in a yield of 48-76%. The 3-
hydroxy/fluoro curcumin analogs (3, IC50 = 15.61± 0.13 µM; 6, IC50 = 22.65± 1.76 µM) exhibited
better anti-cancer activities when compared to curcumin (1, IC50 = 33.35± 2.66 µM), whereas the
para-fluoro substitution patterns displayed lower inhibitory activities (4, 5) against KB cancer cell
line.
Conclusions: The synthetic yields are dependent on the position and nature of substituents in aro-
matic rings. The presence of electron-donating groups gives products (1-3) in lower yields when
compared to those (4-6) prepared from fluorinated benzaldehydes as starting materials. The cur-
cuminoids bearing -OH groups at para-positions in aromatic rings (1, 2) can be responsible for
better inhibition of cell growth, whereas the fluoro-substituted compounds (4, 5) make a negative
contribution to inhibitory activity. Furthermore, the contributions -OH/-F groups atmeta-position
in aromatic rings of (3, 6) on the cytotoxicity against KB are remarkable and firstly reported in our
findings.
Key words: Curcumin analogs, anti-cancer activity, aldol condensation, KB cancer cell line

INTRODUCTION
KB cell line has been known to be a subline of the
KERATIN-forming tumor cell line HeLa and was
originally derived from an epidermal carcinoma of
the mouth1. Oral cancer, known as lip, tongue and
mouth cancers, is a serious and growing problemwith
more than 350,000 cases worldwide and about half of
the patients died from it2. Despite the early diagno-
sis and the introduction of advanced therapies, the
survival rate of oral cancer patients has not been im-
proved 3. The conventional treatments for oral cancer
involving primary surgery followed by radiotherapy
and/or chemotherapy are limited in effectiveness, re-
currence, and undesirable side effects. In recent years,
there has been a global trend toward natural products
extracted from plant sources. Several phytochemicals

have been selective, potent, and relatively less toxic
and thus are considered potential anti-cancer agents
in clinical cancer chemotherapy4.
Curcumin (1), a constituent of turmeric powder de-
rived from the rhizome of C. longa, is an attrac-
tive compound with broad-spectrum capacities in-
cluding anti-oxidant5, anti-inflammatory 6, and anti-
tumour7 activities. In particular, many studies re-
ported that curcumin exhibited anti-cancer activity
in a wide range of human cancers 8–15. In addition,
curcumin is pharmacologically safe as large quanti-
ties of curcumin, up to 10 g per day, can be consumed
without inflicting toxicity 16. However, despite the
multiple potentials of curcumin, its clinical applica-
tions until now are limited due to its poor solubility in
water, low chemical stability, and poor oral bioavail-
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ability 17. To overcome these limitations, chemi-
cal modification of the curcumin structure is one of
the promising approaches to explore curcumin-based
analogs, which improve the therapeutic profile of the
mother compound8–12. Structure-activity relation-
ship (SAR) analysis on curcumin analogs revealed
that the aromatic ring and its substituents are neces-
sary for biological activities10–13. In view of this, ben-
zaldehyde analogs bearing various functional groups
in the phenyl ring were selected as starting materi-
als to condense with pentane-2,4-dione under basic
conditions to afford analogs of curcumin 10–13,18,19.
Within this framework, curcumin analogs contain-
ing hydroxy/methoxy/fluorine groups onphenyl rings
were synthesized in our work, and their in vitro an-
ticancer activities against oral cancer cells (KB) were
assessed.

METHODS
Synthetic procedure for curcuminoids (1-6)
The published procedurewas used to carry out the
synthetic procedure of curcuminoids (1-6) bearing
various substituents on aromatic rings12,13,18,19 (Fig-
ure 1). A mixture of boron oxide (10.0 mmol)
and pentane-2,4-dione (10.0 mmol) in ethyl acetate
(20.0 mL) was stirred at 70 ◦C for 1 h in a 100-mL
two-neck round-bottom flask to yield the solution of
acetylacetone-borate complex. Benzaldehyde (20.0
mmol) and tri-n-butyl borate (40.0 mmol) was next
added, and the resulting mixture was stirred for 30
min. While stirring, n-butylamine (4.0 mmol) was
added dropwise over 30 min. The resulting mixture
was stirred and heated at 70 ◦C for 4-4.5 h (moni-
tored by TLC using HEX/EA = 3/2 for 1-3; 95/5 for
4, 6; 9/1 for 5 as eluent). The reaction mixture was
treated with an aqueous HCl solution (0.1 N, 20 mL)
with stirring for 1 h, then extracted with DCM (40
mL x 3). The combined organic layers were dried over
Na2SO4 concentrated in vacuo. The residue was pu-
rified by flash column chromatography (SiO2, eluent:
HEX/EA = 20/1 to 7/3) to afford the pure products.
The eluates from flask CC were fractionated by TLC
using a mixture of HEX/EA as eluent.

Analytical methods
Nuclear magnetic resonance (NMR) spectra of cur-
cuminoids (1-6) were recorded on a Bruker Avance
(500 MHz (1H), 125 MHz (13C)). Mass spectrometry
(MS)measurementswere performed on anAGILENT
1200 series LC-MSD. Sample spots on TLC were de-
tected by UV light at λ = 254 and 365 nm. Melt-
ing points (m.p) of pure products were determined by
M5000 apparatus with a heating rate of 2.0 oC/min.

Cytotoxicity assay against KB cancer cell
line
Curcuminoids (1-6) were tested in vitro for their cyto-
toxic activities against the KB cancer cell line. The as-
say was carried out at the Laboratory of Applied Bio-
chemistry, Institute of Chemistry, Vietnam Academy
of Science and Technology using a MTTmethod (the
assay procedure can be found in the Supporting Infor-
mation).

RESULTS
Target curcuminoids (1-6) were synthesized follow-
ing the published procedure from literature in 48-
76% yields12,13,18,19 (Table 1). Chemical structures
were elucidated by NMR and MS spectra (see the
Supporting Information for 1H, 13C-NMR, HSQC,
and MS spectra). All synthesized compounds were
evaluated for cytotoxicity against human oral epider-
mal carcinoma-KB cell line using MTT method. The
inhibitory activities were determined through their
half-maximal inhibitory concentration (IC50, µM)
(Table 1).
(1E,4Z,6E) - 5-hydroxy-1,7 - bis(4-hydroxy-3-
methoxyphenyl)hepta - 1,4,6-trien-3-one (1):
Yield 53% (1.95 g), red-orange solid, C21H20O6
[368.13 g/mol]; R f = 0.31 (HEX/EA= 3/2); m.p. 182.3
◦C 1H-NMR (500 MHz, CDCl3): δ (ppm) = 3.96 (s,
OCH3, 3H), 3.95 (s, OCH3, 3H), 6.42 (s, H4, 1H),
6.83 (d, H1, 3J (H,H) = 16.0 Hz, 1H); 6.93 (d, H5′ ,
3J (H,H) = 8.0 Hz, 1H), 6.94 (d, H5′′ , 3J (H,H) = 8.0
Hz, 1H), 6.99 (d, H7, 3J (H,H) = 16.5 Hz, 1H), 7.02-
7.08 (H2′,2′′,6′,6′′ , 4H), 7.11 (d, H2, 3J (H,H) = 16.5Hz,
1H), 7.29 (d, H6, 3 J (H,H) = 16.5 Hz, 1H). 13C-NMR
(125 MHz, CDCl3): δ (ppm) = 55.9 (OCH3), 55.9
(OCH3), 97.6 (C4), 108.2 (C2′ ), 108.8 (C2′′ ), 110.9
(C5′ ), 113.8 (C5′′ ), 114.6 (C6′ ), 114.8 (C6′′ ), 121.5 (C2),
121.6 (C6), 128.2 (C1′ ), 128.5 (C1′′ ), 134.8 (C1), 135.6
(C7), 146.7-146.9 (C4′,4′′ ,3′,3′′ , 4C), 162.1 (C5), 168.5
(C4). ESI-MS m/z calc for [M+H]+: 369.14; found:
368.90.
(1 E,4 Z ,6 E )-5-hydroxy-1,7-bis(4-hydroxyphenyl)
hepta- 1,4,6 -trien-3-one (2):
Yield 48% (1.48 g), orange solid, C19H16O4 [308.10
g/mol]; R f = 0.45 (HEX/EA = 3/2); m.p. 213.5 ◦C;
1H-NMR (500 MHz, DMSO-d6): δ (ppm) = 6.04
(s, H4, 1H), 6.68 (d, H2,6, 3J(H,H) = 16.0 Hz, 2H),
6.82 (d, H3′,3′′,5′,5′′ , 3 J(H,H) = 8.5 Hz, 4H), 7.52-
7.57 (H1,7,2′,2′′,6′,6′′ , 6H), 7.95 (s, C=C-OH, 1H), 10.02
(s, C6H4-OH, 2H). 13C-NMR (125 MHz, DMSO-
d6): δ (ppm) = 100.8 (C4), 115.8 (C3′,3′′,5′,5′′ ), 120.7
(C2,6), 125.8 (C1′,1′′ ), 130.2 (C2′,2′′,6′,6′′ ), 140.3 (C1,7),
159.7-162.3 (C4′,4′′ ), 183.1 (C3,5). ESI-MS m/z calc
for [M+H]+: 309.11; found: 308.90.
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Figure 1: The synthetic procedure and structures of curcuminoids (1-6).

Table 1: Reaction time, isolated yields, and IC50 (µM) values against KB cancer cell line of curcuminoids (1-6).

Compound Time (h) Yield (%) IC50 ± SD[a] (µM)

1 4.5 53 33.35± 2.66

2 4 48 43.94± 3.18

3 4 55 15.61± 0.13

4 4 72 66.36± 5.80

5 4 66 366.19± 28.48

6 4 76 22.65± 1.76
[a]MTT viability assay after 72 h, n = 3, mean± SD.

(1 E,4 Z ,6 E )-5-hydroxy-1,7-bis(3-hydroxyphenyl)
hepta- 1,4,6 -trien-3-one (3):
Yield 55% (1.69 g), yellow solid, C19H16O4 [308.10
g/mol]; R f = 0.43 (HEX/EA = 3/2); m.p. 185.5 ◦C;
1H-NMR (500 MHz, DMSO-d6): δ (ppm) = 6.22
(s, H4, 1H), 6.81 (s, H2,6, 2H), 6.84 (m, H4′,4′′ , 2H),
7.07 (d, H2′,2′′ , 3J(H,H) = 1.5 Hz, 2H), 7.15 (d, H6′,6′′ ,
3J(H,H) = 7.5 Hz, 2H), 7.24 (dd, H5′,5′′ , 3J(H,H)
= 7.5 Hz, 3J(H,H) = 7.5 Hz, 2H), 7.56 (d, H1,7, 3

J(H,H) = 16.0 Hz, 2H), 9.63 (s, C6H4-OH, 2H). 13C-
NMR (125 MHz, DMSO-d6): δ (ppm) = 100.6 (C4),

114.5 (C2′,2′′ ), 117.5 (C4′,4′′ ), 119.3 (C6′,6′′ ), 124.1
(C2,6), 129.9 (C5′,5′′ ), 135.9 (C1′,1′′ ), 140.5 (C1,7),
157.7 (C3′,3′′ ), 183.1 (C3,5). ESI-MS m/z calc for
[M+H]+: 309.11; found: 308.80.
(1E,4Z,6E)- 1,7 -bis(3,4-difluorophenyl)- 5
-hydroxyhepta- 1,4,6 -trien-3-one (4):
Yield 72% (2.50 g), yellow solid, C19H12F4O2 [348.08
g/mol]; R f = 0.48 (HEX/EA = 95/5); m.p. 212.3 ◦C;
1H-NMR (500 MHz, CDCl3): δ (ppm) = 5.81 ( , H4,
1H), 6.52 (d, H2,6, 3J (H,H) = 16.0 Hz, 2H); 7.19 (m,
H5′,5′′ , 2H), 7.27 (m, H2′,2′′ , 2H), 7.37 (m, H6′,6′′ , 2H),
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7.57 (d, H1,7, 3J (H,H) = 16.0 Hz, 2H); 13C-NMR
(125 MHz, CDCl3): δ (ppm) = 102.1 (C4), 116.1-
117.9 (C5′,5′′ ,6′,6′′ ), 124.9 (C2,6), 124.9 (C2′,2′′ ), 132.2
(C1′,1′′ ), 138.5 (C1,7), 150.6 (d, C4′ , 1J (C,F) = 247.5
Hz), 150.7 (d, C4′′ , 1J (C,F) = 248.7 Hz), 151.3 (d,
C3′ , 1J (C,F) = 251.2 Hz), 151.4 (d, C3′′ , 1 J (C,F) =
251.2Hz), 182.8 (C3,5); ESI-MSm/z calc for [M+H]+:
349.09; found: 348.80.
(1E,4Z,6E)- 1,7 -bis(4-fluorophenyl)- 5 -
hydroxyhepta- 1,4,6 -trien-3-one (5):
Yield 66% (2.06 g), yellow solid, C19H14F2O2 [312.10
g/mol]; R f = 0.34 (HEX/EA = 9/1); m.p. 185.7 ◦C;
1H-NMR (500 MHz, CDCl3): δ (ppm) = 5.81 (s,
H4, 1H), 6.54 (d, H2,6, 3J(H,H) = 16.0 Hz, 2H),
7.08 (dd, H3′,3′′,5′.5′′ , 3J(H,H) = 8.5 Hz,3J(H,H) = 2.0
Hz, 4H), 7.25 (s, C=C-OH, 1H), 7.54 (m, H2′,2′′,6′,6′′ ,
4H), 7.62 (d, H1,7,3 J(H,H) = 16.0 Hz, 2H).13C-
NMR (125 MHz, CDCl3): δ (ppm) = 101.7 (C4),
116.0-116.2 (C3′,3′′,5′.5′′ ), 123.7-123.8 (C2,6), 129.9-
129.9 (C2′,2′′,6′,6′′ ), 131.2-131.3 (C1′,1′′ ), 139.4 (C1,7),
162.8-164.8 (C4′.4′′ ), 183.1 (C3,5). ESI-MS m/z calc
for [M+H]+: 313.11; found: 312.9.
(1E,4Z,6E)- 1,7 -bis(3-fluorophenyl)- 5 -
hydroxyhepta- 1,4,6 -trien-3-one (6):
Yield 76% (2.37 g) yellow-orange solid, C19H14F2O2

[312.10 g/mol]; R f = 0.49 (HEX/EA = 95/5); m.p.
138.5 ◦C; 1H-NMR (500 MHz, CDCl3): δ (ppm) =
5.85 (s, H4, 1H), 6.61 (d, H2,6, 3J(H,H) = 15.5 Hz,
2H), 7.07 (m, H5′,5′′ , 2H), 7.25 (d, H6′,6′′ , 3J(H,H) =
8.0 Hz, 2H), 7.31 (d, H2′,2′′ , 3J(H,H) = 8.0 Hz, 2H),
7.36 (m, H4′,4′′ , 2H), 7.62 (d, H1,7, 3 J(H,H) = 16.0Hz,
2H). 13C-NMR (125 MHz, CDCl3): δ (ppm) = 102.2
(C4), 114.1-114.3 (C4′,4′′ ), 116.9-117.1 (C2′,2′′ ), 124.2-
124.3 (C2,6), 125.2 (C6′,6′′ ), 130.4-130.5 (C5′,5′′ ),
137.2-137.3 (C1′,1′′ ), 139.4-139.5 (C1,7), 162.1-164.1
(C3′,3′′ ), 183.0 (C3,5). ESI-MS m/z calc for [M+H]+:
313.11; found: 312.9.

DISCUSSION
The details of the synthetic procedure of curcumi-
noids were discussed in literatures12,13,17. Gener-
ally, the synthetic yields are dependent on the na-
ture and position of substituents on the aromatic rings
of benzaldehyde analogs (Table 1). When the car-
bonyl group is more positively charged, the attack of
an enolate as nucleophile on it becomes more acces-
sible. The presence of the hydroxy group (-OH), an
electron-donating group at para-position on the aro-
matic ring, resulted in lower isolated yields (1: 53%; 2:
48%), while higher yields (3: 55%, 4: 72%; 5: 66%; 6:
76%) were obtained when benzaldehyde derivatives
containing inductively electron-withdrawing groups
(meta-OH/-OCH3/-F groups) were used as starting

materials. Adding one more fluoro group to 6 (76%)
on the para-position resulted in a small decrease in the
yield (4: 72%), confirming the negative effect of the
resonance electron-donating group at para-position
on the reaction yield.
Chemical structures of the synthesized compounds
were elucidated by NMR and MS spectra. The pres-
ence of a singlet signal with one proton in a range
from 5.80 to 6.40 ppm in 1H-NMR spectra indicates
that the enol forms of products (1-6) are predominant.
Furthermore, the 3JH−H values of ~16.0 Hz of two
doublet signals between 6.50 and 7.80 ppm were in-
dicators of trans-configurations in the seven-carbon
chain of curcuminoid structures.
Six target compounds were tested for cytotoxicity
against human oral epidermal carcinoma-KB cell
line using MTT method. The curcumin derivatives
showed inhibitory activities toward KB (Table 1). A
better insight into the mode of action of curcumin
in the oral cancer cell is pivotal for the development
of new curcumin-based antitumor agents. When the
KB cells were treated with curcumin, the observations
of Jeon et al. on the nuclear morphology in cells re-
vealed that the apoptotic cell death was attributed to
the nuclear condensation and fragmentation aswell as
internucleosomal DNA fragmentation14. Consider-
ing the chemically structural characteristics, curcum-
inoids are classified as an a , -unsaturated ketone,
in which the Cβ is activated by the carbonyl group
and it becomes electrophilic, also called a Michael ac-
ceptor center. The ability of curcumin to selectively
induce apoptosis in cancer cells can be explained
through the detoxification mechanism, which has re-
ceivedmuch attention among possiblemechanisms to
elucidate the complex nature of interactions of cur-
cuminwith biologicalmolecules20–23. In that respect,
the Michael acceptor center of curcumin structure is
much prone to nucleophilic addition with the avail-
able –SH groups and glutathione (GSH), which can
invalidate toxic agents in cells. This may lead to the
cytotoxicity of curcuminoids against cancer cell lines.
The removal of methoxy groups from the structure
of lead compound (1, IC50 = 33.35±2.66 µM) re-
sulted in a decrease in anti-cancer activity against
KB (2, IC50 = 43.94±3.18 µM). The result suggested
that the meta-methoxy substituent was beneficial to
the cytotoxicity. It should be noted that the potency
of compound 3 (IC50 = 15.61±0.13 µM) bearing -
2-fold improved OH group at meta-position in the
aromatic ring over curcumin (1). The stronger anti-
carcinogenic property of curcumin analogs contain-
ing substituted -OH group atmeta or ortho positions
compared to curcumin was reported in the literature,
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but the mechanism has remained unclear12,15,23,24.
Here, our finding indicated a similar trend when cur-
cuminoids were assayed toward KB cancer cell line.
Curcuminoids bearing -OH groups displayed
anti-cancer activities against KB higher than the
fluorinated analogs (2 > 5, 3 > 6). The designed
4-fluorinated curcumin analogue (5, IC50 =
366.19±28.48 µM) dramatically reduced activity
in comparison with (2, IC50 = 43.94±3.18 µM).
The replacement of -OH and -OCH3 of (1, IC50

= 3.35±2.66 µM) by two fluorine atoms (4, IC50

= 66.36±5.80 µM) leads to a 2-fold reduction in
anti-cancer capacity. The lower activities of (4, 5)
obviously resulted from the existence of fluorine
atoms in the aromatic rings. The apoptotic activity
of curcumin correlated closely with the formation of
reactive oxygen species (ROS). Compounds (1) and
(2) can lose an H-atom from the phenolic group to
form phenoxyl radicals, which are stabilized by the
conjugated system in their structure. The reactive
free radicals are directly involved in cell apoptosis
by attacking the cellular DNA strands15,25–27. In
this context, the lower inhibitory activities of (4) and
(5) can be attributed to the alteration of electronic
properties of the fluorinated aromatic rings, due to
which the formation of free radicals is unfavorable
when compared to structures containing phenolic
motifs.
In addition, the hydrophobic nature of the curcumin
molecule often limits its bioavailability due to its poor
absorption and penetration through the cell mem-
brane. Fluorine substituent affects the physical prop-
erties of molecules, and aromatic fluorination always
increases their lipophilicity28. Thedecreased cytotox-
icity of the fluoro-substituted curcumin analogs (4, 5)
can be due to their increased lipophilicities.
Interestingly, regardless of the presence of fluorine,
the 3-fluorinated compound (6, IC50 = 22.65±1.76
µM) showed higher anticancer activity than (1) and
(2). It might be concluded that the effect of themeta-
position of -OHor -F substitution in the aromatic ring
is crucial for anti-cancer activity against the KB cell
line.

CONCLUSION
Six curcumin-based analogs were synthesized and
evaluated for anti-cancer activities against the KB
cancer cell line. The position and nature of sub-
stituents affect the isolated yields and cytotoxic ac-
tivities. The synthetic yields of products containing
electron-donating groups (1-3) are lower when com-
pared to those of analogs (4-6) prepared from fluori-
nated benzaldehydes as starting materials. Fluorine

atoms at para or both para/meta positions in com-
pounds (4, 5) exhibited lower activities against the KB
cell line than those of compounds (1-3). Structure-
activity relationship analysis suggested that i) the
ability of inhibitory activity of synthesized curcumin
analogs might rely on detoxification mechanism. ii)
The phenolic motif is responsible for better inhibi-
tion of cell growth, whereas the fluoro substituents in
the aromatic ring make a negative contribution to in-
hibitory activity. iii) the effects of -OH/-F groups at
meta-position in the aromatic ring of (3, 6) on the
cytotoxicity against KB are remarkable and firstly re-
ported in our findings. In general, we have provided
more promising results from curcumin-based agents
against the KB cancer cell line.
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