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ABSTRACT:

The block transform-DCT- is commonly used for many video, image, and audio
coding standards, such as MPEG and JPEG. However, DCT causes “blocking artifacts” at
high compression ratio. Recently, some classes of new transfroms for the reduction of
blocking effects have been introduce such as the lapped orthogonal transforms (LOTs or
LOT), GenLOTs (Generalized LOTs), VLLOTs (Variable Length LOTs).. Those LOTs,
which are based on DCT, reduce blocking effect, but do not remove it perfecty.

The paper will introduce a new class of LOTs, which is called NLOTs. The NLOTs

remove perfectly “blocking artifacts” and have the same computational complexity like the
LOTs.

L. INTRODUCTION:

Nowadays, Transform Coding (TC) is an efficient and commonly used tool for signal
compression. TC is used as a basis for many video, image, and audio coding standards, such
as MPEG and JPEG. In the encoding process, the signal is divided into blocks of N samples
(or N x N for images). For each block, a transform operator is applied. The resulting
transform coefficients are quantized (usually, via scalar quantizers) and entropy encoded. At
the decoder, the inverse operations are performed: entropy decoding, dequantization, and
inverse transformation. The decoded blocks are combined to form the reconstructed signal.

DCT-based image compression was state-of-the-art, but researchers were
uncomfortable with the so-called “blocking artifacts” which are common and annoying
artifacts like noise with the checker-board pattern, found in images which were compressed
at Jow bit rates using block transforms. The blocking effect is a natural consequence of the
independent processing of each block. Blocking artifacts arise because the concatenation of
the reconstructed blocks generates signal discontinuities across block boundaries. It is
perceived in images as visible discontinuities in features at the cross block boundaries [1],
(2], 31, [4].

Some methods for the reduction of blocking effects have been previously suggested.
Three methods were proposed: overlapping, post-filtering and using a lapped orthogonal
transform or LOT. '

In the overlapping method, the blocks overlap slightly, so that redundant information
is transmitted for the samples in the block boundaries. The disadvantage of this approach is
the increase in the total number of samples to be processed, and thus an increase in the bit
rate. So, it was not applied in image/video compression.

In the filtering method, the coding process at the transmitter is unchanged, and at the
receiver, a low-pass filter is applied only to the boundary pixels. Although this method does
not increase the bit rate, it blurs the signal across block boundaries.
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The lapped orthogonal transforms have the same benefits of the overlapping method,
but without an increase in the bit rate.

Malvar [1], [2] gave the LOT an elegant design strategy and a fast algorithm, thus
making the LOT practical and a serious contender to replace the DCT for image
compression.

Recently, new classes of lapped Transforms-LTs with symmetric bases were
developed yielding the class of generalized LOTs (Gen LOT) [3], VLLOTs. The VLLOTs
[4] were made to have basis functions of arbitrary length (not a multiple of the block size).
GenLOTs, VLLOTs are DCT to de.velop the new basis functions as Malvar did. Those LOTs
reduce blocking effect, but does not remove it perfectly.

The rest of paper is organized as follows: Section 2 introduces The Malvar’s LOT and
the method to design our new LOT. Some experimental results are presented in section 3.
Finally, section 4 concludes the paper.

II. THE OPTIMAL LOT:
2.1 The Malvar’s Optimal LOT [1]:

In this section, we review the properties of the Malvar's LOT [1], [2] necessary for its
analytical derivation in the explanation of our NLOT.

We assume that the signals to be processed are one-dimensional: extension to two or
more dimensions is easily achieved by defining separable transforms based on the one-
dimensional profile.

Let us assume that the incoming discrete-time signal is a large segment of MN
samples, where N is the block size. In traditional transform coding, M-blocks of length with
N samples would be independently transformed and coded. In matrix notation, if we call xo
the original input vector of length MN, the vector yo containing the transform coefficients of
all blocks is given by

yo=T Xo, (1)

where T’ is the transpose of an MN x MN block-diagonal matrix T in the form

D.....0 |
.D....0

T=|. . )
| D]

where D is a matrix of order N, whose columns are the basis functions that define the
transform of each block.

With the LOT, each block has L samples, with L>N, so that neighboring blocks
overlap by L — N samples.. The LOT maps the L samples of each block into N transform
coefficients. With the number of transform coefficients being equal to the block size there is
no increase in the data rate. The LOT can be defined as in (1), with T given by
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P
Py.....0
T=|o... 3)
........ P,
-

where P is an L x N matrix that contains the LOT basis functions for each block. We have
assumed L < 2N, i.e., the length of each basic function is at most twice the block size. This
choice will be justified later. The matrices P; and P, are introduced, because the first and last
blocks of a segment have only one neighboring block. And thus the LOT for the first and last
blocks must be defined in a slightly different way, to guarantee that none of the basis
functions extends beyond the segment boundaries. We shall concentrate on Py now.

We note that the LOT of a single block is not invertible, since Py is not square.
Nevertheless, in terms of reconstructing the\whole segment X, all we need is the invertibility
of T. Orthogonality of T is also a desirable property, as with all transforms in traditional
transform coding, since it guarantees good numerical stability. In order for T to be
orthogonal, the columns of Py must be orthogonal.

P’o Po = I, (4)

and the overlapping functions of neighboring blocks must also be orthogonal.
P’o WP{) = P’() W’Po = 0, (5)

where [ is the identity matrix, and the shift operator W is defined as:

a8 01 o
100

The above identity matrix is of order L — N, and we have assumed L = 2N. We will
say that a LOT matrix Py is feasible if it satisfies (4) and (5).
Malvar suggested a direct approach [1], for the derivation of an optimal LOT when L =
2N, i.e., the basis functions of neighboring blocks overlap by N samples. The key point is to
start with a feasible LOT matrix P that is not necessarily optimal. Then, the matrix

By=PZ, Q)

is also a feasible LOT for any orthogonal Z, since
PoPo=2ZPPZ=2Z=1, ®)
P oWPy =Z'PPWPZ =0, )

He introduced a feasible LOT from the DCT, by

P=(1/2) [ DeDy  DeDy (10)
J(De-Dy)  -J(De-Dy)

where D, and D, are the N x N/2 matrices containing the even and odd DCT-II functions,
respectively. -

With P as in (10), what he needed to obtain an optimal LOT is to find an optimal Z in
(7) with maximal transform coding gain, Gre[1],
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V3
Grc = ——t— (11)

ix
where 07 , O 3 is the its diagonal entry of the inatrix Rux , Ryy. Ryx is the autocorrelation
matrix of original image. Ryy is the autocorrelation matrix of reconstructed image.

We can choose Z to diagonalize Ry,

Ry = Z’P’ R PoZ, (12)

With P and Ry fixed, it is clear the Gy is maximized when Ry is diagonal, i.e., when
the columns of Z are the eigenvectors of P'R,,P. With such a Z, the LOT matrix Py is
optimal.

It is important to point out that optimization approach leads to an optimal LOT that is
tied to the choice of the initial matrix P. Since each column of P has L elements, with L>N,
they span an N-dimensional subspace of R". For any Z, the matrix PZ will always belong to
that subspace and so will the optimal LOT. However, there may exist a feasible LOT P that
does not belong to the subspace spanned by the columns of P, i.e., it cannot be generated by
(DN.

For the first-order Gauss-Markov model with the inter-sample correlation coefficients
p =0.95, the columns of the optimal Py, Malvar’s LOT, are shown in Fig.1a.

Comment on Malvar’s LOT:

- Following Malvar’ papers [1][2], the key to reduce blocking effects is that the low-order
basis functions decay toward zero at their ends.

-The blocking effects disappear (or with the lowest effects) if the low-order basis
functions are zeros at their ends.

-In Malvar’s LOT, the first basis function, for example, has a boundary value that is 5.83
times lower than its value at the center. Therefore, the discontinuity from zero to the
boundary value is much lower than that of the standard DCT functions, and this is one of the
main reasons why blocking effects are reduced.

-However, Malvar’s low-order basis functions are not exactly zeros at their ends. For
example, the first order basis function of Malvar's LOT is shown in Fig.1a.

2.2. Our LOT with the zero-end basis functions:

We suggest an algorithm to design a new LOT, NLOT, with the zero-end basis
functions. Our design is also based on D, and D, as Malvar did, but we use an appropriate
window function to force the ends of NLOT basis functions to zeroes. The function of the
window function is weighing to P. In order to preserve the symmetry properties of NLOT,
the weighing function must be evenly symmetrical and have zeros at their ends.

Since a modification of a basis function affects the orthonornality of the other basis

functions, we apply the Gram-Schmidt orthogonalization procedure to rebuild the system of
the orthonormal basis functions ...

That algorithm initiates from the Malvar’s P matrix, as followed:

1. Calculating the window functions such as Blackman, Bartlett, Hamming or
Hanning. '
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2. For every basis of P, we do:

- Weighting that basis with the window function. This step will force the ends of
basis function to zeroes.

- Applying the Gram-Schmidt orthogonalization procedure to P. After this step, the
ends of the above basis function keep zeroes as well.

3. Creating the optimal NLOT Py, by finding the matrix Z which is the eigenvectors of
P' RyP, as Malvar did. That is Py= P*Z.

The matrix multiplication of PZ still preserves the zero-ends of basis functions of Pyo.

Our one-dimensional basis functions with the Blackman window (the columns of Py)
can be seen in the Fig.1b. For the comparison between NLOT and Malvar's LOT, we also
introduce the first order basis function of NLOT in Fig.1b. According to the type of window
functions, our basis functions have the boundary values those are more than 100 times (or
towards infinity when the ends are zeroes) lower than their values at the center.

III. SIMULATION RESULTS:

NLOT and Malvar's LOT coder and decoder are created in MATLAB, in order to
compare the blocking effects with DCT coder and decoder that were also implemented. In
those coder and decoder, the mean of the test image is first removed. The processed image
is then transformed using 8 by 8 blocks (with 8-pixel overlap for the LOT). The coefficients
are rounded to the nearest integer values. The entropy is calculated to yield the storage bit-
rate, given in bits per pixel. In practice the better quantizer and entropy en/decoder could be
used to further reduce the bit rate, but is not done here for simplicity.

In our simulations, the testing images Lena (Fig.3a) and Barbara (Fig.4a) are used
and give the following results:

- Fig.2 give the comparisons of Transform Coding Gain (Grc ) (11) in dB between LOTs
and DCT. From these tables, Grc of our NLOT is better than that of DCT, but lower than that
of Malvar’s LOT. However, the important problem is the visual quality of reconstructed
images. ‘

- Fig.3b and Fig.4b are the reconstruction images with low bit rate, using the DCT. Fig.3c,
d and Fig.4c, d, are the low bit rate reconstruction images using the Malvar’s and our NLOT.

With the nearly similar PSNR gain, the difference of visual quality between DCT and
LOTs is evident. We cannot .accept the reconstructed image with DCT because of the
blocking effect. Therefore, the parameter PSNR could not show the perceptual quality of
visuality in low bit-rate.

- The difference of visual quality between Malvar’s and our NLOTs is subtle, but can be
noticed upon careful examination of the smooth areas of the images. It seems that the
images with Malvar’s LOT are suffered from a type of “spotted noise” which spreads over
the surfaces of images.

- We think that the spotted noise is caused by the non-zero boundary values of basis
functions in Malvar’s LOT. Our NLOT, with the non-zero boundary values of basis functions,
improves the perceptual quality in low bit-rate. OQur NLOT can replace DCT in low bit-rate
compression for video/image.
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IV. CONCLUSION:

We have derived a new optimal set of overlapping basis functions, NLOT. Unlike the
Malvar’s derivation, where the boundary values of basis functions are non-zero, we have
obtained the zero-end LOT as the solution to solve fully the blocking effect in low bit-rate
reconstruction.

We believe that the NLOT introduced in this paper allows the implementation of
block coding syste s at low bit rates (below 1.0 bits per sample) with much less noticeable
blocking effects than DCT or Malvar’s LOT-based transform coding.

However, our NLOT may not be easily factorable such as DCT or Malvar’s LOT. In
the future, we try to find a fast algorithm for our LOT.
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Fig.1a: Malvar’s LOT basis functions Fig.1b: Our LOT basis functions with
with N=8, L=2N=16. N=8, L=2N=16 and “Blackman
The first Malvar’s basis-vector: window”.
[-0.0686, -0.0320, 0.0372, 0.1285, 0.2276, The first our basis-vector:
0.3177, 0.3849, 0.4189, 0.4189, [0.0, -0.0019, -0.0109, 0.0436, 0.3124, 0.3723,
0.3849, 0.3177, 0.2276, 0.1285, 0.3615, 0.3620, 0.3620, 0.3615, 0.3723,
0.0372, -0.0320, - 0.0686] 0.3124, 0.0436, -0.0109, -0.0019, 0.0]
Type of Grc
Transform (dB)
Malvar's LOT ~ | 9.24
DCT II 8.83
Our LOTs Grc (dB)
Type of
window
Hamming 9.07
Hanning 9.06
Blackman 8.95
Bartlet | 9.09

Fig 2: Comparisons of
Transform Coding Gain
(Gre)

ig.3a: Original image, “Barbara”, | Fig.3b: Using DCT II; bpp = 0.701
image zoomed in two times) PSNR = 25.297 (image zoomed in
two times)
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Fig.3c: Using Malvar’s LOT Fig.3d: Using our LOT
bpp =0.616, PSNR = 25.638 bpp =0.634; PSNR = 24.815

(image zoomed in two times) (image zoomed in two times)

Fig.4a: Original image, "Lena” Fig.4b: Using DCT I, (image zoomed in two
(image zoomed in two times) times) bpp =0.452, PSNR =27.048

Fig.4c: Using Malvar’s LOT; (ima.ge'zéomed in ”Fig.4d: Using our LOT; (image zoomed in tw
two times) bpp = 0.384 ;. PSNR = 27.322 times) bpp = 0.398; PSNR =26.880
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BIEN POI TRUC CHUAN LOT MGI KHONG GAY RA MEO KHOI

Lé Quang Tu&n, Vi Pinh Thanh - Trutng Pai Hoc Bach Khoa, PHQG-HCM
Nguy&n Kim Sdch - TT Nghién citu Ung Dung & Phét Trién Truyén Hinh

TOM TAT:

Bién ddi khoi DCT hién nay dang dugc st dung phd bi€n trong cdc chudn nén anh
JPEG va MPEG. Tuy nhién, khi nén vdi ti 1€ cao, DCT s& gdy ra méo khdi nghiém trong.
Thai gian qua, nhiéu 16p bi€n ddi mdi duge xdy dung dé gidm bdt loai méo nay, nhu
LOT,GenLOT(Generalized LOT),VLLOT (Variable Length LOT)... Nhitng 16p bi€n d6i nay
déu dugc xay dung trén cd sd DCT nhung chi lam gidm, khong triét tiéu hoan todn méo
khoi.

Bai vi€t nay trmh bay mot 16p bi€n ddi LOT mdi, NLOT, khéng giy ra méo khdi va
¢4 cung mifc d§ phuc tap tinh todn nhu LOT.
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