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SUMMARY:
In this paper the Bayesian estimators in multidimensional regression models is
presented by using the functional analysis method.

It is wellknow, that linear and nonlinear regression models are used in a cosiderable
part of the application of mathematical statistics Nevertheless whereas the statistical theory
of parameter estimation in linear regression models is almost comletely developed, in the
nonlinear case many problems are unsolved. Of course, a similarly complete theory can be
hardly expected. Therefore, investigations should be concentrated on somewhat specialized
moddel types, in which the least squared method occurs as the most important estimation
method (see [1] - [4]).

On the otherd hand, in [5] — [11], we are investigated Bayesian estimators in
nonlinear regression models with the compact parameter space by the functional analysis
technique.

Continuously, in this paper, we will present some results on the Bayesian estimators
in multidimensional nonlinear regression models, in which the functional space L'(w) playes
an essential role.

ayesi tim i ion pa :
First of all, we give some notation (see [9], [11]).
M(n x q), M(p x 1): Spaces of all n x q —matrices and p x r —matrices.
B(n x q), B(p x r): Borel ¢ —algebras in M(n x q) and M(p x 1)
Let us consider the following multidimensional nonlinear regression models

X=0¢(0)+¢
Where, .
X is a observed random variable, taking the values in M(n x q) and EX = ¢(0).
¢ is a random error variable, taking the values in M(n x q) and Ee = 0.
is a compact subset of M(p x r).
0 is a unknown location parameter, 8¢e
¢ is a known fuction @ : @ —> M(nxq)

It is wellknown, that for a random variable X, there exists a co.nditional regular
distribution PX1° . We denote PX® by Qp, v8 e (B . Assume that pu is a o -finite measure in
the measurable space (M(n x q), B(n X q)) and Qg «p, VO €
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Then, there exists a function fg(x) such that

dx
fox) =22

pdx)
Suppose that there exists C’> 0 such that
| fa(x) | < C’ (mody) , V6 e @)

Definition 2.1: A Borel function  h: (M(n x q), B(n x @)) &> (M(p x 1), B(p X 1)) is called
an estimator of the location parameter 0 @ .

Wedefine L'(w)=L'(w,M(n qQ), M(p ) to be the colletion of all Borel

measurable functions h on M(n x q) for which Iﬂ h(x) || p(dx) < +oo

M (nxq)

Clearly, L' (1) is a Banach space with the norm I Al = j“ h(x) || p(dx)

M (nxq)

The composed function defined by L(h(.),.): M(nxq) - R* is called a loss function
(see [9]).

Definition 2.2: A functional ¥ : L'(u) - R* is said to be a Bayesin risk function with a
priori distribution 1 if

Y= [L(h(x).0).f,(x)u(dx)r(dd)

M (nxq)

An estimator A e ! (#) is said to be a Bayesian estimator with a priori distribution t if

Y(h) = inf ¥(h)
he L' (w)

Theorem 2.1: Let K = L'(p) be a class of all estimators of the parameter 0 € @ < M(pxr)
satisfying the following conditions:

i  hM(nxq) c¢ @ (mody), Vh e K.
(ii) Ve > 0, 3 finite pﬂrtition {Ei }L C M(nxq) and points x; € E;, i= 1,2, ..., m such that
@ C”:lhxll<c” ,vhekK,Vi=1,2,.m.
(b) Eju h(x) ~ h(x,) || (ex) < %,Vh eK,Vi=12,.,m.
(iii)  There e)‘cists C > 0 such that
| L(y',6) - L(",8) I< C || y'='"I, V¥, "€ M(pxr),V 0 €@

Then K is a relatively compact subset of the space L'(i) and in the class K there exists a
Bayesian estimator.
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Proof: Let us consider the function ¢ : Ll(u) — (M(pxr))™ defined by
¢ (h) = (h(x1), h(x2), ..., h(Xm))

Arguing similarly as in the proof of the theorem 2.1 in [6], we can show that there exists
functions by, j=1,.., s such that

K c|JB(n, 4¢)

J=1

Then K is a totally bounded subset and it follows that K is a relatively compact subset of
L'(w. _

Next, we will prove that h(M(nxq)) c @ (modp), Vh € K.

Indeed, for any he K, there exists a sequence (hy) < K such that

lhn—hlli >0, as m—> o

Therefore, there exists a subsequence (hmk)c (hy ) such that

Il hmk (x) = h(x)ll = O(modp) ,as k— +oo
Arguing similarly as in the proof of the theorem 2.2 in [6], we see that
h(M(nxq)) « @) (modp), vh e K .

Finally, consider the'Bayesian risk function

W(hy= [L(A(x),0)f,(x)p(dx)e(d6)

M(nxq)
It can be shown that ¥ is a continuous function on Ll(u). It follows that there exists a
Bayesian estimator he K and the proof of the theorem is completed.
Let us consider the 1-dimentional nonlinear model. Then, we have following theorem.
Theorem 2.2: Let K be a class of all estimators of the location parameter 6 e@ satisfying
the condition of the Theorem 2.1 . Then the Bayesian estimators he K can be arbitrarily
closely approximated by a polinomial function. (See a similar argument in [7]).

n th ian estimat varian
In this section we will investigate the Bayesian estimators for the variance parameter in the
(q,r) — models. First, let R™ be the ng-dimensional Euclidian space. Let us consider the
following mapping T : M(nxq) —» R", defined by

T(A) = A =(aj, 221, -, 2n1, 212,222, - » Any - 1qsA2q, - > Ang)

Where A = (a;) € M(nxq), A is a nq-dimensional vector. '

Obviously, T is a linear isometry of M(nxq) onto R™.

The covariance matrix Cov(g) of the ng-dimensional random error vector £ is called the
variance component of the random error matrix € and denoting by Vare . For each s, let
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M?(sxs) denote the space of all non-negative definite sxs-matrices. We will assume that
Var = lp(cz), where

y : M?(sxs) — M(ngxnq)
is a known nonlinear function and o? is unknown parameter, ole M?3(sxs).
This unknown parameter is said to be the variance parameter.
Definition 3.1: A Borel function h : (M(nxq), B(nxq)) — (M(sxs), B(sxs)) is called an
estimator of the variance parameter o € M?(sxs).
We define L'(p) = L’(p, M(nxq), M(sxs)) to be the collection of all Borel functions h on
M(nxq) for which J'i[ h(x) || p(dx) <+

M (nxq)

Definition 3.2: A functional W : L'(p) — R* is said to be a Bayesian risk function with a
priori distribution v if .
| Y= [ [Lax),07).f (u(drvdo?
7 M (sx5) M (nxq)
An estimator he Ll(p,) is said to be a Bayesian estimator of the variance parameter
o’e M”(sxs) with a priori distribution v if
W (h)=inf ¥ (h)
heL'(p)

Theorem 3.1: Let K Ll(u) be a class of estimotors of the variance parameter c’e M?(sxs)
satisfying the following conditions
(1) h(M(nxq)) € M? (sxs)(modp), Vh € K
(ii) For any € > 0, there exists a finite partition {E,. },";l < M(nxq) and points x; € E;,

i=1.2..;;n suchthat

(@ 3C":1hx)I<C,VheK,Vi=1m.

®  fiAe) k)| pd) <= VheK,Vi=Tm.

E,
(iii)  There exists C > 0 such that
IL(y’,6®) - L(y”, A I<Clly’ —=y”Il, V y’, y” € M(sxs) , V 6% M>(sxs)

Then K is a relatively compact subset of L'(jt) and in the class K there exists a Bayesian
estimator.

Proof: By a similar argument of the theorem 2.1 , it can be seen that K is a relatively
compact subset of L'().
Next, it can be shown that

h(M(nxq)) € M?(sxs)(modp) , V h € K.

Indeed, take any h € K. Then there exists a sequence (h,) < K such that
lhy—hll; = 0,as m > o

It follows that, there exists a subsequence (hm,) © (hm) such that
] hmu(;t)— h(x) I = 0 (modp), as k — +w

By a similar argument of the theorem 3.2 in [9), it can bE_ shown that h(x) € M? (sxs)(modp) ,
which implies that h(M(nxq)) ¢ M? (sxs)(modp) , V h € K.
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Clearly, the Bayesian function risk function y is a continuous function on the compact set K.
Therefore, in K there exists a Bayesian estimator and theorem is proved.

Theorem 3.2: Let K be a class of all estimators of the variance parameter o’e R = [0,+)
satisfying the condition of the theorem 3.1 . Then the Bayesian estimator heK can be
arbitrarily closely approximated by a polinomial funciion (See a similar argument in [8]).

4 ia imat h m ter:

In this section we simultaneously consider the location parameter 0 € @ < M(pxr)
and the variance parameter c° € M? (sxs) € M (sxs). First, consider the product-space
M(pxr) x M(sxs). Clearly, it is a finite-dimensional normed linear space with the norm

Hyll=1y I mexn + 1Y N M sxs) _
where, y = (¥’ , y"). Denote by B(pxr) x B(sxs) the smallest ¢ -algebra in M(pxr) x M(sxs)
which contain every measurable rectangle. Next, consider the subse@x M? (sxs) ¢ M(pxr)
xM(sxs). Denote by B(@) x B? (sxs) the ¢ -algebra in@ X M”(sxs). Reccal that T and v are
priori distributions of the location parameter 0 and the variance parameter o’

An element A = (0, 0'2), where 0 e@ and o> € M” (sxs) is called a compound parameter.
Denote by 1 = 1 x v the product of the measures t and v.
Then 7 is a probability measure on the measurable space (@x M’ (sxs), B @) x B?(sxs)
and 7 is called a priori distribution of the compound parameter A = (6, o).
Definition 4.1: A Borel function

h : M(nxq), B(nxq)) = (M(pxr) x M(sxs), B(pxr) x B(sxs))
is called an estimator of the compound parameter A = (0, 02).
We difine L'(p) = L’(u, M(nxq), M(pxr) x M(sxs)) to be the collections of all Borel
measurable functions h on M(nxq) for which

[l AGe) I pe(x) < +eo

M (nxq)

Clearly, L'(p) is a Banach with the norm || ||, = jﬂ h(x) || p2(dx)
M (nxq)

Definition 4.2: A functional ¥ : L'(;.L) — R*, defined by

W= [ [La),A).f, (x)pdx)n(dR)
G (sx5) M (nxq)
is called a Bayesian estimator with a priori distribution 7.

Anestimator he'(y) is said to be a Bayesian estimator with a priori
distribution n if
W(h) = inf P (h)

heL'(w
Theorem 4.1: Let K L! (1) be a class of all estimators of the compound parameter A = (6,
o) e (@x M (sxs) satisfying the following conditions
()  hM(nxq)) c®x M” (sxs) (modp), VheK.
(i) Ve>O0,3 finite partition {E,}" < M(nxq)

and points x; e E;,i=1,2,.., m such that_
(a) 3C?: lhx)Nl<C’,VheK ,Vi=1lm.
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®  fine- h(x)lly(dx)<~—‘t/heK Vi= 1,m
E,
(1i1) - There exists C > 0 such that
ILG" M)~ L™ M I<Clly - 3”1, ¥y',y” € M(pxa) x M(sxs), VA @ xM(sxs)
Then K is a relatively compact subset of L' (1) and in the class K there exists a
Bayesian estimator.

Proof: Clearly, K is a relatively compact subset of L’(u).
Next, it can be seen that h(M(nxq)) < @x M? (sxs) (modp), Vh e K.
in fact, take any h € K. Then, there exists a sequence (hy, ) c K such that
Nhu—hillf > 0,as m 5 4w

This implies that, there exists a subsequence (h‘“k) < (hy) such that
| hmk(x) -h(x)Il > O (modp) ,as k - +w

It can be seen that h“‘k = (h’rrlk ; h”mk) i B LYy
where h’mk, h’ e L!(u,M(pxr)) and h”’“k’ h” e L[(u,M(sxs))

It follows that h(M(nxq)) ¢ @x M? (sxs) (modp), Vh € K as to be shown. g
Finally, the Bayesian risk function ¥ is a continuous function on compact subset K and
theorem is proved.

Theorem 4.2: Let K be a class of all estimato* of the compound parameter A= (8, o)
satisfying the conditions of the theorem 4.1 . Then the Bayesian estimator heK can be

' arbitrarily closely approximated by a polinomial function.

Proof: By a similar argument of the theorem 3.1 in [10], it can be shown that the Bayesian

estimator / can be arbitrarily closely approximated by a polinomial function.
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Vi UGC LUGNG BAYES TRONG MO HINH HOI QUI PHI TUYEN
NHIEU CHIEU

Ung Ngoc Quang
Khoa Toan-Tin Truong Dai Hoe Khoa Hoc Ty Nhién, PHQG-HCM.

IQM,_IAL Bai bdo khdo sit udc lugng Bayes clia tham 4n dinh vi, tham &n phuong sai va
tham &n hdn hgp trong md hinh hdi qui phi tuyén nhiéu chiéu biing k¥ thuét gidi tich ham.
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