TAP CHi PHAT TRIEN KHBCN, TAP 7, S0 3/2004

TABU SEARCH APPROACH FOR TYPE 1 PROBLEM OF ASSEMBLY
LINE BALANCING

Duong Vo Hung
University of Technology — VNU-HCM
(Received 17 June 2003)

ABSTRACT: In this research, a new approach for solving type 1 problem of
assembly line balancing was proposed. This method employed Tabu search algorithm
with first improvement approach. The solutions thus obtained have been compared with
the results of some of the existing models and methods. The result of this research
provided not only optimal number of workstations (n) but also associated range of cycle
time (C).

1. Introduction

From beginning of 1950s, research on the problem of assembly line balancing (ALB)
was initiated. ALB problems can be classified under two types [9]: Type 1: required cycle
time is specified it is required to design a production line of minimum line length or
minimum number of workstations. Type 2: A line length is specified it is required to design a
production line with minimum cycle time or minimise maximum total processing time of all
tasks assigned to any workstation (minimax) or maximum output. Till date, there are many
techniques for solving ALB problems. Bowman [1] has developed two different linear
programming models, and required integer solutions. Patterson and Albracht [10] have
presented zero-one programming. Held, et al, [7] proposed the use of dynamic
programming, the exact solutions of small ALB problems are presented. Suresh, et al., [12]
have proposed the use of genetic algorithm-1 (GA1) and genetic algorithm-2 (GA2) for sub-
optimal or near optimal solutions. Yasunori, et al., [16] have developed Hopfield neural
network, a new method, for solving large line balancing problems. Suresh and Sahu [11]
have applied Simulated Annealing (SA) technique to solve ALB problems. Helgeson and
Birnie [6] have developed the ranked positional weights method for solving ALB problems.
Kilbridge and Wester [6] have proposed a three-step procedure method to solve ALB
problems. Moodie and Young [6] have proposed the largest candidate rules for line
balancing, with small size problems, the largest candidate rules offers a quick solution
compare to ranked positional weights method.

The advantages of computer, now, aided to solve large ALB problems. Arcus [6] has
employed COMSOAL, this method needs large number of iterations so it is suited to
computer programming. CALB [6] was developed, it can be used for both single-model and
mixed-model lines. ALPACA [6] was first implemented in 1967, ALPACA was designed to
cope with the complications on the assembly lines.

Tabu search (TS) is a heuristic applied for finding a near optimal solution of
combinatorial optimization problems. Up to now, TS has been successfully applied to many
different fields in industry [5]. TS prevents being trapped local optima by using flexible
memory. Now, TS is employed for solving type 1 of ALB problems.

Trang 99

Science & Technology Development, Vol. 7, No. 3-2004

2. Type 1 problem
Objective function: is minimum number of workstations or minimum length of
production line. This can be stated as:
Min.Z=n
Where: n: number of workstations.

To minimise number of workstations we must assign as many tasks as possible to a
workstation to reduce its idle time [3]. Therefore, the objective function can be written as:

n k; .
Max. Z = Z(Z t,.j]

i=l \ j=1

Where:k;: is the number of tasks in workstation i.

Maximising the objective function helps to reduce the number of workstations.
3. Background and Implementation

Tabu is a metaheuristic applied for finding a near optimal solution of combinatorial
optimization problems. Basically, it consists of several elements called the move,
neighbourhood, initial solution, search strategy, memory, aspiration function, and stopping
rules.

Move and neighbourhood: move is defined as beginning of fundamental notion. The move is
the function which transforms a current solution into another solution. A movable subset of
solution is called as neighbourhood.

Initial sokution: the Tabu search procedure starts from an initial solution. We must find an
initial solution from which the algorithm could start.

Search strategy: at each step, the neighbourhood of a given solution is searched. We follow
some principles or rules to find a better solution, to prevent cycling and to stop.

Memory: we have at least two classes of the memory: a short-term memory for the very
recent histofy_ and a long-term memory for distant history. We have employed a class of
short-term memory as the Tabu list which is the basic rule. This list prevents turning back to
the solution visited in the previous steps.

Aspiration function: is defined as evaluating the profit in taking a forbidden move. If this
profit is acceptable then the Tabu status of the move is dropped and the move can.be
performed.

Stopping rules: is designed as an instance:
a. find a solution which is close enough to the given lower bound of the goal function.
b. perform maximum of iteration moves with a view to improving the best solution
obtained so far.
c. or time limits on the number of iterations.

Trang 100

TAP CHi PHAT TRIEN KuGCN, TAP 7, 30 3/2004

The Tabu search algorithm is shown in figure 1.

: Initial Solution]

{

*™Search strategy, memory, and move

!

Neighbourhood

!

Next solution

f

Aspiration function

-Better ?

Satisfy stopping rules ?

Figure 1. Tabu Search Algorithm Chart

4. Avoiding a local optima

In the case of non-improvement, choose the least non-improvement and accept the
move. Therefore, the objective value obtained is worst than the current solution. This can be
a serious problem if the search algorithm achieves the best solution too soon. It means that
the best solution is obtained before the maximum number of iterations are completed. After
this, the solutions worst than the best will be searched, until the iteration number equals the
maximum number of iterations and the algorithm stops. Thus, it may not be possible to
conclude whether the current solution is the optimal.

To avoid this, a memory to store the best solutions that has been obtained is
employed. In this case the best objective variable is used to obtain the best objective value
and then use the best solution to obtain the solution. When the algonthm stops, the solution
stored in the best memory is the best one.

5. Satisfaction of constraints

(i) Cycle time constraint: this constraint is checked whenever a move is performed. We only
check the workstation which receives the task moved. For example, if workstation w
receives one more task, which has processing time ty, from another workstation check if:

kw
Dty 5.0
j=1

Trang 101

Science & Technology Development, Vol. 7, No. 3-2004

If this constraint is satisfied we proceed to check for the next constraint; otherwise, reject the
move.
(i) Only one task is assigned to one and only one workstation: this constraint is always
satisfied because of this algorithm and the initial solution we mentioned above.
(iii) Precedence relationship: The precedence relationship between any pair of tasks i and j
can be defined as task i must be finished before task j can start. Task i has priority over task j
if either:

1) Task i is immediately before task j, i.e. Mjj=1, or

2) There exists a task k, i is before k, and k is immediately before task j.
The precedence relationship can be répresented by a matrix MT = {MTj;}, where:

2 { 1, if task i must be finished before task j

A 0, otherwise.

According to two priorities above, we know that when M;; equals to 1, we only care My, for k

= 1 to m. If Mj equals to 1 then we put My = 1. The algorithm to compute the matrix MT as
follows:

Step 1: for i from 1 to m, do step 2 through step 7.

Step 2: for j from 1 to m, do step 3 through step 7.

Step 3: if Mj; = 1, then do step 4; otherwise, go to step 2.

Step 4: for k from 1 to m, do step 5.

Step 5: if My = 1, then do step 6; otherwise, go to step 4.

Step 6: if k 2 j then let Mj, = 1, go to step 4 else if M = 1 then go to step 4 else

let Mj, = 1, go to step 1.

Step 7: copy matrix M to matrix MT.
This algorithm is very simple but the required computation time may be longer. Therefore, in
some existing models Warshall’s algorithm is employed for computing matrix MT.
This matrix is used for feasibility check, it means that the precedence relationship constraints
will be replaced by feasibility check constraints in the main program.
6. Algorithm for solving type 1 problem
Now, TS algorithm for solving ALB problems was developed by Wen-Chyuan Chiang [3], it
means direct method. However, in this research, the type 1 problems can be solved via the
type 2 problems, it means indirect method.
Lemma 1: in line balancing problems, if number of workstations n are increased from lower
bound to upper bound, then that the first value of n that yields a feasible solution is optimum
value of n. ;
Proof: we know that the first problem minimizes number of workstations n, so when n is
increased, it releases the constraints of problem until the first value of n makes the problem
feasible. If n is reduced only one unit, it makes the problem infeasible. If n is increased until
N, the problem is still feasible, but that value N is larger than n. Hence, the value of n is
optimum value. '
In line balancing problems, upper bound of n equals to number of tasks and lower bound of n
is the smallest integer which is greater than total processing time divide cycle time.

Using lemma 1, we can solve the fir§t problem step by step from lower bound to
upper bound until we get the first value of n. When n is assigned a certain value, the problem
will be solved by TS algorithm for type 2 problem. It means that we find the minimal value

Trang 102

TAP CHi PHAT TRIEN Kn&CN, TAP 7, 80 3/2004

of cycle time C1, then we compare C1 to C. If C1 is less than or equal to C the algorithm
stops and that value of n is optimal, otherwise the value of n increases by one unit and solve
problem again until the cycle time constraint is satisfied. The feasibility check constraints are
satisfied when type 2 problem is solved. (This algorithm is presented in figure 2).

(Input data)

Initial solution

:

Assigned lower bound to n

&

Solve type 2 problem
by minimum cycle time C1

I

Optimal value of C1

yes

|

C Best solution)

Figure 2: Algorithm Procedure Chart

This method may takes a little bit longer time because it has many steps if the optimal
value is far from lower bound, but in the real problem the optimal value is often near lower
bound. TS, however, is a very fast method for solving ALB problems. Moreover, the idea
behind this method is that the solutions give us many informations about value of n, specially
in range of cycle time C. Therefore, we easily make decision about production lines and
scale of production. :

As mentioned above, TS is an improvement algorithm, and hence large the number of
iterations chances of obtaining better results will increase. However, large number of
iteration may take long computer running time. In this study, maximum number of iterations
ranges between 100 to 1000 depending upon the size of problem. Larger the problem size,
the larger would be the number maximum iterations. Associated with number of iterations is
Tabu size which ranges between 7 to 40 depending upon the number of iterations used.

Trang 103

s

Science & Technology Developmeat, Vol. 7, No. 32004

7. Validation test and results:

In this method, we only consider first improvement approach because best
improvement takes longer time and its solutions is not good enough. The result from this
study is summarized in table 1.

Table 1: Algorithm’s results

Problems Cycle time | Cycle time | Lower Optimal Results of
(C min) (C1 min) bound algorithm (n)

Bowman (8 tasks) 20 17 4 5 5
Hopfield (8 tasks) 36 36 4 4 4
Hoffman (9 tasks) 14 13 3 3 3
¥ 7 7 8 8

9 9 6 6)

Jackson (11 tasks) 10 10 5 5 5
13 12 4 4 4

14 12 4 4 4

21 16 3 3 3

48 48 4 4 4

Dar-el (11 tasks) 62 62 3 3 3
94 93 2 2 2

Kilbridge — Wester (12 tasks) 100 90 4 5 5
27 27 5 6 5

28 27 5 5 5

29 27 5 5 5

Kenneth — Ramsing (16 30 27 - 5 9
tasks) 35 27 5 5 5
32 27 5 5 5

33 27 5 5 -

.34 34 4 4 4

14 14 8 8 8

15 14 7 8 8

Mitchell (21 tasks) 21 21 5 5 5
26 21 5 5 5

35 35 3 3 3

39 35 3 3 3

Wooden car toy (22 tasks) 11 11 5 5 >
Author’s case study 41 tasks 552 465 5 N/A 8
57 56 10 10 10

79 79 7 7 7

Kilbridge — Wester (45 tasks) 92 92 6 6 <
110 110 5 6 6

138 138 4 4 4

184 184 3 3 3

176 N/A N/A N/A N/A

' «364 338 11 11 11
Tonge (70 tasks) 410 371 9 9 10
468 463 8 8 8

527 527 7 7 7

Trang 104

TAP CHi PHAT TRIEN KH&CN, TAP 7, S0 3/2004

Remarks
Cycle time C1: cycle time associated with optimal solution
Lower bound: the smallest integer is greater than or equal value of total processing time
divides cycle time _
8. Evaluation and discussion

In the type 1 problems of ALB, 39 examples were solved to evaluate the validation of
algorithm. The performance of this algorithm is presented in table 2

Table 2: Performance of algorithm

Number of cases | Number of optimal solutions obtained Percentage of optimality

39 38 97.44 %

This algorithm has yielded high percentage of optimality (97,44%). It obtained only
one non-optimal solution in Tong’s problem with cycle time 410. However, its solutions
include two parts that are optimal number of workstations (n) and the associated cycle time
(C1). We know about range of cycle time, any cycle time belongs to that range has the same
optimal solution n. For example, in the first case (Bowman with 8 tasks), with cycle time
form 17 to 20 minutes, we have the same optimal solution n which equals 5 workstations.
This is a contribution of this research.

9. Conclusions and recom:endations :

In this research, one new approach, which applied TS for solving type 1 via type 2
problem of ALB, was developed. This algorithm employed first improvement approach for
solving problem. The solution methodology is general enough and can be applied for real life
industrial problems because of high percentage of optimality. Moreover, the information
from result provides optimal number of workstation (n) and associated with range of cycle
time (C1) which help mangers making decision about production lines and changing scale of
production because of fluctuation demand.

Further study in this direction is recommended: develop Tabu search based
methodology for mixed models, parallel lines or U-shape lines, etc. To consider some
parameters that can effect the line balancing such as the variable processing times of tasks,
stochastic models etc.

Trang 105

Science & Technology Development, Vol. 7, No. 3-2004

10. Some illustration charts

C Inpuldata)

Initial solution
CurObj = BestObj

!

Compute precedence relationship matrix MT
(call sub-routine 1, figure 4)

:

e = Perform move
£56] (call sub-routine 2, figure 5)

—=—_____ Non-improvement?

no
no K:i=K+1 l
CurObj = BestObj CurObj = StoODbj
Cur solution = best solution Cur solution = Sto solution

Stopping rule K=maxiter?

yes

Figure 3: Tabu search algorithm procedure for the first improvement

(‘Input immediately precedence relationship matrix BD

| Copy matrix M to matrix MT |

¥
| 59 |
v

1 1‘____

yes

i<m
no
. *
C Stop)

Figure 4: Sub-routine 1 Warshall procedure

Trang 106

TAP CHi PHAT TRIEN KH&CN, TAP 7, 801 3/2004

b

C Perform move

<= C -no ; =

Feasibility check
by matrix MT

no

yes
¥

Obtain new solution

NewODbj < BestObj CurObj-NewODbj < Term

no

-

Tem :=CurObj-NewObj
Sto solution:=Cur solution

yes

compute NewODbj no

all neighbourhood ?

yes
C Acceptthe move } '

Figure §: sub-routine 2 performing move for the first im pov;ment

Trang 107

Science & Technology Development, Vol. 7, No. 3-2004

& @

_.E.
]
§
R

: Job number

: Proces

sing time

relationship diagram

study - Precedence

6: Author’s case

Figure

Trang 108

TAP Cii PHAT TRIEN KH&CN, TAP 7, 5 8/2004

UNG DUNG GIAI THUAT TABU ;
CHO BAI TOAN CAN BANG DAY CHUYEN SAN XUAT DANG 1

Dudng Vo Hiung
Khoa Quén ly Cong nghiép, Trudng Pai hoc Bach khoa — PHQG-HCM

TOM TAT: Trong nghién citu nay, mgt hudng gidi mdi cho bai todn cén bdng day
chuyén sin xudt dang 1 da dugc phdt trién. Gidi thudt nay iing dung thudt todn TABU véi
cdch chon 1oi gidi t6t hon ddu tién lam 1oi gidi tiép theo. Gidi thudt dugc kiém chitng va so
sdnh vdi nhitng 10i gidi cia nhitng phuong phdp khdc da dugc céng bd trén cdc tap chi khoa
hoc. Két qud ciia gidi thudt khéng nhitng chi cung cdp théng tin vé s& tram lam viéc t6% wu (n)
ma con khodng thoi gian chu ky (C) tuong iing.

REFERENCES

[1] Bowman, E. H., Assembly Jine balancing by Linear Programming. Operation Research, Vol. 8,
No. 3, 385-389 (1960).

{2] Buffa, E. S. and Sarin R. K., Modern Production / Operation Management, Eighth Edition, John
Willey & Sons, Inc (1987).

[3] Chiang, W. C., The Application of a Tabu Search Metaheuristic to The Assembly Line Balancing
Problem. Annals of Operation Research, Vol. 77, 209-227 (1998).

[4] Dar-el, E. M., Solving Large Single Model Assembly Line Balancing Problems - A Comparative
Study. AIIE Transactions, Vol. 7, No. 3, 302-310 (1975).

[5] Glover, F., Tabu Search: A Tutorial. Interfaces, Vol 20, No. 4, 74 — 94 (1990).

[6] Groover, M. P., Automation, Production System and Computer Integrated Manufacturing. Prentice
Hall, Inc. (1992).

[7] Held, M., Karp, R. M., and Shareshian, R., Assembly line balancing - Dynamic Programming
with precedence constraints. Operation Research, Vol. 11, No. 3, 442-459 (1963).

[8] LINGO, User’s guide. LINDO Systems Inc. (1995).

[9] Mastor, A. A., An Experimental Investigation and Comparative Evaluation of Production Line
Balancing Techniques. Management Science, Vol. 16, No. 11, 728-746 (1970).

[10] Patterson, J. H., and Albracht, J. J., Assembly line balancing: Zero-One Programming with
Fibonacci Search. Operation Research, Vol. 23, No. 1, 166-172 (1975).

[11] Suresh, G. and Sahu, S., Stochastic assembly line balancing using Simulated Annealing.
International Journal of Operation Research, Vol. 32, No. 8, 1801-1810 (1994).

[12] Suresh, G., Vinod V. V., and Sahu, S., A Genetic Algorithm for assembly line balancing.
Production Planning and Control, Vol. 7, No. 1, 38-46 (1996).

[13] Tonge, F. M., A Heuristic Programming for Assembly Line Balancing, The Rand Corporation
- Santa Monica - California (1960). E

[14] Warshall, S., A Theorem of a Boolean Matrix. Journal of ACM, Vol. 9, 11-12 (1962).

[15] Wild, R., Mass-Production Management/The Design and Operation of Production Flow lines
Systems. John leey & Son (1990).

[16] Yasunori, H., Ikuko, N., Tohru, W. and Hidekatu, T., Line Balancing Problems Using a
Hopfield Network. Japan - USA Symposium on Flexibility Automation - A Pacific Rim Conference -
Kobe Japan, 1369 - 1375 (1994).

Trang 109

