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ABSTRACT: In this paper we investigate problem of finding the approximation of Bayesian
estimators by the polinomial functions.
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1. Introduction and Notations:

The article present some results on the Bayesian estimators in multidimensional nonlinear regression
models.
First of all, we give some notations (see [1],[2],[3]):
M(nxq),M(pxr),M(sxs): spaces of all nx g-matrices, px r-matrices, sx s-matrices.
M? (s x 5): space of all non-negative definite 5 §-matrices
B(nxq),B(pxr),B(sxs): Borel o_ algebrasin M(nxq),M(pxr),M(sxs)
@ : compact subset of M(pxr)
Let us consider the following multidimensional nonliner regression models:

X =¢p@)+e
Where,
X is a observed random variable, taking the values in M(nx q), EX = ¢(8)

£ is a random error variable, taking the values in M(nxq),E(¢)=0.

@ is an unknown location parameter , 8 € ©
@ is a known non-linear function, ¢ : ® — M(nxq)

Definition 1.1: A Borel function h:(M(nxq),B(nxq))—> (M(pxr), B(pxr)) is called an

estimator for the location parameter & € ©.
. Let B:=B(M(nxq),M(pxr))denote the space of all bounded Borel functions from M (nxq)to

M(pxr).Clearly, it forms a class of estimators for the location parameter & € ® anditis a Banach
space with the norm

A, = h 11,12
I, ,efﬁ,ﬂqﬂ ™| (see 112D

The composed function defined by L(h(), . >M(nxq)x® — E: is called a loss function (see
[1L.12D. '

Definition 1.2: A functional ¥: B — R* s said to be a Bayesian risk funtion with a priori
distribution 7 if

W) = [ [L(h(x),0)f,(x)p(dx)e(d6)

© M(nxq)

Definition 1.3: An estimator 4 € B said to be a Bayesian estimator with a priori distribution 7 if
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Y(h) = inf ‘¥ (h)
2. On the approximation for the location parameter and variance parameter:

First, in this section we will find an approximation polinomial function of Bayesian estimator for the
location parameter & € @, where © is a compact subset of R. Let I be the range of the observed
random variable X, where I be a compact subset of R. Let B(I) be the class of all bounded estimators
of the location parameter & € ®. Let C(1) be the space of all continuous functions on I. Clearly, B( I
) and C(I) are Banach spaces and C(1) < B(I).

Theorem 2.1: Let K be a class of all estimators of the location parameter 0 € ® satisfying the
conditions of the theorem 2.1 in [1]. Suppose that there exists C' > 0 such that:

|f,(x)|<C\Vxel,voec®

Then K c B(I) and the Bayesian estimator heK can be arbi trarily closely approximated by a
polinomial function.

Proof: First, take any 4 € K and any € > 0. Then by the Lusin theorem, there are continuous function

ge C(I)and C "> 0 such that: u {x el:h(x)# g(x)}<FZ"—C”, where, |h(x)! N el |g(x)|<

C"., p is the Lebesgue measure on R and C defined as in theorem 2.1 in [1].
Let us define

A= {x €l:h(x)# g(x)}

Then we have,

W -¥(2)| < [ [|L(h(x).0) - L(g(x).0)| f, (x)u(dx)z(d6)
e/

< [ [Clne) - g(x)] £, () (e (d9)

el

< [ [Clrx) - g(x) f,uutax)e(ad) + [ [Clax) - )| £, () u(dx)r(do)
@A

. ©1I-4
= [[Clr(x) - g ()| £, (M) u(dx)r(a6)

<200 C" uld) < %

On the other hand, for £ > 0, using the Weierstrass approximation theorem, we obtain a polinomial
function F, , € C([)such that

£
= 2.C.C".u(I)

it e 10

Hg _R1,a

ao "

Where ,n= n(g),a=(a,,q,,a
This implies that '

| (g)-¥(R,,)

= _”C“g =P, |- fo(x)p(dx)r(d6) <-;~

Consequently,

| (h)-¥(B,,)|<e

Thus we obtain an approximation polinomial function P, , with the coeficient @ € R™"' and the proof

of the theorem is completed M.
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Nexi, note that for every h € K , there is a n = n(h, £ ). By the dcfinition of the function ¥, for
every a€ R™ , there exist an unique ¥(P, )€ R". This means that, there exists a function of

na

several variables F: R™' — R* definedby F(a)="¥(F ,,)

Now, let us define,
A, = {a e R™ :|P(h) - F{a)| < c}

Ac = U A:.'.h

hek

Continuously, consider an Bayesian estimator 4 € K ,i.e ¥(h) =inf ‘P(h)
hek

By the above consideration, there exists a polinomial function P . witnthe @ € R™" such that

|F@)-wh|<e m
It follows that @ € 4,
Suppose that there exists an @’ € 4, , such that,

F@a)= tillelf F(a)
Consequently,

F(a’)-F(a)<0 )
On the other hand, we have X

F(a)-Y(h) <¢

W(h)-W(h') <€

Y(h')-F(a")<e

It follows that,
F(a*)-F(a) >-3.¢ 3)

From (2) and (3), we obtain that,
F(a")- F(&)] <3.¢ (4)

Finally, from (1) and (4), we have that
F(a')- ‘P(h)‘ <4

This means that, there exists a polonomial function Pn .+ such that
W(h)- PP, . )| <d.g

Consequently, P . isthe required polinomial function u

Example 2.1: Suppose that the conditional regular distribution &,,6 € © is an uniform distribution
with the following density function:

Jo(X) = “;j ‘ 1(05xsa)
Where, ® =[1,2],x € [ =[0,2]
Assume that, the priori distribution 7 on compact parameici space (O, ®(©)) is an uniform
distribution with the density function: g(6) = 1,40,
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Let us consider the loss function .
L(n(x),6) = (n(x)-6)
Then we obtain the following Bayesian risk function with a priori distribution 7,

Y(P,.) = [[L(P,,.0).f,x)ud)(do)

= [[(,. ()~ 0 £, (x)u(de)e(at)

e/r
287 n 2 1
= Za,x'—ﬂj —.dxd6
10oN\i=0 0
n n 21+j+1 _] 7 n 2i+2 __1
= aq, — - =2 B N el
?:;j:na’a’ (i+j+1) 3 Zo:a (+1)i+2)

Consequently, we obtain the following function F of several variables:
F(a)= Y(F,,)
Now, considering the spesial case n = 1, we have
1) & 3 7 7
Fa)= F(a,,a)=a} +(—J.aaﬁ+(- a,.a, —3.a,—| — |a, +—
(ag,a)) = ag 9 5 [Goh Y |
Clearly, F(a,,a,) has a local minimum ata = (a;,al‘ ), where aj =1,645;a, = -0,194

Therefore, we have following the approximation polinomial function

P, (x) =1,645-0,194.x
If n =2, then P,(x) =1,48-0,25.x + 0,27 x>
Andifn =3, then P;(x)=147-0,177.x+0,142.x* +0,055.x°

Next, by a similar argument as in the theorem 2.1, we obtain the followimg theorem on the
approximation of Bayesian estimator for the variance parameter o* e R (see [2]).

Theorem 2.2: Let K be a class of all estimators of the variance parameter o € R*, satisfying the
conditions of the theorem 3.1 in [2]. Suppose that, there exists C'> 0 such that:

|/, )| <C",Vxe I,Vo? e R

Then K < B(I)and the Bayesian estimator heX can be arbitrarily closely approximated by a
polinomial function.

Now, we consider the space of all essentially bounded Borel functions from I to R, denoting by

L*(I)= L% (u,1,R), where I is a compact subset of R. Clearly L”(I) forms a class of the location

parameter & €€ ® , where © is a compact subset of R, and [* (7) is an Banach space with the norm:
Pl S, s i)

Theorem?2.3: Let K be a class of the location parameter 8 € ® satisfying the conditions of theorem

2.2 in [2]. Suppose that there exists C'such that: 'f‘9 (x)l <C'(mod p),VOe®

Then K c L* ({) and the Bgéyesian estimator Ae K can be arbitrarily closely approximated by a
polinomial function.

Theorem 2.4: Let K be a class estimatorsm of the variance o? € R* , satisfying the conditions of the
conditions the theorem 3.2 in [2]. Suppose that there exists C’' > 0 such that:
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|/, ()| < C’'(mod ), Yo' e R".

Then K < L”(I) and the Bayesian estimator heK can be arbitraeily closely approximated by a
polinom function.

3. On the approximation for the compound parameter:

First, in this section we will consider the existence of Bayesian estimator for the compound parameter
A=(0,0),0®,0% e M*(sxs), where ©: is a compact subset in M(pxr) M*(sxs) is a set of
all non-negative definite s x s — matrices. in the space M (sxs) (see [2],[3]).

Definition 3.1: A Borel function

h: (M(nxq), B(nxq)) = (M(pxr)x M(sxs), B(pxr)x B (sxs)) is called an estimator for the
compound parameter A = (6, c?) Let B=B(M(nxq),M(pxr)xM(sxs)) denote the space of
all bounded Borel functions from M(nx g)foM(pxr)x M(sxs). Clearly B-space form a class of
estimators of the compound parameter A4 and it is a Banach space with the norm:

|lh“8 i xef::npxq)“h(x)“b{(pxr)xﬁd (sx5)

Definition 3.2: A functional ¥': B — R*, defined by
Y= | L)) S ) paxn(dA)

OxM *(sxs) M (nxq)
is called a Bayesian risk function with a priori distribution7, where 77 = 7x v is the product of the
measures 7 and v:
7 is a priori distribution of the location parameter &
v is a priori distribution of the variance parameter &’

Definition 3.3: An estimator heB- space is said to be a Bayesian estimator with a prior distrbution
n if
Y(h) = inf ‘¥ (h)

Theorem 3.1: Let K be a class of all estimators for the compound parameter A satisfying the
following conditions:

(i) h(M(nxq) c©@xM*(sxs),Vhe K
(ii) V& > 0,3 finite partition {E, },";I < M(nxgq)and points x;, € E, I =1,2,...,m such that:

sup|a(x) — h(x,))| <&, Vhe K,Vi=12,.,m
xek;
(iii) There exists C > 0 such that:
L3, 4) - L, D] < Cly = Y| ¥,y € M(pxr)x M(sx 5), VA& ©x M*(s ).
Then K is a compact subset of B-space and in K there exists a Bayesian estimator.

Proof: By a similar argument of the theorem 2.1 in [1], it can be seen that K is a relatively compact
subset of B-space.

Continuously, we will prove that (M (nx q)) c @ x M*(sxs),Vhe K

Indeed, take any % € K . Then, there exists a sequence (4, ) K such that
h, ——h[|H -0, as n—>0

This implies that
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h" (x) = h(x)”M(pxr)xM(sxs) = 0’ RS HeeR

B (x)-H @), —0 and

Consequently: M pxr)

h=(h,h").
On the other hand: h (M (nxq)) c @ x M*(sxs),Yne N.

This means that: b, (x)€® and A, (x)e M*(sxs),VneN.
It follows that '

hn-(x)-h"(x)lLHm_} —0 as n-—>o0., where

h(M(nxq)c @xM*(sxs),Yhe K,
as to be shown.
Finally, let us consider the Bayesian risk function with the a priori distribution 77:
Y= [ L), £ () pdx)n(dA)
OxM* (sx5) M (nxq)

Clearly, ' is a continuous function on K and in K there exists a Bayesian estimator. Theorem is
proved @,

Now, we will investigate problem of finding an approach of Bayesian estimator for the compuond
parameter.

Theorem 3.2: Let K be a class of all estimators for the compound parameter 4 = (8,07), satisfying
the conditions of the theorem 3.1, where @ is a compact subset of R and o* € R* =[0,). Suppose
that, there exists C' > 0 such that: lf/1 (x)l <C',VAe®xR*,Vxel,wherelisa compact subset of
R.

Then K < B(I,R?) and the Bayesian estimator he K canbe arbitrarily closely approximated by a
polinomial function.

Proof: First, take any he K. Then there exist C">0 such that: lh(x)l <0%vxel.,
h(x) = (W' (x),h"(x)), where,h' € B(I,R),h" € B(I,R). Since h',h" are bounded Borel functions, by

the Lusin's theorem there are continuous functions g’, g” € C(I)such that

&
I:n ‘ o B
plre I W (x) = g'(x)} < e

plxe I h'(x) = g"(x)} < ﬁg—c— |

Let us defined' = {x el:h'(x)= g’(x)},A" = {x el h'(x)# g”(x)}, A= {x €l:h(x)= g(x)}
and note that 4= A"U 4"

This implies that: (4) < u(A") + p(A") < E%?
Consequently:
W W@l [ [|Lh(x), ) - Lg(x), M|, (x)pa(dx)n(dA)

OxR* 1
< | [l - g fi udxn(dr)

OxR* 1

< [ felne) - el eu@n@ p+ [ [cfhe) - gf, @u@n@r <<

OxR* 4 OxR* I-4 2
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On the other hand, since g',g” € C(I), by the Weaerstrass polinomial approximation theorem, there
P, , € C(I) such that:
£
L ——
cn T 40C pu(l)
£
"—~P <
& e ucv') 4.CC.u(I)
Letus denote B, ,, =(5,,,P,,) . Then, we obtain:

\¥(e)-¥(P.)< | [C. ey 2 p()(dA)

OxR* !

are polinomial functions P, ,,

le'-E..

lg e Pn,a,b

ey i @p@m@)+ | fc

OxR* 1

g"_Pn,bl

s | [clg'-+. IWACOUCORES

OxRr*

It follows that: |‘P(h) s o F )| < £ and the proof of the theorem is completed M.

Next, note that for every h e K , there is an n = n(h,£). By the definition of the functional ¥, for

every a € R"" and every b € R™', there exists an unique ¥(P, ,,) € R*. This mean that, there

exists a function of several variables F: R™' x R™' — R*, derfined by F((a,b)) = )

Now, let us define
A4,, ={a,b)e R x R™ :|¥(h) - F((a,b))| <€} ,

Continuously, consider an Bayesian estimator heK o s

Y(h) =inf ¥(h)

hek
By the above consideration, there exists a polinomial function P ., = (Pnﬁ,PH 5) with the
(&,I;)e R™!'x R™! such that
[P (@) -w(h)|<e Q)

It follows that (&,B)G A,
Suppose that, there exists an (a*,b") € 4, such that: F((a",b") = . igfﬁ F((a,b))
Consequently

F((a",b"))-F((a,b)) <0 )]

On the other hand, we have,

F((4,b))- W(h)<e
Y(h)-Y(h')<e

LI‘(h") -F((a*,b")) <e¢
It follows that i
F((a',b'))—F((&,b)) >-3¢ 3)

From (2) and (3), we obtain that,
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F((a',b")) - F((@4, 5))| <3¢ )
Finally, from (1) and (4), we have

F((a",b")) - ‘P(ﬁ)l <4g

This means that, there exists a polinomial function Pn‘a._ such that

2
Y -¥(, ., )‘ <4e

Therefore, P . .
na'b

Finally, we will consider the Bayesian estimators in the Banach space
L*=L"(u,M(nxq),M(pxr)x M(sxs))

is a required polinomial function M,

Theorem 3.3: Let K be a class of all estimators of the compound parameter A = (6, 0?) satisfying the
following conditions:

(i) h(M(nxq))cO®xM?(sxs)(mody),Vhe K

(ii) V&>0,3 finite partition {E,. }L c M(nxq) andpoints x,€E, i=12,.,m
such that:

(@ 3C, :|hx)|<C\,VheK,Vi=12,.,m

(b) Vhe K,3B efﬂ(nx q),y(B) =0 such that
sup “h(x) - h(x, )“M(M)KM(N) e Vi=123.om

xeE\B

(iii) There exists C > O such that ‘ :
Ly, A =L, D)< Cly -y 9.y € M(pxr)x M(sx5),YA€®x M*(sxs)
Then K is a relatively compact subset of L” and in the class K there exists a Bayesian
estimator.
Now, let L”(]) be the class of all essentially bounded estimators of the compuond parameter

A=(0,0%),0€®,0% € R* =[0,), where I is compact subset of R and ® is a compact subset
of R.

Theorem 3.4: Let K be a class of the compound parameter A =(@,0”) satisfying the conditions
of the theorem 3.3. Suppose that there exists C' > 0 such that

|f2(x)| < C'(mod 1), VA € ©x M*(sx5)
Then K c L°(I,R®) and the Bayesian estimator heK can be arbitrarily closely
approximated by a polinomial function.

4. Concluding remarks:

In this section we will summarize the results on the Bayesian estimators in multidimensional
nonlinear regression models with compact parameter space.

In[1] we considered the existence of Bayesian estimators for the locantion parameter in the
Banach spaces B(R",R”) and L”(u,R",R") _

In [2] we considered the existence of Bayesian estimators for the location parameter and variance
parameter in the Banach spaces B(M(nxq),M(pxr)) and L°(u,M(nxq),M(pxr))

In [3] we investigated Bayesian estimators for the locantion parameter , variance parameter and
compound parameter in the Banach spaces
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L'(u, M(nx q),M(p=7r)), L' (u, M(nx q), M(s % 5)), L' (4, M(nx @), M(pxr) x M(sx 5))

In this paper we investigated the approximation of Bayesian estimators for the location parameter,
variance parameter and compound parameter in the Banach spaces B(I . R“’) and L7 (I,R“).
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VE XAP Xi UGC LUGNG BAYES TRONG CAC KHONG GIAN HAM

Ung Ngoc Quang
Khoa Todn — Tin, Trutng Pai hgc Khoa hoc Ty nhién, PHQG — HCM

TOM TAT: Bai bdo dua ra cdc xdp xi cho wdc lugng Bayes ciia tham dn dinh vi, tham dn
phutong sai va tham dn hén hop trong mé hinh hdi qui phi tuyén nhiéu chiéu voi khéng gian tham
compdc bdng ki thudt gidi tich ham.

Tit khod: Udc lugng Bayes, ham mao hiém Bayes, tham dn dinh vi, tham dn phuong sai, tham
dn hén hgp.
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