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SOLVING LARGE SCALE SET PARTITIONING PROBLEM TO
OPTIMALITY IN PARALLEL
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ABSTRACT: Various practical applications can be modeled as a set partitioning (SF)
problem. Instead of modeling the problem as an assignment model, in which variables
correspond to a mapping of demands to resources, all possibilities of assignment are
generated explicitly or implicitly in a systematic way. Then, a solution method to the generated
SP problem is to choose the best subset of them to cover all demands. The obstacle is that the
SP problem is NP-Hard. This paper presents a research to computationally solve the problem
on parallel computers. The parallelism is performed on a sequential branch-and-cut based
solver which employs advanced methods and techniques to the problem. Computational results
solving solve large scale instances generated from different practical applications on a cluster
of workstations show that optimality can be reached within a reasonable computation time.

LINTRODUCTION

Set partitioning is one of the most widely used models in practical applications. The
formulation is as follows. -

min c’x ‘ (N
5.t Ax=e
xe{0,}",

where 4 is an m x n matrix of zeros and ones, c is an arbitrary n-vector which presents the
preference of choosing a variable. Note that the right hand side e is an m-vector of 1’s.
Let M = {1, ..., m} be the row index set and N = {1, ..., n} be the column index set of

Eq. 1. For each column 4;, let M I = {i eM:4;= 1} and associate the set with a cost ¢;. We
also denote by N I = { JelN = 1} . With these notations, we can interpret a set partitioning

problem as finding a minimum cost family of subsets M7, je N which is a partition of M. In
realjty, it is not common that every subset of M belongs to the optimal partition. This relates to
the fact that “application” constraints seems to be embedded into the definition of the set
{M J:jeN } .
In order to know how the SP model can be used in applications, we consider a scheduling

problem defined as follows. Given

e a finite set M,

e aconstraint set C defining a family P of “feasible subsets” of M, and

e a cost associated with each member of P,

find a minimum cost collection of members of P, which is a partition of M. A general two-
step framework below is often used to solve the problem.
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e Step 1: Generate explicitly all feasible subsets of M according to the constraint set C
(i.c., generate P). An approximation approach could be performed by creating a subset
P' < P so that the probability of an optimal solution being contained in P' is sufficiently high.

e Step 2: Create a SP problem in which P (P', for approximations) defines the set of
columns. Solving the SP problem is equivalent to solving the original scheduling problem.

Applying the idea above, the SP problem is used to model many practical applications: bus
crew scheduling, airline crew scheduling, vehicle routing, circuit design, facility location
problems, timetabling, etc.

However, the SP problem is NP-hard [1] which has been researched through several
decades. Different aspects of the problem have been investigated aiming to solving practical
application effectively. Following the same target, this paper presents an effort to speed up the
* solution process of the problem.

The paper is organized as follows. Section 2 gives a survey of practical efforts to solve the
SP problems. Computational aspects to solve the problem by a branch-and-cut approach is
presented in Section 3, in which features of a sequential SP solver are studied and a
transformation of the solver to parallel version is described right after. Experiments and
computational results are showed in Section 4. The final section closes the paper with some
. concluding remarks and open topics for future research.

2.RELATED WORKS

Solving large scale SP problems is always a challenge to theoretical and practical
researchers. In a well-known set of integer programming problems MIPLIB 2003, there are 27
problems (totally 60 problems in MIPLIB 2003) which have set partitioning constraints in
which 3 of them also exist in an older test set MIPLIB 1998. This means the SP problem is
computationally hard and still requires sophisticated solution methods.

In the scope of this paper, all aspects of the SP problem and sequential méthods cannot be
covered. Readers interested in theoretical view of the problem can read [2]. Another good
survey for the research before 1980s is in [3]. Recent successful sequential computations to
solve large scale SP problems are presented in [4, 5, 2]. More discussions on heuristics used
for set covering/partitioning problems can be found in[6]. One of the most significant
approaches to large scale combinatorial optimization nowadays is to apply parallel computing
to solution methods. In this paper, only aspects of parallel computing to SP problems is
considered. '

One of the most successful works in this area is presented in [7]. The authors apply both
domain decomposition and functional decomposition in a LP-based branch-and-bound
algorithm. Their parallel SP solver has a controller to manage the overall algorithm and assign
jobs (row/column removal, primal heuristics, cutting plane generation) to workers. The authors
experiment their ideas on a cluster of 16 processors to solve SP problems coming from
different practical applications. Comy atation shows some good results in speedup, but it is
skeptical that the computation can be scale up easily to a larger number of processors. -

Another way of using all computing resource of parallel computers is to perform a parallel
search on branch-and-bound tree. This exploitation is often applied to general mixed integer
programming solvers. An, innovative research belongs to the projects BCP and
SYMPHONY [8]. The scalability of parallel computation is one of the main targets in these
projects. Although the basic model is still master-slave, the hierarchical design is employed to
partition computation into small groups with less inter-group communication. However,
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software developed in these projects are for general mixed integer programming problems.
The efficiency of them cannot be highly expected.

The main contribution of this paper is to employ advanced techniques to solve SP
problems and perform a parallelization which highly guarantees a good performance for large
computations.

3.THE PARALLEL SET PARTITIONING SOLVER

3.1.Branch-and-cut components

In order to solve a problem efficiently, techniques to be employed should be problem-
specific. To do that, a sequential SP solver is implemented with strong techniques and methods
working well for SP problems. In following sections, components of the solver are described.
Note that, the parallel version is then transformed from the sequential one by using a parallel
library, called parallel ABACUS [9], for combinatorial optimization.

3.1.1.Branch-and-bound

In this paper, a thorough discuss of how to branch a branch-and-bound node and how to
select the next open node will not be given. Many basic points in this are addressed in
textbooks [6, 10]. One of the best surveys on search strategies is in [11].

The branching method used in the solver is suggested in [12]. This method is quite

complicated, intending to obtain two targets simultaneously: x; is close to 1/2 and ]cj] is
large. In order to find j, the method firstly computes two values:
L=max - {x;:x; <1/2},U = min . {x} :x; 21/2}.
Now, with a given parameter a€[0,1] (by default,@=0,25), choose
J=argmax . {‘C ,-l :(l1-a)L<x;sU+ a(1-U)} . The implementation also applies strong
branching because it is quite useful for degencrate problems like SP problems.

3.1.2.Preprocessing

The constraint matrix of the SP problem is so special and can be preprocessed efficiently
by advanced techniques. The sequential solver implements the following techniques:

e Duplicated columns: It is quite clear that if M* = M'and ¢,Z¢, the column k can
be removed without any change to the problem. :
e Dominated rows: For two rows kJfeM, if N k= N', we can set all

v k
{x_j'J'EN{N } to 0 and remove the row L.

e Row cliques: If a column k is neighbors to every column 1 of a row, x; can be

removed. (Two columns k] are neighbor to each other if M A M = $)
o, Row singleton: If a row has only one nonzero coefficient, the associated variable can
be set to one.

Moreover, throughout the tree search the reduced éos’g fixing is also applied to fix and set
variables using (global and local) lower bounds and the global upper bound.
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3.1.3.Cutting plane generation

Although general cutting planes, such as the Chvatal-Gomory cutting planes, the lift-and-
project cutting planes, have been revisited and introduced good performance, they are locally
valid. ‘Generating and storing them for large trees can lead memory overload. Instead, the
implementation only generates globally valid cutting planes: clique inequalities, odd cycle
inequalities and odd wheel inequalitics.

e Clique inequalities: Clique inequality is proved to be a facet of the polytope. However,
separating clique inequalities is a difficult problem ([13]). Therefore, only fast methods of
generating the same style of inequalities on complete subgraph are studied.

* Row-lifting [14]: The main idea of the method is starting from a small complete
subgraph of fractional variables which can be obtained easily from the constraints of the
model. Then, other fractional and zero-valued variables are lifted into the starting set.

e Greedy heuristic [2]: In this method, the starting variable set of the valid inequality
comprises only one fractional variable. The method will then try to include other fractional
variables into the set. Similar to the row-lifting, zero-valued variables will be included into the
set. However, they are computed in a different way. We find all variables neighbor to the
fractional set. In order to guarantee that they create a complete subgraph, the set of all these
zero-valued variables will be intersected- with the rows to find out the maximum cardinality
set. Finally, they will be inserted into the fractional set to make the final inequality.

® Recursive Smallest First [15]: This method aims at solving the following recursive
equation: -

' (2)
* * *

max X, =max<x. + max max X

iquei Z k {f Qc[iqueinG[N(j)]Z Z k}’

Qcliquein G ke keD chlquem G-j keQ

where G[N(j)] is the graph induced from the node set N(j). The efficiency of solving the
equation depends much on the way of choosing the variable j. One is to choose the variable
which has the smallest number of incident edges in the associated intersection graph.

e Odd cycle inequalities: The inequalities can be separated in polynomial time by an so-
called GLS algorithm ([13]). The main idea of the algorithm is to transform the separation
problem to finding the shortest path on a new graph which is generated from the intersection
graph of the fractional variables. Let G=(V,E) be this intersection graph. We construct the new
bipartite graph Gy as follows: the node set of Gy consists of two copies V' and V" of V"; an

edgeu'v'is in Gp ifuvisinG.
We easily realize that a path £, fromu'tou"in G corresponds to an odd cycle C, in G.
The weight V.~ is assigned with l—x: —x,. By doing so, we have

w(C,)= D> (1-x,-x,)

W
u'v"el,

—ZZx'u

ueC,

Therefore, we have the following equivalences:

w(C,)<1|C,[-2> x) <1> x] > Gl

ueC, ueC, 2
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This proves that an odd cycle having the weight less than 1 corresponds to a violated odd
cycle inequality. The most violated odd cycle can be found by solving the shortest path
problem on the associated graph Gp. In the implementation of the algorithm, when labeling

the neighboring nodes, it is only necessary to consider labels whose distances are less than 1.
Note that, with the weight assignment above, 0<w,,. <1, .
e 0Odd wheel inequalities: They are lifted from the odd cycle inequalitics.

3.1.4. Primal heuristics

One of the difficult problems associated with the branch-and-bound approach: is that the
number of nodes grows drastically. This leads not only to memory overload, but also to a
rather time consuming computation. In that case, a “good” feasible solution is quite important
to fathom nodes which cannot give a better solution. Two LP-based primal heuristics will be
discussed in this section and used in the branch-and-cut code.

e Dive-and-fix: The idea of this method is to solve the linear relaxation of an integer
problem and fix some fractional variables to suitable bounds. Certainly, if we fix variables
which are nearer to integer points, there are more possibilities that the remaining problem is
integer feasible. 3

e Near-integer-fix: It can be said that the second heuristic is also a variant of the dive-
and-fix heuristic. Instead of simply fixing fractional variables nearest to integer points, the
second method employs a more complicated technique of choosing variables to be fixed. A
main difference between these two variants is that the near-integer-fix heuristic will not fix a
given number of variables. It will fix all fractional variables whose integer distances fall below
a given number.

e Small set partitioning problems: Working on a small portion of the variable set is an
easicr task and a way to find primal bound for the branch-and-bound framework. The heuristic
presented in this section aims at solving a set partitioning problem containing a subset of
variables. Columns which produce the small problem are:

e Variables currently being in the basis of the last linear relaxation,
e Non-zero valued variables,

e Zero valued variables. These variables are added to the model in order to guarantee the
ratio between the number of variables and the number of constraints approximately equal to a
given value. Furthermore, all constraints should be covered equally by the chosen variables.

There are still many heuristics suggested for solving set partitioning problems. Some of
them are: dual heuristics [4], the dual cost perturbation heuristic [5], small set partitioning
heuristic [7]. More discussions on heuristics used for set covering/partitioning problems can be
found in [6].

3.2.Parallelization of the sequential solver

Very specific points will not be presented in implementation which can distract the
attention of readers. One can read [9] for more details on the design of parallel ABACUS. The
process of parallelizing the sequential code is quite simple. Following the instructions in [9,
16], we can transform any sequential combinatorial optimization code to a related parallel
version with a little effort.

Finally, after being compiled and linked with the parallel ABACUS on a parallel computer
supporting MPI, a parallel solver is ready to perform computations. It is an advantage of the
parallel ABACUS. The expense of designing a parallel code from a sequential one is quite
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small. Furthermore, the resulting code can be used on many parallel computers. The
computational results of the parallel set partitioning solver will be studied in the next section.

4. PRELIMINARY COMPUTATIONAL RESULTS

The interesting aspects of computational results should be described firstly. The last three
column in Table 1 are dedicated to the computation time of the solver. They are “%Par” the
parallel library time, “%ldle” the idle time, and “%CPU” the CPU time of parallel
computation. There should be a remark here on how to collect these quantities. The
measurement is only started after an integer program formulation has been read into memory.
Moreover, they will not be shown in any time unit. Instead, they are viewed as a percentage of
the total computation time which is shown in the column “ttotal”. This way of presentation is
expected to have a better view of the solver’s computation. The overhead of the library is quite
interesting to observe, especially with the help of columns “%Par” and “%ldle”. It is quite
obvious that when the idle time increases, the number of calls to communication functions also
increases. This leads to a high CPU time within the parallel library. However, the overall
computation time will not be influenced.

The name of test instances is in the first column which is followed by the column “#proc”
showing the number of processors involved in computation. Column “B&B” presents the total
number of branch-and-bound nodes. Due to the anomaly phenomenon in parallel search, these
numbers can change significantly with different numbers of processors involved.

The settings for the SP solver are configured as follows.

e Linear programming solver: CLP

e Cutting plane generation: cliques and odd cycle inequalities,

e Branching: Padberg-Rinaldi with @ =0.25; strong branching whose the number of
candidates is 10,

e Node selection strategy: best first search,

e Preprocessing: all methods supported by the sequential runs,

e Heuristics: dive-and-fix and near-int-fix.

The parallel system for our computation is Supernode II which is the cluster of 64 dual
processor computers. The network is Gigabit Ethernet to connect all computing nodes. The
processor type is Intel Xeon 2.4 GHz and each computer has 1 Gbyte RAM.

Test instances used in our experiments come from two practical applications. Instances
“air01”, “air04”, and “nw04” are models of the crew pairing problem of airlines companies. In
order to find an optimal set of pairings, the original problem is transformed to a SP problem in
a similar way mentioned in Section 1. In a same way, the capacitated vehicle routing problem
can be solved as a SP problem. That is the instance “eil33.1”.

Table 1. Computational results for large scale SP instances

Name #proc B&B %Par %ldle %CPU ttotal

aall 1 281 0.00 0.00 97.28 0:26:04
2 216 8.31 13.44 88.20 0:14:34
4 192 24.72 27.56 71.44 0:08:12
8 264 46.62 53.28 54.75 0:06:35
16 219 67.30 79.31 39.96 0:06:26
32 277 66.40 88.90 31.69 0:07:28
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aa04 1 239 0.00 0.00 97.99 0:28:47
2 465 3.95 5.44 93.11 0:21:11

4 332 9.63 12.86 85.43 0:09:04

8 495 27.23 27.94 69.43 0:06:50

16 537 54.19 59.88 47.94 0:05:18

. 32 696 65.49 15.21 38.77 0:05:27
nw04 1 331 0.00 0.00 96.15 0:37:39
2 167 9.54 30.93 63.01 0:18:23

4 312 35.82 49.90 59.51 0:14:31

8 235 33.79 78.69 37.75 0:16:26

16 212 40.54 90.06 32.22 0:16:32

32 326 44.86 94.91 26.59 0:32:05

eil33.1 1 4999 0.00 0.00 - 98.50 1:38:30
2 4972 2.07 341 96.03 0:46:52

4 5202 6.30 8.26 91.24 0:24:21

8 5702 15.29 17.94 82.98 0:14:36

16 8881 41.80 39.00 60.65 0:11:15

30 8079 55.46 65.25 48.34 0:08:51

With the default settings, we obtain a quite good performance of computational results in
Table 1. The most important target of the design has been achieved concerning the reduction
of the computation time in most cases. With a sufficient number of processors, the total
computation time is reduced for all test instances. If the idle percentage is not so high, the
speedup is quite good. However, bad efficiency is received for instances with few branch-and-
bound nodes, such as in “aa01”, “aa04”, “nw04” although there are still time reductions.

Now, we will try to investigate in more details why the poor performance happens when
using many processors. Since the parallel design is based on the idea of polling through MPI
communication objects to check their completions, the overhead of the parallel ABACUS
library naturally increases if there are very few open nodes globally which are not satisfied by
many idle processors. This often occurs in the beginning or at the end of a run. The tree search
for the problem “nw04” is visualized in Figurcl.a as an example. This results in bad
utilization of all processors. Columns “%Par” and “%ldle” in Table 1 show the increase of the
parallel overhead and the idle time when increasing the number of processors. From the table,
we imply that most of the parallel overhead is due to the idleness of processors. With this
weakness, one way to improve performance for test instances with small number of branch-
and-bound nodes is to use a different approach of parallelization.
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b) early branching

Figure 1. Search trees of “nw04” using 8 processors

In order to cope with bad behavior as shown in the first tree of Figure 1, we employ some
balancing techniques to reduce the idleness of processors. The first one is early branching
which forces a processor to stop its separation immediately when realizing there are not
enough nodes for idle processors. As seen in the computation using the default settings,
processors are often idle because there are not enough problems for them. It is expected that
the carly branching technique will do a better job in the same situation. However, stopping the
cutting plane generation very early is possibly not a good choice because doing that makes a
branch-and-cut code only execute a simple branch-and-bound algorithm. But we can receive a
benefit by reducing the idle time of processors. It is intuitively clear that there are usually more

numbers of branch-and-bound nodcs in comparison with the previous default computation.
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The second balancing method in examination is the multi-branching method which will
generate enough nodes for idle processors. The third tree in Figure 1 shows all processors are
to be utilized at any stage of the computation. Even though there are very few open nodes at
some time, the multi-branching method also prefers to creating jobs for idle processors.
Remember that, if we branch on many variables at a time, the feasible region of the child
nodes is stricter in comparison with branching on one variable only. The reason is quite
obvious as we fix many variables at a time. Then, the multi-branching helps to reduce the tree
depth a lot (e.g., the depth of the third tree is half of that of the first tree for “nw04”). The
number of branch-and-bound nodes is usually increased with respect to the number of
processors. :

5.CONCLUSION

Solving large scale SP instances to optimality requires specific-problem methods,
techniques and even power computing resource. The paper shows a study to develop an
efficient parallel SP solver which has been tested on several large instances from various
practical applications. The computational results show that the solver is scalable for large
problems in terms ‘of the number of branch-and-bound nodes. With a suitable number of
processors, solving a set of well-known large scale test instances in parallel, the solver reduces
significantly the running time in the default settings. Researchers now have a tool to study
large combinatorial optimization problems model in SP formulation. The study also presents
several potential possibilities in future. One of them in aspects of parallel computing is to
upgrade efficiently the solver to larger computing environment, such as Grid. The memory
management for large branch-and-bound search should be studied in order to solve some SP
instances (“ds”, “t1717”) to optimality.
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GIAI TOI UU BAI TOAN PHAN HOACH TAP HOP KICH THUOC LON
DUNG TINH TOAN SONG SONG

Trén Vin Hoai
Trudng Dai hoc Bach khoa, PHQG-HCM

ABSTRACT: Nhiéu timg dung thuc 1é trong nhiing linh vire khdc nhau co thé dwpc mé
hinh duwdi dang bai toan phdn hoach tdp hop. Thay vi thé hién iing dung dudi dang mo hinh
gdn (assignment model), . dang cdc bién twong immg véi nhitng dnh xa tir yéu cau dén tai
- nguyén, phuong phdp dgc chon la tao ra 1Gt ca nhing kha néng gdn cé thé mot cach tuong
minh hodc khéng tuong minh trong mét trinh tw cd hé thong. Sau do, cdch tim nghiém diroc
quy Vvé bai todn tim mét tdp con 16t nhét ciia ching ma phu tdt ca nhimg yéu cau. Mot tré ngai
chinh cua bai todn phédn hoach tdp hop la né thugc nhém NP-hard. Vi thé bai bdo nay sé gidi
thiéu mét cdch tiép can ding mdy tinh song song dé gidi quyét tro ngai nay. Mgt thu vién tudn
tur sir dung nhiing phirong phdp va k¥ thugt ndng cao trong thudt todn dya trén nhdnh-va-cdt
dwgc chuyén sang dang song song. Két qua tinh toan trén nhimg dit liéu tir cac img dung thuc
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18 khdc nhau cho thdy nghiém 16i uu cva chiing co thé dat dgc trong mot thoi gian tinh todn
hop Iy néu str dung mdy tinh song song.
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