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ABSTRACT: The lifting scheme is an efficient tool to construct second-generation
wavelets. It has been used to realize Daubechies wavelet transform in image compression
standard JPEG-2000. Daubechies wavelets can provide better image codin g performance than
discrete cosine transform (DCT) which is used in JPEG because the wavelets can present
signal more efficiently than DCT. However, for high compression rate, the details of the
decompressed images in JPEG-2000 are degraded. The reason is that Daubechies filters are
maximally flat while their frequency selectivity is very poor. In this paper, we present an
efficient method for the optimal design of filter banks and wavelets based on the lifting
structure. The design problem is expressed as an optimization problem where the [frequency
selectivity of filters is optimized for a given regularity order. The simulation results show that
the filter banks designed by our proposed method can offer the coding performance
improvement compared to Daubechies filters in JPEG-2000.

Keywords: Filter banks, wavelets, image coding, regularity, [requency selectivity, global
optimization.

LINTRODUCTION

The discrete wavelet transform (DWT) has found in various signal processing
applications, for example signal compression, denoising , watermarking, and so on, due to the
fact that DWT can overcome the limitation of the traditional Fourier transform in being able to
providing variable time and frequency resolutions [1]-[3]. As a result, the DWT has been
adopted in international multimedia compression standards such as JPEG-2000 and MPEG4
[3], [4]. In the DWT based applications, proper choice of wavelets is critical to achieve
systems with good performance. It is well-known that the wavelets can be generated by two-
channel perfect reconstruction filter banks. As a result, the design of wavelets is equivalent to
the design of perfect reconstruction two-channel filter banks. In addition to perfect
reconstruction, the orthogonality and linear phase properties of the filter banks are desired in
many applications. The orthogonal filter banks guarantee that the noise and error in subbands
are not amplified, and hence, the coding system design is more simplified [3]. On the other
hand, the linear phase is efficient for handling boundary distortions of finite length signals
such as image signal. However, it is well-known that two-channel filter banks with both
orthogonality and linear phase do not exist except for the Haar filters which are not
continuous. Therefore, in practical applications orthogonality filter bank are often relaxed into
bi-orthogonal filter banks.

In general, the filter bank design is a multi-objective optimization problem. The most
important objective is perfect reconstruction, that is, the reconstructed signal is a delayed and
scaled version of the original signal. Furthermore, additional properties of filters which are
often required in certain applications are linear phase, flatness, high frequency selectivity.
These design objectives are usually conflicting, and therefore, the design is required to have
different tradeoffs. One class of popular filter banks with linear phase and maximally flatness
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was introduced by Daubechies, for example, Daubechies 9-tap/7-tap filters with regularity
order of 4 are used in JPEG-2000 [4], [5]. The maximally flat filters can be found in closed-
form by Lagrange formula [6], [7]. However, it is well-known that maximally flat filters suffer
from poor frequency selectivity. As a result, the image coding performance of maximally flat
filters can be reduced for highly textured image. Therefore, the design of filter banks having
optimal frequency characteristics for a given regularity order has been of great interest, see [9],
[10] and references therein. However, the filter bank design is usually formulated as a highly
nonlinear optimization due to the perfect reconstruction condition. Therefore, structures which
are structurally imposed perfect reconstruction property are very attractive to simplify the
design procedure.

An efficient filter bank structure satisfying perfect reconstruction is a lifting scheme. The
lifting scheme of two-channel filter banks with two lifting steps was introduced by Phoong et
al. [8]. This structure offers low implementation complexity and rich-features in filter
frequency responses. However, only two extreme cases of filter frequency responses was
considered. In the first case, the filters are designed by McClellan-Parks algorithm and Remez
exchange algorithm. These algorithms result in the equi-ripple filters with lowest stopband
attenuation without regularity. In the second case, the maximally flat filters with poor
frequency selectivity was found by Lagrange formula. Consequently, these methods cannot
allow to design the filters with arbitrary frequency responses and regularity orders.

In this paper, we propose a generalization method which can design the lifting scheme
filter banks including filters with arbitrary frequency responses and regularity orders. For a
prescribed regularity order, our design objective is to find an filter bank with the best
frequency selectivity. We show that filter bank design can be formulated as a semi-definite
programming problem whose globally optimal solutions can be efficiently solved by available
softwares. One of advantages of our proposed method is that it can flexibly control the tradeoff
between frequency selectivity and regularity. As a consequence, our filter bank can provide
better image coding performance than the maximally flat filter banks for highly detailed
images. The simulation results of our filter banks are presented to illustrate the performance of
our proposed method. Moreover, the application of our filter bank in image coding is also
presented to evaluate the effectiveness of our method.

The rest of the paper is organized as follows. In Section II, the lifting scheme of two-

channel filter banks is briefly reviewed. The introduction of semi-definite programming is

presented, and then the formulation for the two-channel filter bank design is derived in Section

III. In Section IV, the design examples of the filter banks are given, and image coding
performance of the filter banks is discussed. Finally, a concluding remarks are given in Section
V.

Notations: Boldfaced lowercase letters are used to represent vectors, and boldfaced
uppercase letters are reserved for matrices.

2. THE LIFTING SCHEME OF TWO-CHANNEL FILTER BANK

The lifting structures for the construction of bi-orthogonal wavelets are very efficient for
the implementation because the analysis and synthesis filters can be jointly implemented.
Moreover, the lifting schemes are robust to quantization noise, that means, the coefficient
quantization does not affect the perfect reconstruction property [15], [16]. Therefore, the
lifting structures have been attractive in practical applications. One lifting structure that can
provide the filters with rich-features such as high frequency selectivity and regularity is a
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halfband pair filter bank introduced by Phoong et al [8]. The halfband pair filter bank can be
considered as the lifting scheme with two lifting steps, as shown in Fig. 1.
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Fig.1. Lifting structure of filter bank with two lifting steps

The filter bank is parameterized by a subfilter pair F,(z) and F(z). From Fig 1, the
analysis filter are given by

Ho(z)=%(z’”“ +2'By(2)), (1)

H(2)=2""""" - R(z")H,(2). ®)
With the synthesis structure shown in Fig. 1, it can be verified that the filter bank is
structurally perfect reconstruction for arbitrary choice of subfilters F,(z) and F(z). The
corresponding synthesis filters have the following form:

Fy(2)=-H(-2), 3)
F(z)=H,(-2). (4)
By above relations, the synthesis filters F(z) , F|(z) are respectively lowpass and highpass
filters if the analysis filters H,(z), H,(z) are lowpass and highpass ones. Therefore, the filter
bank design reduces to finding a pair of subfilters F,(z) and B (z) such that analysis filters
have good frequency selectivity. In general, F,(z) can be taken as a function different from

F (z) to provide more freedom in the design. However, by choosing them to be the same, the

design of the filter bank become simpler because the design of the filter bank is now reduced
to that of the subfilter. Therefore, we focus on the case when P,(z) = P,(z) = P(z) . Then, the

lowpass analysis filter becomes
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L] o, g2
Hy(@)=5(2™" +7'P(2) (5)

It can be verified from (5) that filter H,(z)can be an ideal lowpass filter if P(z) has the

following desired frequency response

e‘f(zNu—l)aJ 0< w < w

j2a - ’ ! X
P,(e’™) {_e—j(lNuwl)m’ o, <o v

where @, , @, are the cutoff frequencies of the passband and stopband, respectively and

®,+ o = . Then, the ideal frequency response of filter H,(z) is given by

e 12 Now 0<w<ow

Hu‘;(ejm) ={ , d (7

0, W, SOLT

On the other hand, with P,(z) = P,(z) = P(z) and the ideal frequency response of P(z) in
(6), we can show that the highpass analysis filter,
H,(2)=z"*"" = P(2)H,(2), ®)
can be an ideal highpass filter if N, =2N,—1. Then, the ideal frequency response of
filter H (z) is defined by

0, 0<w<o

Jory o .
H,(e™)= {e—j(mc-i)w, WSO .

In summary, the design of the lifting filter bank is reduced to finding the subfiter F(z)

such that its frequency response is the best approximate to the desired frequency response
given in (6). As discussed above, two special cases where the subfilters are equiripple or
maximally flat were addressed in [8]. In the following section, we will present more general
method that allows to design the filter with high frequency selectivity and arbitrary regularity.

3.PROPOSED METHOD

In this section, we will formulate the design of finite impuise response (FIR) subfilter
P(z), which is optimally approximate to the desired frequency responses (6), as a semi-
definite programming. Let us denote the transfer function of the subfilter of order N by

N
P(z) = z Pz -
k=0
and its frequency response is a real-valued or complex-valued function of @.

N
P(e“",p) oy Zpke—fkm - pT.e(a))
k=0

where P =[py, pps---s Pyl s (@) =[Le, e o e ™)
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Our goal is to find the filter coefficients p = Pas PrsesvsBy ]" to minimize the maximum
error between the frequency response of the filter and the desired frequency response.
That is, we solve the following minimax optimization problem minimize

{max |P(e, p)—P,(e* )} for Q=[0,0,1U[w,,7].

wel)

It can be cast into a constrained minimization problem.
minimize 77 (10)

_subject to: [P(ef‘",p) —P,(e") ’ <n forweQ,

where the filter coefficient vector p is an optimization variable.

Before proceeding further, we present a brief review of semi-definite programming (SDP)
[L1], [14]. SDP is an optimization problem which minimize a linear or convex quadratic
objective function subject to linear matrix inequality (LMI) constraints

minimize ¢'x
subject to: F(x)=F, + > xF, >0
i=l
where x=[x,,..., x”]T is a variable vector, F, e R™™ (i =0,...,n) are given symmetric
matrices, and F(x) >0 denotes that F(x) is positive semi-definite at x . It can be shown that

SDP is a class of convex programming problem, and hence, its locally optimal solution is also
a globally optimal one. Moreover, SDP problem can be efficiently solved by interior-point
methods. There are now efficient software implementations of SDP algorithms, for example
SeDuMi [12].

Our objective now is to transform the problem (10) into a semi-definite programming.
First, we definite Q, = {a)l,a)z,...,aJL} < Q is a set of dense grid points in the frequency

bands of interest. Then, the unconstrained optimization problem (10) can equivalently
expressed as a constrained optimization problem.

minimize n (11)
subject to: gi‘P(a{,)+ gip(a),) s =120
where
&x,(@) =P" Refe(@))} + Refp, ()}
g:,(@)=p Imfe(@,)}+ Im{P, (" )}_
Here, Re{x} and Im {x} denote the real and imaginary parts of x. By using the Schur
complement [11], [14], it can be shown that the constraint in (11) holds if and only if

n 8rp(@) g ,(®)
F(p)=| 8 (@) 1 0 |=0.
gl.p(a)[) O 1
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Consequently, the optimization problem (11) can be written as minimize - 7 (12)

subject to: K (p)=0, [=1,2,...,L.

It can be observed that the objective is a linear function and the constraints are a set of
linear matrix inequalities which can be expressed as an affine of variablex, and hence the
problem (12) is a semi-definite programming.

As discussed early, the regularity of filter bank is desirable in the construction of the
wavelets and in certain applications. The wavelets is said to have the K -regularity if the

lowpas analysis filter H_ (z) and highpass filter H (z) have K zeros at @ =7 and @ =0,
respectively. This can mathematically be expressed by
d* d*

EHD(G)) =TH;(W)

pe =0 for k=0,1,....K—1. (13)

w=0

w=T
With the analysis filters given in (5) and (8), it can be verified that the regularity
conditions (13) can be expressed as an linear equation

Ap=b (14)
where matrix A is defined by
1 1 1 L]
1 3 5 2N+1
A= 1 3’ 5 (2N +1)?
1 e e @N+)*
and vector b is given by
SN E
2N,
b=| (2N,)
(2N ]
In summary, the filter bank design with regularity property can be formulated as a
following optimization problem. minimize 7 (15)
subjectto: K(p)=0, /=12,...L
Ap=D>b.

It is important to note that the above optimization is still an scmi-definite programming,
and therefore, it can be efficiently solved by available softwares. In our subsequent designs,
we use the popular SDP package, SeDuMi [12] to solve the problem (15).
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4.SIMULATION RESULTS AND IMAGE CODING APPLICATION

In this section, we provide a design example of the lifting filter bank with regularity to
illustrate the performance of our proposed method. After that, the resulting filter bank is
applied to image compression, and the image coding result is compared to the Daubechies
filters using in image compression standard JPEG-2000.

Our formulation (15) can be applicable to the design of nonlinear phase and linear phase
FIR filters. However, in this example, we provide a design example of the linear phase filter
whichi can be efficiently applied in image compression. The subfilter is designed with

specifications: the filter order N =19, edge frequenciesw, =0.47, andw, =0.67,

regularity order K =2 . We chose L =500 samples. The magnitude responses of the analysis
filters H,(z) and H,(z) are shown in Fig.2.
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Fig.2. Magnitude responses of analysis filters designed by our method (solid line) and by Lagrange
formula (dash-dotted line)

It can be seen that the filters H (z) and H,(z) have zeros at =7 andw=0,

respectively. For comparision purpose, Fig. 2 also plots the magnitude responses of maximally
flat filters designed by Lagrange formula in [8]. It can seen that by relaxing the maximally
flatness condition (the maximal number of regularity order), the filters can have significantly
improved frequency selectivity. Note that in addition to regularity, the frequency selectivity of
filters is also desirable in many applications. It should be emphasized that our method can
design the optimal filters for arbitrary regularity order while the methods in [8] can design the
filters with either no regularity or the maximal number of regularity.

Furthermore, it is well-known that the scaling and wavelet functions can be generated by
iterating the two-channel filter bank on its lowpass output. By applying the algorithm in [7] for
5 iterations, we obtain the analysis scaling function and wavelet function as illustrated in Fig.

-~

2

Trang 30



TAP CHi PHAT TRIEN KH&CN, TAP 11, S0 09 - 2008

1
0.8 0.8
0.6
0.6 0.4
2 8 0.2
2 04 2 o
g 0.2 5 -0.2
< < -0.4
0 \f\l\‘ [\/\«-—— -0.6
-0.2 '0'?
0 10 20 30 40 50 60 0 10 20 30 40 50 60
Time Time
(a) (b)

Fig. 3. (a) Analysis scaling function. (b) Analysis wavelet function

In order to evaluate the filter bank designed in image compression, we use the sect
partitioning in hierarchical tree codec provided in [13]. To investigate influence of the filter
frequency selectivity on image coding performance, the test image used in the simulation is
highly textured 8-bit image Barbara. For objective measurement of decompressed image
quality, the peak signal to noise ratios (PSNR) at different bit rates are computed and plotted in
Fig. 4. It can been seen in the results, our filter bank can provide improved image coding
performance as compared to maximally flat Daubechies filters. For perceptual evaluation, the
results of decompressed images at 1 bit per pixel (bpp) using the filter bank designed by the
proposed method and using 9/7 Daubechies filters are shown in Fig. 5.
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Fig. 4. PSNRs versus bit rates of the codecs using 9/7 Daubechies filters (dash-dotted line) and using
our filters (solid line).
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(a) PSNR: 36.4 dB (b) PSNR: 37.0 dB

Fig. 5. Coding results at bit rate 1bpp. (a) using 9/7 Daubechies filters. (b) using filters designed by our
method

5.CONCLUDING REMARKS

In this paper, the global opumization based method has been proposcd to design the bi-
orthogonal filter banks with arbitrary smooth order. In our method, the filter bank design
problem is formulated as a semi-definite programming, so the globally optimal filter bank can
be obtained. The advantage of the proposed method is that SDP problem can be flexible to
incorporate the additional constraints into it, and hence, an optimal filter with regularity
constraints on its frequency response can be efficiently found. Finally, the simulation results
show that our filter bank can offer improved image coding performance for highly detailed
images as compared to 9/7 Daubechies filters.

MOT PHUONG PHAP TOI UU CHO THIET KE DAY BO LOC WAVELETS
VA UNG DUNG TRONG NEN ANh

Hoang Pinh Chién
Truong Pai hoc Bach khoa, PHQG-HCM

TOM TAT: Céu triic lifting la mét cong cu hiéu qua cho viéc xdy dung wavelets thé hé
thit hai. N6 da dwoe dimg thue hién cde bién déi Daubechies wavelets trong chudn nén anh
JPEG-2000. Daubechies wavelets c6 kha ning cho chat !zrm?g nén anh tét hon bién doi cosine
roi rac (Discrete Cosine Transform-DCT) trong JPEG boi vi wavelets co kha nang trinh bay
tin hiéu ¢6 dong hon bién déi cosine. Tuy nhién, trong tricong hop ty s6 nén cao, thanh phén
chi tiét cua anh giai nén trong JPEG-2000 bi suy giam, nguyén nhan la cdc b loc Daubechies
co do phdr?g 16i da (maximally Slatness) trong khi do ddc tinh chon loc tan sé rat kém. Trong
bai bao nay, mét phwong phdp thiét ké day b loc (filter bank) va wavelets dia trén cdu triic
lifiing duoc trinh bay. Van dé thiét ké day bé loc diroc bteu dién nhir bai toan t6i wu trong do
ddc tinh chon loc tan sé cua cdc bé loc dwge thiét ké t6i wu cho mot mirc dé phing (flatness)
hodic bdc diéu hoa (regularity order) tity ¥ xdc dinh trude. Két qua mé phong chi ra rang day
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b6 loc thiét ké béng phirong phép dé nghi c6 kha néng cho chdt heong anh gidi nén tét hon cde
b¢ loc Daubechies trong JPEG-2000.
Tir khod: Day bo loc, wavelets, nén anh, béc diéu hoé, chon loc tan s6, toi wu toan cuc.
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