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ABSTRACT: In [2] the author considered the Sheaf-Optimal Control Problem
(SOCP) by differential equations: did(ttl =f(t,x(t),u(t)) ,

wherexy eQcR",ueUcRP,t€[0,TIcR", and sheaf of solutions:

Hyy, = {x()=x(t,xp u(t)|xg €Hy = Q,teI=[0, TIc R*,u(t) U}
with the goal functionI(u) —min.
In [5], we have offered the neccesary conditions of Sheaf-Optimal Control Problem in
Fyzzy type (SOFCP), that means the controls u(t)e U cE® not belong to RP .
This paper shows some comparison of sheaf-solutions H; , and H,y for many kinds of

fuzzy controls u(t),u(t)e UcEP in Sheaf Fuzzy Control Problem(SFCP)
Keywords: Fuzzy Theory, Optimal Control Theorey, Differential Equations.

1. INTRODUCTION :
For Sheaf-Optimal Control Problem (SOCP) many controls u(t) and u(t)=u(t)+ Au

are considered with [|Aul|=[a(t) - u(t)| <8, where u(t),i()e U RP [2]. For Sheaf-Optimal
Control Problem in Fuzzy Type (SOFCP) we have fuzzy controls u(t) and u(t)eU cEP with

[6H - u®|< Tp [5)-
For the Sheaf Fuzzy Control Problem (SFCP) we have the same fuzzy controls

u(t) and T(t)eU cEP, that was defined by definition 5 in [5]. The paper is organized as
follows:

In the second section, offering the Sheaf Fuzzy Control Problem (SFCP) we get

estimations of the norms || ||c and || e of

AX =x(t, X,, (1)) — x(t,X,,u(t)) and
Af =f(t, x(t, X,, (1)), U(t)) — £(t, x(t, X4, u(t)), u(t))
In section 3, we study some comparisons of sheaf solutions H,,in many kinds of

fuzzy controls u(t),T(t)eUcEP, that means we have to compare the measure

|n(H; ) - p(H;,) |
2. THE SHEAF FUZZY CONTROL PROBLEM (SFCP)

As we know, the solutions of differential equations depend locally on initial, right hand
side and parameters. Now, we consider a control system of differential equations

"’;‘t‘)=f(t,x(t),u(t» (1)
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and f:IxR" xEP -R" .
Definition 1. The sheaf - solution ( or sheaf-trajectory) |x(t,x0,u)c which gives at the
timet a set
Hey ={x(t)= x(t,xg,u)|xg €Hg cQ,x(t) - solution of(l)] : )
where xy eHy cQcR™, u(t)eUcEP, tel .
In the case, when a control u(t) is fuzzy, we have Sheaf Fuzzy Control Problem (SFCP).
Suppose at time t=0,u(0)=0 and x(0)=x, €H,. For two admissible controls

u(t) and u_(t) €U c EP, we have two sets of sheaf-solutions
H,,= {x()=x(t,x,,u)| x, €H, ©Q,x(t)~a solution of (1)by controlu(t)}

H,; ={§(t)= x(t,%,,U(t))|x, eH, cQ,X(t) —a solution of(l)by control u(t) } s
where tel. (See fig.1)

Fig. 1. The sheaf-solutions of Sheaf Fuzzy Control Problem (SFCP).
If p(H,,) is a measure of the set H,, then p(H,,) is called a cross-area of sheaf

trajectory at (t,u), in particular it is a square of set H,,.That is pu(H, )= j dx, and
Hl.n

R(H, ;) = I dx, is a square of H ;.
Hlj

Assumpﬁon 1. Suppose that the vector function f (t,x(t),u(t)) satisfies

> of of

i) “.5; Ax() + —- du(t) < M( |ax®)] + |au)]) (3)

i 1 )k p
ii) S |a*£] < m (4)
i) ‘sp of (t, x(t, x;; u(t)), u(t)i ~L{u@)) (5)

for all x(t)eQcR", u(t),u(t)eUcE’, tel, where M, m, L are real positive constants and
SpA is trace of matrix A.

Lemma 1. For the fuzzy controls u(t) and u(t)eUcEP, the norm of
Au=1u(t) — u(t) is estimated as follows:

a) llAulc<yp (6)
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"
b) llAullL= [ilau)lldt<Tp, Q)
) |

Proof of Lemma 1: Let u(t),u(t)e U cEP are fuzzy controls. In [5], we defined a fuzzy
function u:1—->UcE? =ExEx..xE, that means u(t) =(u, (1), u,(t),...,u, (t)). Because

every u, (t) satisfies |u, (t)|<1( k=1,2,..p) then a norm of
a) |Aul, =max {|[u(t)-u()|:te1}

< max{\/i]ﬁi 0 -uw @ :te 1} <.Jp

where u (),u(t)e U cEP

T T
b) [Au], = flAu@idi<fp [dt<Tp ' (m)
0 0

Theorem 1. Suppose that u(t),ﬁ(t)eU;Ep are fuzzy controls. If the function
f(t,x(t),u(t)) satisfies (3) and (4) then the norm of AX =X(t,X,,U(t)) — x(t,X,,u(t))

is estimated as follows:
a)  ||AxX]o <(Tm+Mp )exp(MT) (8)

b)  [ax], <T*(m+M{p )exp(MT) ©)

Proof of Theorem 1: Let u(t),u(t)eUcEP are fuzzy controls with  Au=u(t) - u(t)
satisfies (6) or (7) .

a) The solutions of (1) are equivalent the following integrals:

x(t)=x, + ]f(s,x(s),u(s)) ds and X(t)=x,+ ]-f(s,i(s),ﬁ(s))ds.

Estimating [|Ax(t)]| as follows [Ax(t)] < I“f(s,i(s),ﬁ(s) —f(s,x(s), u(s))| ds

t
<
0

<M 'ﬂldx +du+.|ds<M I“Ax(s)“ds +M I"Au(s)ﬂds +mT
0 0 o

ds

OF (o, x(8),T(s))dx + 2 (5, x(s), u(s)du + ¥ d*£(5, X(5), u(s))
ox ou k=2

<M ]’||Ax(s)[|d§ +MT,/p +mT

By Gronwall-Bellmann’s Lemma, it implies that
|ax|, = max [Ax()]< T(m + Mp ) exp(MT)
tel0,T]

b) fax(o] < M Jlax(s)is + M [|u(js + mT

|ax(®| <M ]||Ax(s)||ds +MT,/p +mT

<T(m + M{p ) exp(MT)
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.
For ax|, = _ﬂle(t)”dt <T?*(M\/p + m)exp(MT) we have (9) (m)
0 «
Theorem 2. Suppose that u(t),u(t)e U cEP are fuzzy controls, if the function
f(t,x(t),u(t)) satisfies (3) and (4) then the norm of
Af =£(t,x(t, X4, T(L)), U(t) ) — F(t, x(t, Xy, u(t)), u(t))

is estimated as follows:

a) |Af], <MT[(My/p +m)exp(MT)+ Jpl+m (10)
b) |af], < T {M[T(m +M{p ) exp(MT) + Jo]+ m} (11)
Proof of Theorem 2:

a) For Smax{

TN TR T
TREY

:tel}

Smax{"df“+g ]|d*f|| tel}

< max{ édx+—d +:Zj;il—ndkf“:te I}

<M ([ax], +[Au])+m
<M[T(My/p +m)exp(MT)+Ty/p]+m
<MT[(My/p +m)exp(MT) ++/p]+m

b) For |af] = j|lf(s (s, X9, U(s)), u(s)) - £(s, x(s, X9, u(s)), u(s))| ds

< M( ﬂle(t)"dt + j||Au(t)||dt) +m jdt

<M([ax], +]au],) +mT

< M| T%(m + M{p ) exp(MT) + T|/p | + mT

<T{M[T(m +M{p ) exp(MT) + Jp |+ m} (m)

3. THE COMPARISON OF SHEAF SOLUTIONS IN THE SFCP

Lemma 2. For A,B>0 there exists a real number K such that e* —e® <K e*™®
Proof of Lemma 2: We have e* -¢® = e®(e*® -1)<Ke*®, K>e® (m)

Now, suppose that p(H,) is given. There are many following resulis of comparison of
sheaf- solutions :

Theorem 3.  Suppose that u(t),u(t)eUcEP are fitzzy controls. If the function
f(t,x(t),u(t)) satisfies (3) ,(4) and (5) then we have the following estimation:

| p(Hy3) - p(H, ) < u(H,) exp(LTy/p) (12)
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det——ax([’xo'u)‘dx0 ,
0Xg

Proof of Theorem 3: We have p(H, )= [ dx, = |
Ht,u Hl)

where

t
det _a_x( |x03u)

ox

T of(y,x(
:exp[[sp (Y,X\“I,Xo,u),u(Y)dyJ )
0

0
that means

|Af]|, =max {[£(t, x(t, %4, T(R), T(R)) — £t x(t, x4, u(t)),u(t)) |: t e 1}

Ox(t,Xg,u T of
]J,(I'It’u) e j det_(—()) XO :-J exp[fsp ('Y,X('Y,Xo,u),ll('}’)) d'Y dxo
Hg 6x0 Hy 0 ox

M(Hy, ) = k(H, ) exp(L flu(ofdo) .

y '
It is analogous of proof a) above, we have p(H,,)=u(H,)exp(L I||ﬁ(t)[|dt) :
0

Estimating | p(Hyp ;) —p(Hp )| we have

T T
(Hy ) - p(H ) IS pCH,) {exp(L Tl -exp(t jnumnat)}
< p(H,) K exp[ L [([a()] - Jucodt]

< p(H,) K exp[ L [[Au(t)fdt] < p(H,) K exp[ LT\p]
where K 2 exp(LT\/E) . (m)

Corollary 1 Suppose that u(t),u(t)eUcEP are fuzzy controls. If the function
£(t,x(t),u(t)) satisfies (3) and (4), then for (1) when n=1 we have the following estimation:

|(H, 5) ~ p(H, ) I< (b, —a,)exp(2LTp), (13)
where K = exp(LT\/E i P

Proof of Corollary: When n=1 we have p(H;)=b, -a, , finally we get (13) (see
fig.2) .

Fig. 2. The sheaf-solutions of Sheaf Fuzzy Control Problem (SFCP), whenn = 1. (m)

4. CONCLUSION

In the Sheaf Fuzzy Control: Problem (SFCP) for many different fuzzy controls
u(t),u(t)e U c EP we have the comparison (7)-(13).There are differences between the Sheaf
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Fuzzy Control Problem (SFCP) and the Sheaf Optimal Control Problem in Fuzzy Type
(SOFCP) what was offered in [5].
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SO SANH BO NGHIEM TRONG BAI TOAN PIEU KHIEN MO

Nguyé&n Pinh Phu, Trin Thanh Tiing
Khoa Toan — Tin hoe, Trudng Dai hoc Khoa hoc Ty nhién, PHQG-HCM

TOM TAT: Trong [2] tdc gid da xét bai todn diéu khién t6i uu bé (SOCP) cho bdi

hé phuong trinh vi phdn: :
dx(t)

o odt

& ddy xgeQcRM,ueUcRP ,te[0, T]cR™, va bé nghigm:

£(t, x(t), u(t))

Hi, = {x(t) =x(t,xp u(t))|xg eHg = Q,tel =[0,TL,u(t)e U}
v4i ham muc tiéu I(u) > min.

Trong [5] lai trinh bay cdc diéu kién cdn ciia bai todn didu khién t6i uu bé dang m&
(SOFCP), vdi cdc diéu khién md u(t)e U cEP thay vi thugc RP.

Bai bdo nay dua ra cdc so sdnh cdc b6 nghiém H,, va H, g ting véi cdc diéu khién
mo khdc nhau u(t),9(t)e U cEP ciia bai todn diéu khién b6 dang mo (SFCP).

Tit khéa: Ly thuyét mo, Ly thuyét diéu khién t6i wu, Phuong trinh Vi phdn
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