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ABSTRACT: Evolution of a hypersurface moving according to its mean curvature has
been considered by Brakke [1] under the geometric point of view, and by Evans, Spruck [3]

under the analysic point of view. Starting from an initial surface I, in R", the surfaces
[, evolve in time with normal velocity equals to their mean curvature vector. The

surfaces T, are then determined by finding the zero level sets of a Lipchitz continuous function

which is a weak solution of an evolution equation. The evolution of hypersurface by a
deposition process via a level set approach has also been concerned by Dinh, Hoppe [4]. In
this paper, we deal with the level set surface evolution with speed depending on mean
curvature. The velocity of the motion is composed by mean curvature and a forcing term. We
will derive an equation for the evolution containing the surfaces as the zero level sets of its
solution. An existence result will be given.
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1. INTRODUCTION

Let I, be a smooth hypersurface which is, say, the smooth connected boundary of a

bounded open subset U of R", n>2. As time progresses we allow the surface to evolve by
moving each point at a velocity equals to (n—1) times the mean curvature vector plus some

function F at that point. Assuming this evolution is smooth, we define thereby for each />0 a
new hypersurface I, . The primary problem is then to study geometric properties of {Fr },}0 in

terms of I',. We will proceed as follows: We select some continuous function %, : R” — R
so that its level set is I, that is

T, =fxe R" |u,(x) =0},

Consider the following problem

u,
u =\ ——— W, —F@)Vul in R"x(0,0), (1.1)

! i | 2

with initial condition
u =u; onR'x{t=0} (1.2)

Now the PDE (1.1) says that each level set of u evolves according to its mean curvature
with forcing term F, at least in regions where « is smooth and its spatial gradient Vi does not
vanish. Similarly, we then define

I,= {xeR" |u(x,t)=0} (1.3)
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for each time ¢ > 0.
We will show that there is a weak solution of equation (1.1) satisfying condition ( 1.2) in

the weak sense.
2.DEFINITION AND ELEMENTARY PROPERTIES OF WEAK SOLUTIONS

In this section we concern with the definition and some properties of weak solutions of
mean curvature evolution PDE (1.1). For this suppose temporarily that # = u(x,) is a smooth

function whose spatial gradient Vu := (uxl B xn) does not vanish in some open region £ of
R" x(0,%0) . Assume further that each level set
r,:{xeR"|u(x,:)=o} (t=>0) @.1)
of u smoothly evolves according to its mean curvature and function F, as described in

Section I.

Let v =v(x,7) be a smooth unit normal vector field to {1",} in €, and F=F(x) be a

=0
continuously differentiable function on R”. Then

deiv(u)u
n-—1

is the mean curvature vector field. Thus, if we fix 720, xeI’; NQ, the point x evolves

according to the differential equation

{x = —[div(L)v](x(5),5) + F (x(s))v(x(s),5) (2.2)

x@)=x.
These equations say that each level set I', of u evolves along normal vector direction with
velocity equal to its mean curvature plus function F. Asx(s)el' (s=7), we have

u(x(s),s)=0, and so
0= diu(x(s),s) = —[(Vu . u)div(u)] (x(s),5) + F(x(5))Vu(x(s),s) - v(x(s),5) + 1, (x(s),5).
s

Setting s =7, we discover

u, (x,1) = (Vu(x,t)-v(x,1))div(v)(x,t) — F(x)(Vu(x,t) - 0(x,1)).

Yu ,
Choosing v =it follows that

[V
) Yu Uy iy .
U, = |Vu|dzv(WJ—Fqu| =| ;- lv’ulz" Uy —F|Vu| at (x,1). (2.3)

2.1. Weak solutions
We consider now the level set evolution equation
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u=| &, |, ~F|[Vu|  in R"x(0,0) (2.4)
t | Fi 2 XiX j a=ae .
|Vl
with initial condition
(2.5)

u =uy on R"x{r=0}.
Definition 2.1. A function u € C(R" x(0,%0)) is a weak subsolution of (2.4) provided that

if
u—g@ has local maximum at point (xy,%) € R" x(0,0) for each p e C” (R"+l) :
then
.9,
¢£ S 5.1_';' - 2 gax,-xj —F|V¢| a’t (xﬂ ?tﬂ)
9 |V¢)
1f Vo(x,,2,) # 0,
and
) @, < (5y _77;77;)(0;,,:} at (x()’to)
for some 77 € R" with || <1, if Ve(x,,7,) = 0.

~ Definition 2.2: A function ueC (R" x(0,%0)) is a weak supersolution of (2.4) provided
that if

u—g
then

has local minimum at point (xp,29) € R" x(0,00) for each p e C°°(R"+]) i

A

? = (5,;,- RRLEL ] P, ~FIVe| at(x4:1)
Vel') ™
if Vo(x,,2,) # 0,
and
(0,2(8,-1m,)0,,, 2t (x.1,)
for some 77 € R" with |77| <1,if Vo(x,,%,) = 0.

Definition 2.3: A function u € C(R" x(0,0)) is a weak solution of (2.4) provided u is

both a weak subsolution and a supersolution of (2.4).
For more details of this kind of solutions, we refer to [3,4,5]. As preliminary motivation

for these definitions, suppose u is a smooth function on R" x (0,0) satisfying
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Uy Uy

v

u S| 5 U, - F|Vy|

wherever Vu # 0. Our function u is thus a classical subsolution of (2.4) on {Vu # 0} :
Suppose now  Vu(xy,f5)=0. Assume additionally that there are points
(x5, ) = (xg,2g) for which Vu(x,,t;)#0, (k=12,...). Then
k. _k
uy (X1 ) < (S =117 07) U, (s ) = F (30 )[Vu e, 1)
for

k — Vu(xk,tk) .
\Vu(x, 1)

Since ’r]k| <1 (k= 1,.2,...), we may if necessary pass to a subsequence so that nk' ~>77
in R" with [77|=1.
Passing to the limits above, we have

ul('x():t()) = (51] — 1} nj) uxixj (XO,fo).

(s 0]
k=1
(xp,19) , and so V2u =0 and u is a function of t only, near (xg,7y). Moving to the edge of
0-40 0-40

If, on the other hand, there do not exist such points{(xk,rk )} , then Vu=0 near

the set {Vu = 0} , we see that u is a nonincreasing function of t. Thus
Uy (Xo510) < (85 =17 17;) txx; (X0 20)

forany 7€ R".

Further motivation for our definition of weak solution, and, particular, an explanation as to
why we assume !n! <1in the definition will be found in Section III.

2.2. Properties of weak solutions
Theorem 2.1. (i) Assume uy is a weak subsolution of (2.4) for k=1,2,... and u, —>u

locally uniformly on R" x(0,90). Then u is a weak subsolution of (2.4).

(ii) An analogous assertion holds for weak supersolutions and solutions.

Theorem 2.2. Assume u is a weak solution of (2.4) and ¥ : R — R is continuous. Then
vi="Y(u) is also a weak solution of (2.4).

The proofs of these theorems can be done similarly in [3,4].
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3.EXISTENCE OF WEAK SOLUTIONS

3.1. Preliminaries

In this section we consider the existence of weak solution of the mean curvature flow
equation (2.4) with initial condition (2.5). A weak solution will be obtained by passing to
limits of classical solutions of an approximate problem. We will assume that for the moment at

least, %o is smooth.
Our intention is to approximate (2.4), (2.5) by the partial differential equation

ul uf g 1/2
] Gy el b -F(x)[|\7'u5 +52] in R"x(0,0), (.1)
‘Vr,.!‘g +&?
with initial condition
u® =ug on R"x{r=0}. (3.2)
for 0<e<l.

3.2. Solution of the approximate equations

We now investigate the approximations (3.1), (3.2) analytically. To do so, let
first0) < o <1/2, consider the PDE

142
2
ut? = al® (Vu“’) uiy —F[ Vug"’| + 52] in R"x(0,00), (3.3)
with initial condition
u®? =uy on R" x{r=0}. (3.4)
where
p. .

at(p)=(+0) 85—l peR"1<ij<n

pl t¢&

The smooth bounded coefficients {aé'a} satisfy also the uniformly parabolicity

condition, namely, we have

2
olé|" <a;?gé;, forall e R,
for each pe R", therefore, by the classical PDE theory, there exists unique smooth
solution %7 in R" x(0,0) satisfying #*7 =uy on R” x{t = 0}.

We now consider the approximate equation in the bounded sub-domain of R" x(0,0),

i.e., we consider the problem
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( &,0

where B is a closed ball of radius » > 0 centered at original, and 7' > 0.

Now we want to prove estimates for 2%, 4%, Vu®“ in the domain Bx[0,7].

Lemma 3.1. Let u®? be a solution of (3.5). Then we have the estimate

u‘g’a(x,t)[ <Ce™ + Mt, forall (x,f) e Bx[0,T],

where C:=2sup |y |, ﬂ:=%,M:=2sup|F|.
B 3r B

Proof. Let ¢:R"” — R be a function defined by
@(x) ::m(Qr2 —% [ x|2],

1
where m = —Zsup‘uol , WE see
¥y B

Py, = —MX;, Ap=—nm, foqf’xj@xij- =—m’ | x |2 :
We define by

v(x,1) = p(x)e* + M,

we have

v, = Ap(x)e” + M, v, = goxl_e’“, Av=Ape” = —mne”,

VeV Vix, =€ 0@y P, =10 | x [ €.
Therefore,
aes Vi, Y 2 L Y2
L (V) =M= (1+O’)5y _IVI?‘—%_EA’- vx;xj +F Vv| +:E
v
VvV Vv /2
=¥ —(l+0')Av+x'+x'x’2+F0Vv‘2 + 82)
le| +&
1 m’ | x|* e¥ ( 2
=}Lm[2r2 -=|x |2]e’u + (14 o)mne™ —|—2| et F JVv[z +&°
2 |Vv| +a

2(%2,r2+n—l—M|x[]me’b 2(%/1rz+n—1—Mr}mcl’ > 0.

uf =| (4 o)y ———— luze —F(x)UVug’a‘ +g2] in Bx(0,T],
3 ’Vu“"’a +&?
u™” =uy on Bx{t=0},

(3.5)

(3.6)
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On the other hand,

1 1 1 1 3
v(x,0) = p(x) = —sup|u, [[27"2 ==|% Iz) 2 —-sup | u, |(2r2 —'—"2] = —sup | u, [> sup | u, |
r° s 2 r- B 2 2 s B

Therefore, L% (v)>0=I5°w®?), and u®%(x,0)=uy(x)<v(x,0) in B. By the
classical maximum principle for the parabolic equation, we discover

u®° (x,0) < v(x,t) < Ce™ + Mt.

The proof of the estimate for —u*? (x,) is similar as above, therefore, we get

|4 (x,1) | v(x,1) < Ce™ + M.

Lemma 3.2. Let #*° be a solution of (3.5). Then we have the estimate

max |u”(x,0)|=C
ax[o.r]| (D)

where C is a constant depending only on sup | |, sup | Vg |, sup | V2u0 |, sup| F|.
B B B B

Proof. Differentiate the equation in (3.5) with respect to t, we have

uf‘a uf.o'
il G N | 7
By = (l+o-)5b' Iv sa’z 2 urx,-xl-
| +e
2
£,0 &, £,0 &0 &,0 2 £,0 £,0 ., £,0 &0
o T ey )(lvu te )_2?1:‘_ Uy, U, Wi, Fu,:i’a u:rl.-d
£.0
2 %' Uy, " Tk
[|Vu£.a + & ) (|Vu£.a _I_Ez)

This equation is linear with respect tou,, then we may apply the classical maximum
principle, we have

sup |uf (x,7)|Ssup |uf* (0)|,

Bx[0,T] B
and
i u()xt u(]x, 2 ) 1/2
u % (x,0)=| (1+0)d; —|—|2—2 Uy, - F(x) Vuol +&8°)
0

Since 0<&<1 gpd 0<o<1/2

sup |u;°(x,2)|<C.
Bx[0,T]

By the transformation u®° > —u, we see
£
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U, U, s \I/2

Uy =| (1+0)8y ———2— Uy, —FUW ’ +1J . 3.7)
]Vu| +1 d

Lemma 3.3. Let u be a solution of (3.7). Then we have the estimate

eC2 D |7y (%, £) |$Clec2M, for all (x,7) € Bx[0,T],

where M = sup |u(x,t)|; Cy,C, are constants dependent only on sup|F(x)| and
BX[0,T] B

sup | VF(x)]|.
B

We derived estimates for #**7, 4%, Vu®“ in the bounded domain Bx[0,7]. We note

that

(1— £ 2)|§IZSa§'”(p)§,-§,-, cER

+¢&

provided | p|< L. The estimates for ¥*7,u’?, Vu®“ are uniform in 0<o <1/2.
Consequently, uniqueness of the limit implies for each multi-index & :

Du®? — Du*

locally uniformly as o — 0, for a smooth function z* solving approximate equation.

3.3. Passage to limits

Theorem 3.4. Assume uy:R" — R is a continuous function. Then there exists a weak
solution u of (2.4),(2.5).
Proof. Suppose first u is smooth. Employing estimates in Lemmas 3.1, 3.2, 3.3, we can

extract a subsequence {u*};_; < {u®}geo so that, as & — 0,1 —u uniformly in
Bx[0,T] for some Lipschitz function u in Bx[0,7]. Since r and T are arbitrary, we can

extend r and T to infinity so that ¥® — u locally uniformly in R” x[0,e0) for a locally
Lipschitz continuous function uin R" x[0,0).

We assert now that u is a weak solution of (2.4), (2.5). For this, let @ € C*(R"™") and
suppose #—¢@ has a strict local maximum at a point (xg,%y) € R" x[0,0). As u®* —>u
uniformly near (x,,7,), uk — @ has a local maximum at a point (x;,7; ), with

(Xp,11) = (x,79) as k—> o, (3.8)

Since u and ¢ are smooth, we have

Vuk = VC,'D, ufk =@, Dzugk < ng) at (xk,tk). (3.9)
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Since u°* is a solution of

( Tl g 3 V2
ut =\ 5, ———'——2 i —FUVuE* +£k'j .
IVuE* +& '
we have
Pr. Px . 2 172
B &| Gyl —F(|Vgp] +gk2) at (4,1 ) (3.10)
Vol + ’

Suppose first V@(xg,%) # 0. Then Vo(x;,2;,) # 0 for k large enough. We consequently
may pass to limits in (3.10), recalling (3.9) to deduce

P Px,

Vol
Next, assume instead V @(xg,%5) =0. Set
ok f )
| uvfo(’ﬂ:ﬂ” +‘°:c}
so that (3.10) becomes

k. k
@ S(é}j =0 )¢x;xj at (x;,4;). (3.12)

—F|Vg| at (xp,f). (3.11)

@ S| 6 — Pr;x s

Since lr]k €1, we may assume, upon passing to a subsequence and re-indexing if

necessary, that nk —n in R" for some |77|<1. Sending k to infinity in (3.10), we discover
5(59- _ nj)qoxixj at (xg,7p)- (3.13)

If u—¢ has a local maximum, but not necessary a strict local maximum at (x;,7;), we
repeat the argument above with @(x,7) replaced by

HOx,1) = p(x,0)+ | x—x, ' +(t = 1,)",

again to obtain (3.11) and (3.13).

Consequently, u is a weak subsolution of (2.4),(2.5). That u is a weak suppersolution
follows analogously.

Suppose at last z; is only continuous. We select smooth functions {ug iz so that
ug —> 1y locally uniformly on R" . Denote by u* the solution of (2.4),(2.5) constructed
above with initial function ug . According to the stability of the weak solutions[3,4] the limit
limu® =u exists locally uniformly in R" x[0,0), according to Theorem 2.1 u is a weak

k—0

solution of (2.4), (2.5).
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CHUYEN PQNG CUA TAP MUC VOI VAN TOC PHU THUQC VAO DO
CONG TRUNG BINH: SU TON TAI NGHIEM YEU

Nguyén Chinh Dinh
Dai hoc Da Nang

TOM TAT: Chuyén déng ciia siéu mdt theo dé cong trung binh da dwoc xem xét
béi Brakke[1] theo quan diém hinh hoc, va béi Evans, Spruck[3] theo quan diém gidi
tich. Bdt dau tir mat T, trong R", cdc mdt T, chuyén dong theo thoi gian véi vén toc
bing dj cong trung binh ciia ching theo hiréng phdp tuyén ngodi. Cdc matT, sau do
duwoc xac dinh béng cach tim cac tdp mitc khong cua mdt ham lién tuc Lipschitz, la
mot nghiém yé’u cua phuong trinh chuyén dong. Chuyén dong cua siéu mat boi mot
qua trinh tu hat qua cach tzép cdn tdp murc ciing da dwoc nghién ciru boi Dinh,
Hoppe[4]. Trong bai bao nay, ching 16i xem xét phu'ong trinh ckuyen dong mdt voi
van toc phu thudc vao do cong trung binh.Vén téc ciia qud trinh chuyén dong duwoc két
hop béi do cong trung binh va mot ngoai hec. Chiing t6i dwa ra mot phwong trinh

chuyen dong ma nghiém cua nd chira mdt chuyén dong dudi dang tdp mitc khéng. Mot
két qua ton tai sé dwoc dua ra.
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