TAP CHi PHAT TRIEN KH&EN, TAP 11, SO 01- 2008

ABOUT A STRAIN SMOOTHING TECHNIQUE
IN FINITE ELEMENT METHOD

Nguyen Xuan Hung ’, Nguyen Dinh Hien ®, Ngo Thanh Phong"”
(1)University of Natural Sciences, VNU — HCM
(2)University of Technical Education HCMc¢
(Manuscript Received on April 15", 2007)

ABSTRACT: This paper presents a global review of the strain smoothing method to finite
element analysis for two-dimension elastostatics. The strain at each point is replaced by a non
— local approximation over a smoothing function. With choosing a constant smoothed function
and applying the divergence theorem, the stiffness matrix is calculated on boundaries of
smoothing elements (smoothing cells) instead of their interior. The presented method gains a
high accuracy compared with the standard FEM without increasing computational cost.

LINTRODUCTION

In Finite Element Method (FEM), an important work to compute the stiffness matrix is
often to use mapped elements, such as the well-known isoparametric elements through Gauss
quadrature rule. Then the element stiffness matrix is evaluated inside element instead of along
boundaries of element. In using a mapped element, a one — to — one coordinate transformation
between the physical and natural coordinates of each element has to be ensured. To satisfy this
requirement, the convex element is not broken and a violently distorted mesh is not permitted.

Purpose of this paper is: 1) to construct the element stiffness matrix along its boundaries
via a strain smoothing method, 2) to utilize a stabilized method with selective cell-wise strain
smoothing when solving nearly incompressible elastic problems, 3) to estimate the reliability
of presented method through numerical examples.

2. GOVERNING EQUATIONS AND WEAK FORM

Let @ — R be a bounded domain with a polynomial boundary I'. The body force b is
acting within the domain. The governing equilibrium equation for isotropic linear elasticity
writes

Vo+b=0 in Q (1)

where @ is the symmetric Cauchy stress tensor. The compatibility equation is

3
8=Vsu=-;-(Vu+V"'u) in Q )

The displacement field satisfies the Dirichlet boundary conditions
u,=u,onl, (4)
and the stress field satisfies the Newman boundary conditions
on =t on I, )

¥yl

where [=0Q,I'=I", UI,,T, NI, =@,
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The virtual work equation is of the form

L,us : D, 1 edQ+ _L Ke:(V.aul)dQ = Lb.udQ+ J:_' t.udl (6)

The stress field is split into two parts: the deviatoric stress s, and the pressure p
c=s+pl=uD, e+ KV.ul (7)

where 1 is the rank two identity tensor, which can be presented by I = [l 1 0]]r , uD,, is

the deviatoric projection of the elastic matrix D, u is the shear modulus and X is the bulk

modulus defined by K=E/3(1-2v), E is Young’s modulus, and v is Poisson’s ratio.
Assume that the bounded domain (2 is discretized into n non—overlappmg clements,

Q=~Q' = UQ” The standard finite element solution #” of a finite element displacement
e=|
model is expressed as follows

np
u{,:ZNer':Nq ®)
i=l

where np is total number of nodes of mesh, N, is the shape function of node i, g, are the

1

associated degrees of freedom at that node. The discrete strain field is

&= V.u" =Bq ©)
where B =V N is the strain — nodal displacement matrix (the discretized, symmetric gradient
operator).

By substituting Eq. (8) - (9) into Eq. (6), we obtain a linear system for g,
Kg=g (10)
where the element stiffness matrix given by
K=u| B'D,BdQO+K | B"D,BdC (11)
with
4 -2 0 1 10
Da'ev:l -2 4 0,D=|110 (12)
0 0 3 0 00
and the load vector is
= [ N"baq+ [ NTzdr (13)

3. THE STRAIN SMOOTHING METHOD

The strain smoothing method was proposed by Chen ef al. [1] and Yoo et al. [3] as a
normalization of the local strain field. This technique is also known as strain smoothing
stabilization, through which the nodal strain is computed through the divergence of a spatial
average of the standard local strain field. In mesh-free methods [2], this is sufficient to
eliminate defective modes through smoothed strains. The derivatives of the shape functions are
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not required at the nodes. Applications of strain smoothing to the FEM can be seen as a
stabilized conforming nodal integration method as defined in Galerkin mesh-free methods.
Strain smoothing at an arbitrary point writes

E(x0)= [, & (0D -x.)dO (15)

where @ is a smoothing function. There are several choices for this smoothing function. For
simplicity, @ is assumed to be a step function as follows

1/ 4.,xe€ Q¢ (16)

D(x—-x.)=
0,x & Q¢

with 4. is the area of the smoothing cell, Q¢ € Q° c Q" shown in Figure 1.

Smoothing cells (1 or 4 quadrilaterals)
Support domainof node I ___..-orrr e i
7 S - 1 \ “T >

Gauss point_."'

Field node

Figure 1: Example of finite element meshes and smoothing cells

Substituting Eq. (16) into Eq. (15), and using the divergence theorem, we obtain

ik 1 ou'  ou 1 i 3
Bh(x)= Wh/R Ple by +u'n)dT 17
y(e) =50 Lz[ax. ox, 24, f, @in; +ujm) k7

7

Now, consider an arbitrary smoothing cell, Q- c Q" illustrated in Figure 1 with

nb

boundary I't: = UI"’ , where T2 are the boundary segments of €¢., and nb the total number
b=1

of edges of each smoothing cell. The relationship between the strain field and nodal

displacement is corrected by replacing B byﬁ :
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& =Bg (18)
The elemental stiffness matrix then writes
KR=u| B'D,,BdQ+K [.B"D,BdQ | (19)

Here, the integrands are constant over each Q¢ and the non-local strain displacement
matrix is in the form

Bﬁ(xc) = A_le _L Ninrdr (20)
o 44

From Eq. (20), we can employ Gauss line integration along each segment, I” 2 If the

shape functions are linear along the boundaries of the smoothing cells, one Gauss point is
sufficient for exact integration of the weak form. In this case,

nb
Bi(x0) ==Y NGOl @y

C b=l

where xf and lbc are the midpoint (Gauss point) and the length of I" f respectively.

Considering a mixed variational principle based on an assumed strain field [4], the
following system of linear algebraic equations is obtained

I;'q =g (22)

In strain smoothing technique, the element is subdivided into nc non-overlapping sub-
domains also called smoothing cells. For example, the element is partitioned into. 1-subcell, 2-
subcell, 3-subcell and 4-subcell., Then the strain is smoothed over each sub-cell. While
choosing a single subcell yields an element which is superconvergent in the H1 norm, and
insensitive to volumetric locking, as shown in Reference [6, 7], if nc > 1, locking reappears. It
is also shown in Reference [6] that the finite element method with strain smoothing is
equivalent to a stress (equilibrium) formulated element for nc=1, and tends toward the
standard displacement solution for nc — +o . Consequently, as #nc approaches 1, the stress
results become more accurate, while the displacement results deteriorate; and as »nc¢ increases,
displacement results gradually improve, while stress results deteriorate.

The purpose of this article is to use a single subcell smoothing to compute the volumetric
part of the strain tensor, while the deviatoric strains are written in terms of an arbitrarily high
number of smoothing cells. The method may be coined a stabilized method with selective cell-
wise strain smoothing [8].

The stiffness matrix is built
1. Using nc > 1 subcells to evaluate the deviatoric term
2. Using one single subcell to calculate the volumetric term

This leads to the following elemental stiffness matrix

dev™¢

K=pY B'D, B A +KB"D,BAdQ s
c=l
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where A, is the area of the smoothing cell, Q...

The resulting approach with selective smoothing cell brings out the stable and excellent
convergence for compressible and nearly incompressible problems not only isotropic linear
elasticity but also isotropic plasticity and viscoplasticity, etc.

4 NUMERICAL RESULTS
4.1. Cantilever beam

A 2-D cantilever beam subjected to parabolic loading at the free end is examined in this
example as shown in Figure 3. The geometry is taken as length L, height D and thickness ¢,
such that L=8, D=4 and f=1. The material properties are: Young’s

modulus £ = 3x107, and the amplitude of the parabolic shear force P =250. The exact
solution of this problem is available as given by Reference [5]. Figure 4 illustrates a uniform
mesh with 512 quadrilateral elements.

A4

S
, o

Figure 3. A cantilever beam and boundary conditions

The relative error in displacement norm is defined as

ndof ndof

Re, = Z(uf’ —u™ )2 Ly
i=1

i=l

: ;
(uf’“'""’ ) (24)
The error in energy is defined by

E=D(s"—s)Tn(aﬁ-a)r e (25)

Under plane stress conditions, Poisson’s ratiov = 0.3, Figure 4 shows the relative error
and the rate of convergence in the displacement norm for a sequence of uniform meshes,
respectively.

ot

From Figures 4 — 5, the presented method gives reliable results compared with 4-node
FEM. Figures 4b and 5b show that the 2-Subcell, 3-Subcell and 4-Subcell elements exhibit the
same convergence rate in both the L* and H' (energy) norms as the standard FEM. Moreover,
displacement results for the 3-Subcell and 4-Subcell discretization are more accurate than the
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standard bilinear Q4-FEM solution. The proposed elements also produce a better
approximation of the strain energy. Additionally, the CPU time required for all elements
presented here appears asymptotically lower than that of the FEM [6, 7], as the mesh size
tends to zero.

Figure 5 shows the convergence in energy and the rate of the cantilever beam. Next we
estimate the accuracy of the presented elements for the same beam problem, assuming a near.
incompressible material. Under plane strain condition, Figure 6 illustrates the displacements
along the neutral -axis for Poisson’s ratio, v = 0.4999. The results show that FEM, 2—subcell,
3—subcell and 4—-subcell solutions yield poor accuracy as Poisson’s ratio v tends toward 0.5. To
remedy this locking phenomenon, selective integration techniques are considered. Figure 6b
presents the results after of the selective integration method (SIM) to Q4-FEM element and
using the selective cell-wise smoothing method for the FEM with strain smoothing [8].
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Figure 4: The convergence in displacement norm; a) the relative error, b) the rate
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Figure 5. The convergence of the energy norm; a) the energy, b) the rate
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Analytical solu.
SiM

1=Subcell
2-Subcell
3-Subcell
4-Subcell

soxon

Vertical displacement v
[
=

Verlical displacement v

-2

Figure 6: Vertical displacement for cantilever beam at the nodes along the x-axis (y =0): a) without
using the selective technique, b) applying the selective method (v = 0.4999)
4.2 L-shaped domain with applied tractions
Consider a L — shaped domain under plane stress condition applied tractions and boundary
conditions are shown on Figure 7. The parameters of the structure are: £=1.0, v=0.3,
t =1. In this example, a stress singularity occurs at the re-entrant corner.
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Figure 7: Domain problem and initial mesh

The convergence behaviour of overall strain energies is shown in Figure 8a, and the
convergence rates are shown for comparison in Figure 8b with log,,(number of nodes ) bk
The accuracy of presented method is higher than that of the FEM-Q4. The 1-Subcell element
provides the best solutions in strain energy for the coarser meshes. More particularly, an
inversion of convergent energy for 2-Subcell and 3-Subcell is appeared. Two these Sub-cells
lead to the less error than 4-Subcell and FEM do. Beside, a refined mesh towards to corner is
necessary for purposing the reduction of error and computational cost.
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Strain energy
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Figure 8: The convergence of the energy norm; a) the strain energy, b) the rate
5. CONCLUSIONS

In this paper, we present a global aspect of the smoothed strains in finite element method
to solve compressible and incompressible linear elastic. The element stiffness matrix is
completely calculated along the boundary instead of the inside of element that the traditional
FEM is utilized. The shape functions are calculated in a simple form. The numerical results
show that the present method is normally more accurate than FEM while computational cost is
not increasing.

The method is illustrated in two — dimensional linear elasticity but it can be extended to
more complex structures such as non-linear elasticity, elastic — plastic bchaviour and
viscoplastics, plates, shell, 3D-problems, etc. The results of this investigation will be shown in
forthcoming papers.

VE KY THUAT TRON HOA BIEN DANG TRONG PHUONG PHAP PHAN TU

HUU HAN

Nguyén Xuan Hing" , Nguyén Dinh Hién®, Ngé Thanh Phong®
(1)Trudng Dai hoc Khoa hoc Ty nhién, PHQG-HCM
(2)Truong Pai hoc Su pham K thuit Tp.HCM

TOM TAT: Bai bdo nay trinh bay mét tong quan vé phwong phap tron hod bit?'n dang
trong phan tir hitu han cho Co hoc vt rén bién dang hai chiéu. Bién dang tai méi diém dwoc
chuan héa béi mét ham lam trom trong mot ldan cdn cua miép khao sat. Khi ham tron dwoc
chon la hing s6, ma trén dé cung dugc tinh trén bién ciia phdn tir thay vi bén trong nhu cdch
tinh théng thuong. Phwong phdp dé cdp dat dwoc do chinh xdc cao hon phwong phdp phan tir
hitu han truyén théng ma khong tang chi phi tinh toan.
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