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ABSTRACT: We have developed a system for supporting the query in a database of DNA
sequences. We would like to develop a system for grouping similar DNA sequences into clusters
based on frequent motifs or motif phrases. Each cluster is represented by a cluster feature
vector of maximal frequent motifs or motif phrases). A motif tree of cluster features is built.
The similarity search will be divided into two steps. Firstly, the system will search the clusters
which have the high matching with the query pattern. Secondly, the rraditional matching
techniques (FASTA or BLAST) will be used for matching between pattern and a small number
of DNA sequences of selected cluster.
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1.Introduction

Now, there are many web-sitts such as NCBI(http://www.ncbi.nim.nih.gov/),
EMLG(http://www.rwth-aachen.de/emlg/, SWISS-PROT (http://www.expasy.ch)... containing a
large volume of DNA or protein sequences. Therefore, the probiem of developing a system
supporting the query in a large DNA or protein database is really an important problem.
Pearson and Lipman in 1988 proposed a dynamic programming based on EASTA method [3]
for searching the local high scoring alignment starting from exact short word matches. Altschul
et al. in 1990 proposed a BLAST method [3] for searching high scoring local alignment between
a query pattern and a target database. With a large database of DNA sequences containing more
than 100,000 sequences and each sequence may have more than 10,000 bases, the time
consuming is significant. We would like to use the clustering algorithm as pre-processing step
for pattern matching. [5]. In this paper, we focus on developing a motif based algorithms for
building a system supporting the query in a large DNA database of DNA sequences. The key
idea of our method is to group similar DNA sequences into cluster based on the maximal
frequent motifs or motif phrases. A motif tree of order 4 is built. Firstly, the system will search
the pattern in motif tree for locating the clusters. Secondly, the traditional matching methods
(FASTA or BLAST) will work with the small number of DNA sequences of selected clusters
instead of the whole DNA database. The rest of paper is organised as follows 2) Discovering
motifs in DNA sequences 3) A motif reduction 4) Motif graph and motif based clustering
method 5) Motif based searching method 6) Building a motif tree for improving the speed of
searching 7) A solution supporting the similarity search 8) A discussion of time complexity 9)
Experiment results10) Conclusion and future works.

2. Discovering motifs in DNA sequences

2.1. Frequent motifs, maximal frequent motifs, motif phrases ;
Let #= {“A”, “C”, “T”, “G”} be the set of bases forming the DNA sequences, each base is a
nucieotide. Each DNA sequence is considered as a text string s1,5z, ...sp where sy € 4, k=1,..,n.
We denote by |s| the iength of sequence s.

Definition 1: Frequent motifs

Let S be a set of m DNA sequences, P(s;) be the set of all sub sequences of s; , PU be the union
of ail P(s;) for i=1,...,m, N(s;) be the number of DNA sequences containing s.
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Given s; € PU and a threshold t€[0,1], s; is called a frequent motif if N(s)/m >=1.

We denote FR(S,1) = {s; ePU | N(s)/m >=t}. It is easy to see that if s,€FR(S,t) and s;€P(s,)
then s, € FR(S, 1). :
Definition 2: Maximal frequent motifs

Let a € FR(S,1), a is called a maximal frequent motif, if there is nob € FR(S,t),a# b, such
that a € P(b). We denote MF(S,) as the set of maximal frequent motifs of S with threshold 1.
During discovering the frequent motifs FR(S, t) we also save their positions in DNA sequences.
We use this positional information of motif to improve the quality of pattern matchmg

- We define function pos(a,i,j) to be the position of the j i occurrence of motif a in sequence i.,

otherwise pos(a,i.j) =0 if there is no _| occurrence of motif a in sequence i.
Definition 3: Motif phrases

A motif phrase is a couple of maximal frequent motifs denoted as <a, b> satisfying:

i) Ini o sequence, there are two positions u,v such that pos(b, i,u) > pos(a,i,v)
ii) There is no frequent motif ¢ and a position w such that
pos(a,i,v) +]a] <= pos(c,i,w) < pos(b, i,u)
Example 1: Given S = {s;s3,53} containing three DNA sequences as follows:
sl ="ACACCCCAC"
s2= "AAAGCCCGCACGGG"
s3= "ACATCCCTAAATGGG"
With 1= 0.66, we discover 13 frequent motifs:
FR(S, 0.66) = {“A”; “C”; “G”; “AA”; “AC”; “CA”; “CC”; “GG”; “AAA” ; “ACA”; “CACY;
“CCC”; “GGG”} and 5 maximal motifs:
ME(S,0.66) = { “AAA” ; “ACA”; “CAC”; “CCC”; “GGG™}
We build a matrix where rows and columns are elements of MF(S,t), and use criteria (i) and (ii)
for finding motif phrases.. With 1= 0.66, we discover motif phrases “ACA*CCC”, “CCC*CAC”
where * stands for an arbitrary sub-sequence of PU and * does not contain a frequent or
maximal motif. We denote by MFM(S,1) the set of maximal frequent motifs and motif phrases
discovered from S. In the above example, MFM(S,1) will be:
MFM(S, 7)={ “AAA™; “ACA”; “CAC”; “CEC”; “GGG" ; “ACA*CCC” , “CCC*CAC™}

2.2. Problem statement and our proposed algorithm

Given a set of DNA sequences and a threshold t e [0,1], find all frequent motifs and maximal
frequent motifs with threshold 1. We develop an algorithm [5] for finding frequent motifs and
maximal frequent motifs in a set of DNA sequences. Let L(S,k,7) be a set of all frequent motifs

with the threshold t and k is the length ( number of bases) of these motifs. The proposed
algorithm is as follows:

Answer =
Generate L(S,1, 1) from {*A”, “C”, “T”, “G"}
For (k=2; L(5,1,71) < {} ; k++) do
begin
Generate L(S,k,1) from L(S,k-1,7)
Answer = Uy L(S,k, 1)
end
Return Answer

a) Generate L(8,1,7): The one letter motifs are possible “A”, “C”, “T”, “G”, we check
each of them, if it satisfies the definition of motif, save it into 1(S,1, 1).

b) Generate L(S,k, t) from L(S,k-1, 1) and L(S,1,7): It is obvious that s,eF(S, 1)
and s, € P(sy) = s € F(S, 1), we employ this proposition to generate L(S,k,t) from
L(S,k-1, 1) and L (S,1,7).

The proposed algorithm is summarized as follows:
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Create a matrix which row and column are L (§,1,7).
LS k1=
For(each s, € L(8,k-1, 1)) do
For (each sx € L(S,1,1) ) do  begin
s, = sy + sx // string concatenation
If (N(s)/m >= 1) and|st| == k) then
SaveFreqMotif (si, L(S.k,7))
end;
Answer = L(5,k,7)
~ Return Answer
where SaveFreqMotif(s,,L(S,k,1)) is the function for saving the frequent motif s into L(S,k,).

From FR(S,t) , we use the definition of maximal frequent motifs for building MF(S,t) and the
definition motif phrase for building MFM(S,1).

3. A motif reduction

Given m,, i, of MFM(S, 1), we build the association rules mg—mp and my—> ma. The
confidence of these rules are calculated by [2,6]:

CF(m,, 5mp)= [Ma N My | 7 M |
CF(mp — my)=|mpNmy|/|my|
Where x| is the number of DNA sequences containing motif x. Let p(m,) be the set of all DNA

sequences containing m, and p(my) be the set of all DNA sequences contain my. It is easy to see
that:

o CF(my—> mp) = 1 if p(ma) < p(my)
o CF(mp—> my) = 1 if p(me) € p(ma)
o ~ CF(my—mp) = 1 and CF(my—m,) = 1 iif p(ma) = p(my)

We reduce MFM(S, T) by testing each couple of elements m,, my of MEM(S, 7) as follows:
If CF(my—my) = 1, CF(my—>m,) = 1 and m, is a sub sequence of my, we delete m,
If CF(ma—>my) = 1, CF(my—m,) = {and my is a sub sequence of m, then we delete my.
With MFM(S, 1) in example 1, we can reduce <C> because: '

CF(*C”—"CCC?) =1 and CF(*CCC” »C”) =1
We also reduce “ACA” because:

CF(“ACA,CCC” »"ACA” ) = 1 and CF("ACA” —> “ACA,CCC™) =1
We denote by MFMR(S, 1) the reduction of MEM(S,1).

4. Motif graph and motif based clustering method

Given a set S of DNA sequences and a threshold 1, we discover MFMR(S,t). A a motif graph
G(V,E) is created [4,7,10] where V=MFMR(S,1) is the set of nodes representing a maximal
frequent motif or motif phrase. Two nodes m,, my are connected if CF(m;—mp) >= o and
CF(my—>m,)>= o and o is a given threshold in [0,1]. The value o will determine the possibility
of concurrent occurrence of motif m,, m; in a same DNA sequence. A motif cluster is defined as
being a connected component in the motif cluster graph. Suppose that we have:

MEMR(S,t) = { “CCC”; “CCC*CAC”, “GGG™; POACH EACASCOCT: “AAAR" Y

The motif graph is shown in figure 1.
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Motif “CCC”
Sequence sl,s2,s3

a
Motif “CCC*CAC” Motif “GGG”
Sequence s1,s2 : Sequence s2,s3
b ' c
€
Motif "ACA*CCC”
; Sequence s1,s3
d : f
Motif “CAC” ' Motif “AAA”
Sequence s1,s2 Sequence s2,s3
a=0.7 '

Figure 1: A motif graph

The value o reflects the degree of concurrent occurrence of maximal frequent motifs or motif
phrases in DNA sequences. In the above graph, we choose a = 0.7. From the motif graph, we
discover the connected components, each connected component is a cluster (group of similar
DNA sequences). Each cluster is represented by a set of maximal frequent motifs or motif

phrases and this set is called cluster feature. With threshold o = 0.7, we discover 4 connected
components(4 clusters) as shown in table 1:

Table 1: The motif clusters

Cluster number Cluster feature Sequences
1 a s1,s2,s3
2 e sl,s3
3 b, d sl,s2
4 c, f 52,53

5. Motif based searching method

- Case a: Find a query pattern p in S, we will choose clusters where p is an element of their
cluster features.

Example 2: If query pattern p is "CCC?, clusterl is selected because its cluster feature is also
“CCC” and the sequences of this cluster are s1,s2,s3.

- Case b: Find a query pattern P and there are no cluster features containing P. we will select
clusters where their cluster features containing as much as sub sequences of P. _
Example 3: If query pattern p is “CCCG?”, cluster] is selected because its cluster feature is
“CCC” which is highest matching with “CCCG”. The sequences of this cluster are si,s2,s3.

- Case c: Find a set of query patterns called P, we will select clusters where P containing
subset of their cluster feature.

Example 4: 1f query pattern P is {“ACA*CCC”} , cluster2 is selected because its cluster
feature is also “ACA*CCC?” and the sequences of this cluster are sl,s2,s3.

6. Building a motif tree for improving the speed of searc'hing
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For improving the speed of searching, we also build a motif tree. If set of cluster features is
{“AAA”, “AAG”, “ACA”,”ACC”",”ATA”} we build up a cluster feature tree of order 4. A
typical motif tree structure is shown in figure 2.

A

cC G T A € @ T A C G T A C G T
Figure 2: A motif tree order 4

In the first step of processing the query, the system will search the pattern in the motif tree for
locating the clusters which have highest matching with the pattern.

7. A solution supporting similarity search

As mentioned above, FASTA or BLAST techniques are used for searching the local high
scoring alignment between query pattern and sequence of DNA database. When we receive a
query pattern, we will use motif tree for selecting the clusters and finally we use FASTA or
BLAST for matching between pattern and each sequence of selected cluster with a small
number of DNA sequences instead of the whole DNA database.

8. A Discussion of Time Complexity

When we receive a query pattern, the searching is proceeded in the tree structure of order 4. The
time complexity for searching is O(logs(n)) where n is the cardinality of MFMR(S,1). If we use
the FASTA or BLASTA method which based on the dynamic programming, the time
complexity will be O(mvk) where m is the number of DNA sequences, v is the length of query

pattern and k is the length of DNA sequence. Therefore, our proposed method can improve the
searching time. '

9. Experimental Results
We test our proposed method on a set of DNA promoter sequence of UCI. repository.

9.1. Discovering frequent motifs, maximal frequent motifs, motif phrases
With threshold t = 0.02, we discovered 340 frequent motifs and 256 maximal frequent motifs.
Some of frequent motifs are listed are as follows:
A,C,T,G,AAACAT,AG,CA,CC,CT. ,CG,TA,TC,TT,TG,GA,GC,GT,GG,AAA,AAC,AAT,
AAG,ACA, ACC, ACT,ACG,ATA,ATC,ATT,ATG,AGA ,AGC,AGT,AGG,CAA,CAC,CAT,
CAG, CCA, CCC, CCT.CCG,CTA,CTC,CTT,CTG,CGA,CGC,CGT,CGG,TAA,TAC,TAT,
Some maximal frequent motifs are listed as follows:
ACTT,ACTG,ACGA,ACGC,ACGT,ACGG,ATAA,ATAC,ATAT,ATAG,ATCA,ATCC
ATCT,ATCG,ATTA ATTCATTT,ATTG.ATGA,ATGC,ATGT,ATGG,AGAA,AGAC,
AGAT,AGAG,AGCA,AGCC,AGCT,AGCG,AGTA,AGTC,AGTT,AGTG,AGGA,AGGC,
Some of the motif phrases are as follows:

AAAA*AAAT: AAAA*ACTA; AAAA*ACTT; AAAA*CACT; AAAA*CTTT

9.2. Motif reduction
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We discover association rules with CF (a—b) >= 1.0 and CF (b—a)>= 1.0, aeP(b) or beP(a).

Some rules are as follows: “A”—=7AT”, “A”— “CA”, “C— “CA”, “T”—>"AT". Therefore,
we can delete “A” ,°C”, "T” from FR(S,0.02).

9.3. Motif graph and motif clusters
We build a motif graph with o =0.61, a portion of graph matrix is shown in table 2:

Table 2: A portion of motif graph with .= 0.61

# Nodel Node2 CF(Nodel->Node2) CF(Node2->Nodel)

13 AAAG GAAA 0.87 0.68
14 AACA ACAT 0.65 0.79
15 AACG CGCT 0.64 0.62
16 | ACCG CGGA 0.69 0.73
17 ATTT TTTT ' 0.75 0.66

We discover the connected components in this graph. Some cluster features are listed as
follows:

a. Cluster feature 1 : AAAC; CAAA

b. Cluster feature 2;: AAAT; TAAA; TCTT; TTTC; TTTT; TTTG; GTTT

c. Cluster feature 3: AAAG; GAAA; GGTT

d. Cluster feature 4:AATG; ATGC; GCGC; CCTC; CTTG; TTGC; TTGT; TAAT,;

f. Cluster feature 6:ACTG; ATGA; TATG; CTGT; TTAT; TGTG; GTGA

9.4, Similarily query in motif tree :
When we want to search DNA sequences containing patterns AAAC we will focus on cluster |

because this pattern is the subset of its cluster feature. DNA sequences of cluster 1 are shown in
table 3.

Table 3: DNA sequences of Cluster 1

Seq# DNA Sequence Promoter
4 AATTGTGATGTGTATCGAAGTGTGTTGCGGAGTAGATGTTAGAATACTAACAAACTC
8§ TITTCTACAAAACACTTGATACTGTATGAGCATACAGTATAATTGCTTCAACAGAACA
18 AAACAATTTCAGAATAGACAAAAACTCTGAGTGTAATAATGTAGCCTCGTGTCTTGC
21 GACACCATCGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAG
26 TIGTCATAATCGACTTGTAAACCAAATTGAAAAGATTTAGGTITACAAGTCTACACC
33 ATOCGUAACGCGGGGTGACAAGGGCGCGCAAACCCTCTATACTGCGCGCCGAAGCTG
4 GCCTTCTCCAAAACGTGTTITITGTITGTTAATTCGGTGTAGACTTGTAAACCTAAAT
49 GGCCAAAAAATATCTTGTACTATITACAAAACCTATGGTAACTCTTTAGGCATTCCT
51 CCATCAAAAAAATATTCTCAACATAAAAAACTTTGTGTAATACTTGTAACGCTACAT

10. Conclusion and future works

We have developed a system supporting the query in a large DNA sequence database. Firstly,
we develop algorithm for discovering the frequent motifs, maximal frequent motifs, motif
phrases. Secondly, we reduce set of frequent motifs, maximal frequent motifs, motif phrases.
Then we group similar DNA sequences based on maximal frequent motif and motif phrases. A
motif tree order 4 is created for improving the speed of searching. We also present the
experimental results on a DNA promoter sequence data set of UCI and analyse the time
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complexity of our proposed algorithm. We also use the same method for Protein Database in
which the alphabet 1 has 20 amino acids instead of 4 nucleotides of DNA sequences. We
continue to develop incremental algorithms for discovering frequent motifs, maximal frequent
motifs and motif- based clusters in upgraded DNA or protein database. '

PHAT TRIEN THUAT TOAN GOM NHOM DUA TREN BOAN LAP HO
TRQ TRUY VAN THONG TIN TRONG CSDL CHUA CAC TRINH TU
SINH HQC ADN

Hoang Kiém, Pd Phic
Pai hoc Khoa hoc Ty nhién, TP. H6 Chi Minh

TOM TA_T_ Chiing 16i phdt trién thudt todn hé trg truy vdn théng tin trong CSDL chita cdc
trinh tu DNA. Chiing t6i gom nhém cdc trinh ty DNA tuong tu nhau thanh cdc cluster dya trén
cdc doan ldp hay nhém cdc doan ldp. Mdi cluster dugc biéu dién bdng vector ddc trung cho
cluster c6 thanh phdn la cdc doan ldp phd bién 16i dai hay nhém cdc doan ldp phé bién 161 dai.
Chiing t6i tao cdy chita cdc doan ldp. Tién trinh tim kiém tuong ty gbm hai budc. Pdu tién, hé
théng sé tim cluster so khdp 16t nhdt vdi mdu truy vdn. Sau dd, cdc ky thudt so khop truyén
théng nhu FASTA hay BLAST sé dugc ding dé so khdp cdc trinh tu cila cluster dugc chon.
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