Science & Technology Development, Vol 10, No. 13 - 2007

SOLVING TIME CONSTRAINED PROBLEMS ON THE GRID

Nguyen Tuan Anh
University of Technology, VNU-HCM

ABSTRACT: Solving problems that require time constraints in widely distributed
heterogeneous environments such as the Grid is a challenge. We address this challenge by
providing: a parallelization scheme to express the conceptual parallelism; POP-C++-a
requirement-driven parallel object toolkit; and an object-oriented framework that implements
the skeleton of the parallelization scheme using POP-C++. The framework allows users fo
automatically instantiate a suitable grain of parallelism based on the availability of
heterogeneous resources so that the time constraint is satisfied. Users only need to describe
their own problem by deriving new "problem" classes in each decomposition and
implementing the way the problem is solved. An emulated heterogeneous environment has
been built up with 130 machines of Linux/Pentium 4 and Solaris/Sparc. Tests measuring the
real computing time compared to the required time have been implemented using our
framework and run on the emulated heterogeneous environment. The results show the ability
of the framework to exploit high performance with different level of parallelism to guarantee
the time constraints.

Keywords: time constraint, parallelization scheme, parallelism, heterogeneity, Grid
computing

LINTRODUCTION

High performance computing (HPC) during the pass few years has been considerably
changed toward parallel distributed computing. High-cost special purpose systems have been
replaced by clusters, network of workstations and distributed computing systems that span the
Internet. The emerging of Grid [2,3] computing raises many questions on how to exploit the
seamless performance of such computational environments. Old fashion programming needs
to be modified to adapt to the new issues that do not exist in the conventional environment:
heterogeneous, high latency, dynamic and volatile, unstable and unstructured, etc. The old
resource-centric approach in which the user requests the execution on some specified
resources has been step-by-step replaced by the new service-centric approach in which the user
requests for some services (computing, storage,etc.) regardless of the location of resources.
These changes lead to the need for new tools and new programming paradigms that are able to
adapt to the environment for performance.

Many researches on application adaptivity to the heterogeneous environment have been
conducted, focusing on various aspects from scheduling such as real-time CORBA, [11]
heterogencous task mapping [1,7], performance evaluation [4] to programming methods in
multiple variant programming [5,6]. These contribute an important part in the HPC domain.

In this paper, we address the adaptivity in our framework for developing time constrained
applications-applications which require that the solution be obtained within a user specified
amount of time. We first briefly describe our previous works in section 2. These works are
divided into two parts: the parallelization scheme providing a method to express time
constrained problems and the POP-C++ tool following the service-centric approach to provide
an object-oriented infrastructure for HPC. Based on these researches, in section 3, we illustrate
how to use our framework for expressing time constrained problems. Section 4 presents

Trang 42

TAP CHi PHAT TRIEN KH&CN, TAP 10, S0 13 - 2007

experiment results on an emulated heterogeneous environment. Finally, section 5 gives some
conclusions and our future works.

2.0VERVIEW OF THE PREVIOUS WORKS

We overview our previous works: the parallelization scheme and the POP-C++
programming tool for the Grid. Details of these works are described in [8,9,10].

2.1.Parallelization scheme
The parallelization scheme provides users an algorithmic framework to describe and to
solve their time constrained problems. In this scheme, we only address a class of problems

with known complexities.
A parallelization scheme consists of a decomposition tree (DT) and a set of decomposition

dependency graphs (DDGs).

bigger |

@ M(P1)={P11, P12,P13}

uielb wsyjs|jeiey

Nole
smallerig/(g_)

Figure 1. Decomposition tree

2.1.1.Decomposition Tree

Decomposition tree (DT) (Fig. 1) is a tree that defines a hierarchical diagram to divide the
user’s problem into smaller problems. Each node of DT represents a sequential problem or
sub-problem. A decomposition step is a process of dividing the problem (a node in DT) into
sub-problems (its direct child nodes). The user starts at the root of DT, which is the original
problem, derives new child nodes (sub-problems). The decomposition step is recursive on each
node to produce new child nodes (smaller sub-problems).

2.1.2.Decomposition Dependency Graph

While the decomposition tree gives an overall view of the parallelization process at
different grains, the Decomposition Dependency Graph (DDG) shows the structure of
parallelization. DDG is a direct acyclic graph defining the order of solving for a given set of
sub-problems (Fig. 2) in each decomposition step.

Trang 43

Science & Technology Develepment, Vol 10, No. 13 - 2007

AND /w :
: 2 '

OR g o

I ; ‘ - = i 2

| Problem decomposilion {‘i}< \\ 4“,,./*'wé

i

.t’:’.’:_“__._,,_”é {’%
Sub-problems
DDG

Figure 2: Decomposition dependency graph

2.1.3.How time constrained problems is solved

We find an acceptable solution that satisfies the given time constraint T by using try-and-
decompose on the DT. Try step: starting from the root, compute the needed computing power
to solve the problem sequentially based on the complexity and the time constraint T; allocate
the resource for the problem. If the resource is not available (try fail), Decompose step will be
executed: replace the problem by a set of sub-problems (its child nodes in DT); compute the’
time constraints for the sub-problems and repeat the try step to solve those sub-problems in
parallel. If all sub-problems are independent (the DDG is empty), the time constraint for each
sub-problem is also the time constraint T of its parent in DT. A method to evaluate the time
constraints of sub-problems based on the criterion "find the time constraints for sub-problems
to minimize the maximum computing power of sub-problems required on the computational
resources” can be found in [8].

2.2.POP-C++: requirement-driven parallel objects -

Based on the nature of objects: each object is an relatively independent entity that can
interact with other objects, we have developed a parallel object model for distributed HPC.
The parallel object is a generalization of the traditional sequential object with the ability to
describe its requirement during the life time through the object description (OD). A parallel
object can be located on a remote machine in a separate memory address space. During the
execution of the application, parallel objects can be dynamically created or destroyed. In order
to allow the programmer to use high-level descriptions of parallel programs (not at the
message passing level) the semantics of objects and methods invocations have been extended.
Six different semantics can be attached to a method invocation (synch/asynchronous and
sequential/mutex/concurrent) [9,10] .

The parallel object model leads to the implementation of POP-C++. POP-C++
programming language extends C++ to support parallel objects. Subtracting the use of global
variables, all C++ objects can be implemented as parallel objects without changing the
application semantics. The object description describes the resource requirements (computing
power, memory needed, network bandwidth) of the parallel object. It can be parameterized and
is associated with each constructor of the object. This information will be used by the POP-
C++ runtime system for the resource discovery, the resource reservation and the resource
allocation. POP-C-++ compiler translates the POP-C++ codes to the ANSI C++ codes which in
turn will be compiled to the machine executable codes by a C++ compiler (e.g. Gnu C++).
Communication between parallel objects via method invocations uses TCP/IP with Sun XDR
and is transparent to the user. '

Trang 44

TAP CHi PHAT TRIEN KH&CN, TAP 10, 80 13 - 2007

3.THE FRAMEWORK

We built on top of POP-C++ a framework for time constrained applications using the
parallelization scheme. In this framework, two types of objects: sequential objects and parallel
objects co-exist and co-operate to the execution of the application. Sequential objects are used
as skeletons for constructing nodes of decomposition tree and the decomposition dependency
graph in the parallelization scheme. It is also responsible for creating the problem’s parallel
object. Parallel objects represent the real problems (or sub-problems) to be solved.

3.1.Expressing time constrained problems
The skeleton, illustrated in Fig. 3 consists of two main classes: DTreeNode and
ProbOb7j.DTreeNode is a sequential class representing a node (or a problem) of the
decomposition tree (DT). Each DTreeNode object associates with at most one parallel object
of type ProbOb7j that implements the problem solving on a distributed resource.
e The user gets his problem solved by following the four steps bellow:
e Create the parallelization scheme.
¢ Set the time constraint.
e Instantiate the solution.
e Execute the parallelization scheme.
The rest of this section will explain these steps.

e e Lasmsails
DTreeNode f i [Sequental
f cless |
{+inito ' i J—— g
+InitProniem(] | Paraliel class ‘{;5
it ; : e T
MR Probobj i
D¥reeNode | B | g
o TR L +Holve() ! T8oive
+ it it i ey S
+IntProblemd() i
+AdACHI) Fd) | | “instantiate”
+DependOn) i i !
% - L,
1 »@g:ﬁat tUserDTreeNode
~ohi
DTreeNode +InitFroblemd)
{+inity]
I+initProblemq) |
Skeleton classes

Figure 3.The UML class diagram of the framework
3.2.Creating the parallelization scheme

The user creates the DT by creating DTreenode objects and defines the parent-child
relationship by calling the method AddChild () on each node:
void DTreeNode: :AddChild (DTreeNode *child);
.The decomposition dependency graph (DDG) of child nodes within a decomposition step is
constructed by defining the relationships "DependOn" between two nodes of the same parent:
void DTreeNode: :DependOn (DTreeNode *prior);

| Trang 45

Science & Technology Development, Vol 10, No. 13 - 2007

The user can control the parallel efficiency for each decomposition by invoking the method
SetCoeff on the parent node:

void DTreeNode: :SetCoeff (float coeff);
The complexity for each DTreeNode should also be specified as an argument of the
DTreeNode constructor.

3.3.Setting up the time constraint

After the parallelization scheme is built up, the user sets the time constraint using
DTreeNode: : SetTimeConstraint. This method only needs to be invoked on the root
node of DT. For all non-root nodes, the time constraints, when necessary, will be
automatically computed based on the time constraint of the root, the DDGs and the problems’
complexities.

3.4.Instantiating the solution
This step is just a simple call to DTreeNode: : Init on the root of DT.

An instance ©
the solution

Execution Diagram

(d)

Figure 4.Initializing the parallelization scheme

DTreeNode: : Init will perform as follows:

- Find an instance of the solution regarding to the availability of resources in the
computational environment (Fig. 4.a). As we have described in section 2.l.c, a try-and-
decompose process will be performed on DT starting from the root. "Try" will compute the
resource requirements regarding to the time constraint and the complexity of the node. It then
tries to allocate a parallel object based on the computed resource requirements. The POP-C++
runtime system will perform resource discovery and resource matching. If "try" succeeds, the
initialization of the object is called. If not (the resource is not available),"decompose” will be
executed. "Decompose" first evaluates the time constraints for all child nodes based on the
DDG and the time constraint of the parent node. Then, the try-and-decompose is performed
again on each child node. Decompose fails if the node is a leaf. In this case,
DTreeNode: : Init will return "out of resource". In the end, an instance of the solution is
identified.

- Find the global dependencies of problems within the instance of the solution. When an
instance of the solution is found, DTreeNode: : Init will construct the global dependencies

Trang 46

TAP CHi PHAT TRIEN KH&EN, TAP 10, 80 13 - 2007

of problems within that instance by merging all hierarchical DDGs (Fig. 4.b) to generate an
unique dependency graph of all problems (Fig. 4.c). All redundant dependencies will be
removed to generate the final dependency graph: the execution diagram (Fig. 4.d).

- Elaborate the execution diagram to each problem’s parallel object. Each ProbObj
parallel object (problem) contains: a set of parallel objects that will be executed next as this
problem is completely solved; and a counter that counts the number of problems that must be
finished before this problem can start. DTreeNode : : Init updates these information based
on the execution diagram.

3.5.Executing the parallelization scheme

The last step is to call DTreeNode: :Solve method at the root of DT to get the
problem solved. DTreeNode: : Solve looks for all "ready" nodes (nodes with no coming
edge) in the execution diagram and then asynchronously invokes ProbObj: :Exec on all
ready nodes. Each time a problem (ProbObj parallel object) finishes, it will "fire" all next
problems in its list (also by invoking Exec method). A problem, when being fired, will check
its counter. Counter value of 0 means all previous problems have been solved. In this case, it
will start solving by invoking its local virtual method ProbObj : : Solve (the user needs to
overwrite this method). Otherwise, the counter is decreased and wait for the next "being fired".
The execution process is similar to that of a neural network.

4 EXPERIMENT RESULTS

4.1.Emulating heterogeneous environments
In the experiment, we built a heterogeneous environment with the following
characteristics:

¢ High heterogencity in computing power of processors
e Different hardware architectures
e Different operating systems

e Different network topologies
Cluster 1: Solaris/sparc Gluster 2: Linux/Pentium 4

Cluster 3: Mixed Solaris Cluster 4: Mixed Solaris
and Linux and Linux

Figure 5.Initial topology of the computational environment

Trang 47

Science & Technology Development, Vol 10, No. 13 - 2007

The environment consists of 130 physical workstations running Linux and Solaris, divided
into 4 heterogeneous clusters. The network topology is described in Fig. 5. The effective
computing powers of nodes in the environment are emulated, ranging from 60MFlops up to
1GFlops. Some machines are SMPs with 2 or 4 processors.

4.2.Building the parallelization scheme

We assume that we need to solve the problem that requires 50GFlop (total number of -
floating point operation needed to get the problem solved). We also assume that for each
" problem, we can decompose it into 4 sub-problems (the degree of DT). We have 4 levels of
decomposition (the depth of the DT is 4). Hence, in our DT, we have total number of 341 sub-
problems. '

Decompose)

Decomposition Tree) DDG

Figure 6.Decomposition Dependency Graph for each decomposition step

In order to classify the decompositions based on the dependencies of sub-problems, we
introduce a new metric called dependency factor. Dependency factor is defined as the ratio
between the maximum number of problems that can be solved in parallel and the total number
of problems.

_ Dependency factor is a number in between 0 and 1. Dependency factor is 1 if all problems
“are independent and can be solved in parallel and 0 if all problems are dependent and they
must be solved sequentially one after the other.

In the first test, all sub-problems within a decomposition step are independent and each
sub-problem requires 1/4 computing power of its parent. The dependency factor is 1. In many
practical problems, dependencies are inevitable due to the nature of the decomposition. These
will degrade the degree of parallelism. So, in the second test, we create a DDG for each
decomposition step as in Fig. 6: in each decomposition step, 25% of the computing power is
spent to solve one sub problem sequentially and after that three other sub-problems can be
solved in parallel. Here, in this case, the dependency factor is 75%.

We constructed 3 classes: MyDTreeNode (sequential, from DTreeNode), MyProbOb]j
(parallel, from ProbObj) and LogDataObj . (parallel class used to log execution progress
information). The two first classes are used to construct the parallelization scheme.
LogDataObj is a shared parallel object among all MyProbObj object. Each MyProbOb7j
object will invoke methods on the shared LogDataObj object to store information about its
execution states. In many real applications, LogDataObj can be replaced by the data source,
the output or the monitoring parallel objects. The MyProbObj object will simulate the real

Trang 48

TAP CHi PHAT TRIEN KH&CN, TAP 10, s 13 - 2007

computation by a counting loop. The time for running the loop depends on the computing
power of the resource and the complexity (total computing power) of the object (this
information is obtained from the parallelization scheme).

4.3.The results

We run the tests on the built heterogencous environment with different time constraints.
The parallel efficiency for each node is 0.95. The real computation time is measured and
compared with the time constraint. For each run, the number of parallel objects that reflects the
degree of parallelism is also counted

Actual computing time vs required time

g

—— Time requirad

—m— Actual timo (dopendoncy factors100%) |
Aclual ime (depandency laclor=75%) i - *
Number of cbjects (dependancy facior=100%) / '

@
o

~
<

Numbar of objects (dependency laclor=75%)

@
o

a
a
—
M
.‘
o
<

Time {3}

s

]
3
/

|
3
Number of problems {objects)

'\\ 't
40 - . 30
\ /
e e, 20
20 \
M T 10
S
— e ¥ R
o 3 ——— 7 v v - 0
1 2 3 4 5 6 4 8 a 10 1 12 13 14 15 16 1 8 19 - 21 22 23

Run N °

Figure 7: Emulation results with different time constraints in ac.ug.:.c0US environment

Figure 7 shows the cxperiment results. When the time constraint is grecater than or equal 50
seconds, the problem is solved sequentially because there exists some 1GFlops machines. The
actual solving time in this case depends on the resource discovery process but it is always
smaller than the required time. As the required time decreases, the problem starts to be
decomposed (number of parallel objects “increases). For tests with dependency factor of 100%
(there is no dependency of sub-problems), the problem can be solved as fast as 2 seconds (67
sub-problems). Below that, the problem can not be solved sequentially due to the lack of
resources. In the case where dependency factor is 75% (section 4.2), the dependencies reduce
the capacity of parallelism and increase the demand for resources. Therefore, we got "out of
resource” message when the time constraint is below 10 seconds. The time constraint of 10 sec
leads to a decomposition of 64 sub-problems and the actual running time is 9.67 sec.
Nevertheless, in both cases, the time constraints have been guaranteed.

5.CONCLUSIONS

Solving problems with time constraints in widely distributed heterogeneous environments
such as the Grid is a challenge. We address this challenge by providing: a parallelization
scheme to express the algorithmic parallelism; POP-C++-a requirement-driven parallel object
infrastructure for heterogeneous HPC; and a framework that implements the parallelization
scheme on POP-C++.)

Primary experiments have been performed on the emulated heterogeneous environment
with different processor architectures, processor capacities and different OS. The results show
that we can achieve the time constraints by automatically instantiating a suitable grain of

Trang 49

Science & Technology Development, Vol 10, No. 13 - 2007

parallelism based on the availability of resources. In other word, we have tailored the HPC
application to the computational environment.

Many issues were not fully taken into account yet in this paper: evaluation of the effective
performance of resources, the fault tolerance, security and usability. Above all, real
applications have not yet been tested. All of these issues will contribute to our future works.

GIAI CAC BAI TOAN CO RANG BUQC THOI GIAN TINH TOAN TREN MOI
TRUONG LUOI

Nguyén Tuédn Anh
Trudng Pai hoc Bach khoa, PHQG-HCM

TOM TAT: Viéc giai quyét cde bai todn véi cde rang budc vé théi gian thuec thi trén moi
truong tinh todn bat dong nhdt phan bé dién rong nhu méi truong ludi la mot thach thirc.
Chung t6i gzaz guyet thach thitc nay bang cdch cung cdp: mét lwge do song song cho phép
biéu diéu cdc cdu triic song song hod gidi thudt; POP-C++- mét céng cu ldp trinh ludi cho
mé hinh déi twong song song hidng tai nguyén; va mét framework ho tro hién thuc heoc do
song song st dung POP-C++. Framework dwgc xdy dung cho phép lwa chon dong murc do
song song héa thich hop dia trén kha ndng ciia cdc tai nguyén con trong thuc cé trén méi
truomg huedi tai thoi diém thiec thi sao cho thoi gian thuc thi tmg dung thod mén cdc rang bugc
ciia nguoi ding. Vi framework dd xdy dung, nguoi sir dung chi can mé ta bai todn bang cdch
phan ra thanh cdc bai toan con va hién thuc cdch giai cdc bai todn nay. Mot moi truong gia
ldp dugc xdy dung trén 130 mdy tinh chay Linux/Pentium 4 va Solari/Sparc. Cdc thi nghiém
trén méi truong nay do dac thoi gian chay thuc dugc dem ra so sanh voi rang bugc thoi gian
ban dau da duge trién khai. Cdc két qua do dac minh chimg tinh kha khi cia framework trong
khai thac sirc manh tinh todn sir dung cdc mikc d¢ song song hod khdc nhau nham thod man
cdc rang budc thoi gian.

REFERENCES

[1]. T.D. Braun, H. J. Siegel, and A. A. Macicjewski. Mapping heuristics for tasks with
dependencies, priorities, deadlines and multiple versions in heterogeneous
environments. In Proc. of the 16 International Parallel and distributed Processing
Symposium, (2002).

[2]. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers, (1998).

[3]. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. International J. Supercomputer Applications, 15(3), (2001).

[4]. R. Gruber, P. Volgers, A. De Vita, M. Stengel, and T. M. Tran. Parameterisation to
tailor commodity clusters to applications. Future Generation Computer Systems,

- (19):111-120, (2003).

[5]. J. Gunnels, C. Lin, G. Morrow, and R. van de Geijn. Analysis of a class of parallel
matrix multiplication algorithms. In Proc. of the First Merged International Parallel

Trang 50

TAP CHi PRAT TRIEN KH&CN, TAP 10, S0 13 - 2007

[6].

[7].

(8].

[10].

[11].

Processing Symposium and Symposium on Parallel and Distributed Processing,

pages 110-116, (1998).

P. Jdrzejowicz and 1. Wierzbowska. Scheduling multiple variant programs under
hard real-time constraints. European Journal of Operational Research, 127:458-465,

(2000). ‘

M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund. Dynamic

mapping of a class of independent tasks onto heterogeneous computing systems.

Journal of Parallel and distributed Computing, 59(2):107-131, November (1999).

T. A. Nguyen and P. Kuonen. Parallelization scheme for an approximate solution to
time constraint problems. In Proc. of the International Conference on Computational

Science 2003, June (2003).

. T. A. Nguyen and P. Kuonen. Paroct+: 4 requirement-driven parallel object-

oriented programming language. In Proc. of the 8th International Workshop on
High-Level Programming Models and Supportive Environments, April (2003).

T. A. Nguyen and P. Kuonen. Programming the grid with POP-C++. Journal of
Future Generation Computer Systems, (23):23-30, (2007).

Object Management Group. Real-Time CORBA specification. http://www.omg.org.

Trang 51

