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ABSTRACT
The central limit theorem is awell-known theorem in probability theory. It is the theoretical basis for
constructing statistical problems such as parameter estimation problems and statistical hypothesis
testing, etc. The main aim of this article is to estimate the upper bound in the central limit theo-
rem for independent but not necessarily identically distributed random variables under Lyapunov's
conditions via the Zolotarev probability metric. The obtained result is the rate of convergence in
the central limit theorem for independent random variables. In the case of independent identically
distributed random variables will be concluded as a direct corollary. The Zolotarev probability met-
ric is the main research tool in this paper since it is an ideal metric of order s > 0. Furthermore, the
Zolotarev probability metric may be compared with well-knownmetrics like the Kolmogorov met-
ric, total variation metric, the Levy-Prokhorov metric, and the metric based on the Trotter operator,
etc.
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INTRODUCTION
The central limit theorem is one of the important the-
orems in the theory of probability and statistics, as a
pearl in this field. So far, there are many research top-
ics related to this theorem that has been attracting the
attention of many mathematicians, such as proving
and estimating the rate of convergence with various
hypothetical conditions.
Probability metrics, moment method, operator
method, and Stein method, etc., are tools and meth-
ods commonly used in the study of limit theorems.
Each tool or method has its strengths. Realizing
that the Zolotarev probability metric tool is easy for
estimating the convergence rate in the central limit
theorem, this metric has not been used before. Thus,
we have decided to choose the Zolotarev probability
metric as the main research tool in this paper.
Let {Xk} be a sequence of independent, but not nec-
essarily identically distributed random variables with
E |Xk|2+δ <+∞ for some δ > 0 and k ≥ 1. Let us put

mk = E(Xk), σ2
k =Var(Xk),

Bn = ∑n
k=1 σ2

k .

The following condition

lim
n→+∞

{
B−1−δ/2

n

n

∑
k=1

E|Xk −mk|2+δ

}
= 0

is called the Lyapunov’s condition (see1, Petrov 1995
– page 126).

In this paper, the upper bound of

ds

(
B−1/2

n

n

∑
k=1

(Xk −mk) ,Z

)
will be estimated, where ds is theZoloatrev probability
metric of order s (see Section 2 for more details) and
Z∼ Normal (0,1).
Throughout the article, the set of real numbers is de-
noted by R = (−∞,+∞) and the set of natural num-
bers is denoted byN= {1,2, ...}. The symbols=d and
→d express equality of distributions and convergence
in distribution, respectively.

PRELIMINARIES
We denote by X the set of random variables defined
on the probability space (Ω,F,P) and by C (R) the
set of all real-valued, bounded, uniformly continuous
functions defined on R with norm || f ||= sup

x∈R
| f (x)|.

Moreover, for any r ∈ N, δ ∈ (0,1] and s = r+δ , let
us set

Cr(R) = { f ∈C(R) : f (k) ∈C(R),1 ≤ k ≤ r}

and

Ds = { f ∈Cr(R) : | f (r)(x)− f (r)(y)| ≤ |x− y|δ },

where f (r) is derivative function of order r of f.
The definition of the Zolotarev probability metric and
its some basic properties will be recalled from 2–5

and6 as follows.
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Definition. Let X ,Y ∈ X. Zolotarev’s probability
metric on X between two random variables X and Y
is defined by

ds (X ,Y ) = sup
f∈Ds

|E [ f (X)− f (Y )]| .

The following properties of the Zolotarev probability
metric will be used in the next section.
1. Zolotarev probability metric ds is an ideal metric of
order s > 0, i.e., for any c ̸= 0 we have

ds(cX ,cY ) = |c|sds(X ,Y ),

and with V is independent of X and Y then

ds(X +V,Y +V )≤ ds(X ,Y ).

2. If ds(Xn,X0) −→ 0 as n→+∞ then Xn −→d X0 as
n→+∞.
The following lemma states one of the most crucial
properties of the Zolotarev probability metric, used in
the proof of the main result.
Lemma. Let {Xn} and {Yn} be two independent se-
quences of independent random variables (in each se-
quence) and they are independent. Then for all n∈N,

ds
(
∑n

k=1 Xk,∑n
k=1 Yk

)
≤ ∑n

k=1 ds (Xk,Yk) . (2.1)

Based on the ideality of the Zolotarev probabilitymet-
ric of order s>0, this lemma is easily proved by the
mathematical inductive method. Hence its detailed
proof is omitted.

MAIN RESULT
Before starting the main result, we prove an auxiliary
result that will use in the subsequent theorem. Ac-
cording to1 (Petrov 1995 — page 11), a random vari-
able Y is said to have a normal distribution with pa-
rameters µ and σ2, denoted by Y~Normal(µ,σ2), if
its characteristic function is given by

φY (t) = exp
{

iµt − σ2

2
t2
}
, t ∈ R.

Proposition. Let {Yk} be a sequence of independent
random variables and Yk~Normal(0,σ2

k ) for k ≥ 1.
Let

Tn =
n

∑
k=1

Yk and Bn =
n

∑
k=1

σ2
k .

Then

Z =d B−1/2
n Tn, (3.1)

where Z~Normal(0,1).

Proof. Since Yk~Normal(0,σ2
k ), their characteristic

functions are given by

φYk (t) = e−
σ2

k
2 t2

for t ∈ R and k≥ 1. The characteristic function of Tn

is defined by

φTn(t) = E(eiTnt) = E[ei(Y1+Y2+...+Yn)t ]

= φY1(t).φY2(t)...φYn(t)

= e−
σ2

1
2 t2

.e−
σ2

2
2 t2

...e−
σ2

n
2 t2

= e−
σ2

1 +σ2
2 +...+σ2

n
2 t2

= e−
Bn
2 t2

.

Thus, the characteristic function of B−1/2
n Tn will be

φ
B−1/2

n Tn
(t) = φTn

(
B−1/2

n t
)
= e−

t2
2 = φZ (t) .

This confirms that the representation (3.1) holds. The
proof is finished.
Theorem. Let {Xk} be a sequence of indepen-
dent random variables with moments E(Xk) =

0,E|Xk|2+δ <+∞ for δ ∈ (0,1] and k≥ 1. Let

Sn = ∑n
k=1 Xk, σ2

k =Var (Xk)

and Bn = ∑n
k=1 σ2

k .

Assume that {Yk} is a sequence of independent and
normal distributed random variables with parameters
0 and σ2

k , i.e., Yk~Normal(0,σ2
k ) for k ≥ 1. More-

over, suppose that the following Lyapunov’s condi-
tions are satisfied as n→+∞{

B−1−δ/2
n

n

∑
k=1

E |Yk|2+δ
}

= o(1)

and {
B−1−δ/2

n

n

∑
k=1

E |Xk|2+δ
}

= o(1) .

Then

d2+δ

(
B−1/2

n Sn,Z
)
≤

1
2 B−1−δ/2

n ∑n
k=1

(
E |Xk|2+δ +E |Yk|2+δ

)
,

where Z~Normal(0,1).
Proof. According to the above Proposition,

Z =d B−1/2
n Tn.

Based on the ideality of the Zolotarev probabilitymet-
ric and from Lemma in the previous section, we have

d2+δ

(
B−1/2

n Sn,Z
)

= d2+δ

(
B−1/2

n Sn,B
−1/2
n Tn

)
= B−1−δ/2

n d2+δ (Sn,Tn)

≤ B−1−δ/2
n ∑n

k=1 d2+δ (Xk,Yk) .
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For any f ∈ D2+δ , x ∈ R and θ ∈ (0,1), by the Taylor
series expansion with Lagrange remainder, we get

f (x) = f (0)+ f ′(0).x+ f ′′(θx)
2 x2

= f (0)+ f ′(0).x+ f ′′(0)
2 x2 + x2

2 [ f
′′(θx)− f ′′(0)].

Note that for k≥ 1,

E(Xk) = E (Yk) = 0 and
E(X2

k ) = E(Y 2
k ) = σ2

k .

Hence

E[ f (Xk)− f (Yk)] =

E{X2
k

2 [ f ′′(θXk)− f ′′(0)]− Y 2
k
2 [ f ′′(θYk)− f ′′(0)]}.

Moreover, since f ∈D2+δ and θ ∈ (0,1), we can assert
that

|E[ f (Xk)− f (Yk)]|=∣∣∣E{X2
k

2 [ f ′′(θXk)− f ′′(0)]− Y 2
k
2 [ f ′′(θYk)− f ′′(0)]

}∣∣∣
≤ E

{
X2

k
2 | f ′′(θXk)− f ′′(0)|+ Y 2

k
2 | f ′′(θYk)− f ′′(0)|

}
≤ E

{
X2

k
2 |θXk|δ +

Y 2
k
2 |θYk|δ

}
≤ 1

2

(
E |Xk|2+δ +E |Yk|2+δ

)
.

By the definition of the Zolotarev probability metric,
one has

d2+δ (Xk,Yk)

= sup
f∈D2+δ

{|E[ f (Xk)− f (Yk)]|}

≤ 1
2

(
E |Xk|2+δ +E |Yk|2+δ

)
.

Therefore

d2+δ

(
B−1/2

n Sn,Z
)

≤ 1
2 B−1−δ/2

n ∑n
k=1

(
E |Xk|2+δ +E |Yk|2+δ

)
.

The proof is finished.
Remark. Assume that the hypothetical conditions of
the above theorem are accepted. Then, the central
limit theorem will establish as follows

B−1/2
n Sn →d Z ∼ Normal(0,1) as n →+∞.

It is worth saying that if {Xk} is a sequence of indepen-
dent identically distributed random variables with fi-
nite commonmoment E(X1) = m, common variance
Var(X1) = σ2 ∈ (0,+∞) and E|X1−µ|2+δ <+∞ for
some δ > 0 then the Lyapunov’s condition is satisfied.
Indeed, we now get

Bn = ∑n
k=1 σ2

k = nσ2 and
∑n

k=1 E|Xk −mk|2+δ = nE|X1 −m|2+δ

and the Lyapunov’s condition becomes

lim
n→+∞

{(
nσ2

)−1−δ/2
nE |X1 −m|2+δ

}
= 0.

Therefore, the following result considers the case of a
sequence of independent identically distributed ran-
dom variables without Lyapunov’s condition.
Corollary. Let {Xk} be a sequence of independent
identically distributed random variables with com-
monmomentsE(X1)= 0,E(X2

1 )=σ2 ∈ (0,+∞) and
E|X1|2+δ <+∞ for δ ∈ (0,1]. Let Y~Normal(0, σ2).
Then

d2+δ

(
n−1/2 ∑n

k=1
Xk
σ ,Z

)
≤ n−δ/2

2σ 2+δ

(
E|X1|2+δ +E|Y |2+δ

)
,

where Z~Normal(0, 1).

CONCLUDING REMARKS
In the same way as this study, the convergence rates in
the weak limit theorems that their limit distributions
are the stable laws can be established. Moreover, these
issues may also extend to random sums.
It is worth saying that Lindeberg’s condition is weaker
than Lyapunov’s one; that is, if Lyapunov’s condition is
satisfied, then Lindeberg’s one is satisfied. Therefore,
establishing the convergence rates in the limit theo-
rems for independent random variables under Linde-
berg’s condition is also very interesting to investigate.
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