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ABSTRACT : Applications of the first generation of wavelets( such as wavelets B-97,
Daubechies, B-spline...) in image compression and noisy filter have gained the good results
comparing to those of the previous methods which are based on Fourier and DCT transforms
[1L[2],[3]. Since 1996 until now, the mathematicians and the signal processing experts
develop a new wavelet generation which is the so-called LIFTING transform. Because of the
simple algorithm of Lifting, we can design the wavelets which adapt themselves to the
signals with variable statistics models. Those signals are popular in real applications,
especially such as signals of image or video.

In this paper we only study the efficiency of Lifting transforms in image compression,
analyse and compare them to the results of the first generation wavelets which were
introduced in the previous conferences [1],[2],[3]. Contrary to the first generation wavelets
designed especially for image compression, the normal Lifting transforms are used in our
experiments.

Index Terms: DCT (discrete cosine transform), DWT (discrete wavelet transform), JPEG
(Joint Photographic Expert Group), Lifting wavelet transforms.

1.INTRODUCTION

Today, research in wavelet image coding continues to grow at a rapid pace. In 1996,
Wim. Sweldens [5]&[6] suggested the Lifting transforms which were built from the
prediction and update and didn’t base on Fourier transform like the first generation
wavelets. In our paper, DWT stands for the first generation wavelets, and Lifting for the
second generation .

The main motivation behind the development of wavelets was the search for fast
algorithms to compute compact representations of functions and data sets. So, what about is
the ability of Lifting in image compression? There has been so far no comprehensive and
comparative study of the performance of various bases of DWT and Lifting. So, it is
difficult to find an optimum basis for compression. We were thus motivated to perform a
comparative study of the bases of DWT and Lifting, in order to provide a general and

evaluating view on the advantages and the drawbacks of different kinds of wavelets and of
different génerations.. )

. The rest of paper is organized as follows: Section 2 reviews DWT and introduces the
Lifting transform. Section 3 compares the basis functions of DWTs with Liftings and presents
experimental results. Section 4 concludes the paper.

2. DWT AND LIFTING TRANSFORM :

2.1.DWT representations :

Wavelets are basis functions that satisfy certain mathematical requirements for using
in representing data or other functions [4]. The main idea of using wavelets is to analyze

data according to scale. Dilations and translations of the mother function @, or analyzing
wavelet, define an orthogonal wavelet basis :
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The variables s and £ are integers that scale and dilate the mother function @ to generate
wavelets. The scale index indicates the wavelet width, and the location index ¢ gives its
position. Notice that the wavelet width are rescaled , or dilated by powers of 2, and
translated by integers. The self-similarity of wavelet bases caused by the scales and
dilations. Once we know about the mother function, we know everything about the wavelet
bases.

To span our data domain at different resolutions, the analyzing wavelet is used in a
scaling equation :

N-2
W)= 3 (-D)fcpy 1 ®Q2x+k)
k=-1

where W(x) is the scaling function for the mother function @, and cy are the wavelet
coefficients.

The wavelet expansion means that the coefficients are used in a linear combination
of the wavelet functions. One thing to remember is that the wavelet transforms do not have a
single set of basis functions like the Fourier transform, which utilizes just the sine and cosine
functions. Instead, wavelet transforms have an infinite set of possible basis functions. In
addition, there are lots of the types of wavelet bases, or wavelet families, such as Haar,
Daubechies, Coiflets, Symlets ...

2.2. Lifting transform representations :
Lifting, a space-domain construction of biortho-gonal wavelets, consists of the
iteration of the following three basic operations ( Fig 1) [5],[6]:
. Split: Divide the original data into two disjoint subsets. For instance, we will split the
original data set x[n] into:
xe[n] = x[2n] ( the even indexed points ), and X,[n] = x[2n+1] (the odd indexed

points).
. Predict: Generate the wavelet coefficients d[n] as the error in predicting Xo[n] from
xe[n] using prediction operator P : d[n] = x0[n] — P(Xe[n]) €Y

. Update: Combine x[n] and d[n] to obtain scaling coefficients c[n] that represent a
coarse approximation to the original signal x[n]. This is accomplished by applying
an update operator U to the wavelet coefficients and adding to x.[n] :

c[n] = xe[n] + U(d[n]) (2)
These three steps form a Lifting stage (Fig 1) .

x[n] X[n]
G -
i I v
P

Split P U U Merge | & x[n]
>é T p din] d} —Jﬂb——»
Xo[n] Xo[n]
Fig 1: The Forward Lifting transform. Fig 2: The Inverse Lifting transform.
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Iteration of the Lifting stage on the output c[n] creates the complete set of scaling and
wavelet coefficients cj{n} and dj[n]. (Here, j is the levels of wavelet decomposition ).
The Lifting steps are easily inverted as well. Rearranging (1) and (2), we have :
Xeln] = ¢[n] - U(d[n]) (3)
Xoln] = d[n] + P(x¢[n]) 4)
Then, we merge x.[n] and x,[n] to get the original data X[n]. These three rearranged steps
form an
Inverse Lifting stage (Fig 2). Iteration of the Inverse Lifting stage on the sets of scaling and
wavelet coefficients cj[n] and dj[n] will output cj"[n]. (Here, j is the Ievels of wavelet
reconstruction ). In the last stage, we will get the x[n].
3. Comparisivns of DWT and Lifting in image compression :
We will compare them from 2 aspects: the mathematical characteristics of image
compression and the direct results in real experiments.

3.1. Comparisions of the basis functions about the mathematical characteristics :

The different wavelet basis families make different trade-offs between how compactly
the basis functions are localized in space and how smooth they are. Only some features of
their bases are important in the image compression.

These features depend on the properties of the basis functions as follows .

a. Linear phase

The FIR filter banks of orthogonal wavelet bases are asymmetry [4]. This property
translates into nonlinear phase in the associated FIR filters. This may cause artifacts at the
borders of the wavelet subbands. These artifacts can be avoided if we use linear phase
wavelet filter. If we want both symmetry (linear phase) and compact support( or perfect
reconstruction) in wavelets, we are led to biorthogonal wavelets. The bases of Lifting
transforms are only biorthogonal so far.

b. Vanishing moment

Wavelets are classified within a family most often used by the number of vanishing
moments (zero moments). The importance of zero moments comes from the following fact.
The wavelets with the vanishing moments of degree (k+1) can suppress a k-degree
polynomial part of the signal [4]. This feature of wavelets is important in approximation of
smooth functions. It also increases the coding gain.

c. Regularity

An orthogonal filter with a certain number of zeros at the aliasing frequency (m in the
two channel case) is called regular, if its iteration tends to a continuous function [4]. The
higher regularity can improve the coding gain and artifacts might be less visible. The
importance of this property is potentially twofold when the decomposition is iterated in

coding scheme such as the wavelet coder. When the decomposition is not iterated, regularity
is of little concern.

d. Filter length

The length of wavelet bases are important in practice. From a view point of image
compression, the higher the length of wavelet filter increases, the higher the degree of
smoothness will get and the better the coding performance will become., However, if the -
length of wavelet filter increases, the reconstructed images will be contained more ringing
artifacts and not worth the computational cost.

All the important properties of the bases almost depend on their filter length . We
can consider that characteristic from Table 1.

Trang 46




TAP CHi PHAT TRIEN KHCN, TAP 4, S0 7/2001

e. Computational costs

One important consideration in application is the computational complexity or

computational cost, which directly relates to its implementational efficiency in real time.
The computational cost is governed by the number of multiplications and additions involved
for calculating a wavelet coefficient, with the former being the dominating factor. We will
use these operation counts as a measure of the computational cost of using a wavelet filter.
In the context of wavelet decomposition(or reconstruction), these counts are generally
directly proportional to the sum of the lengths of low-pass and high-pass filters. However, it
is possible to reduce further the multiplication counts if we can exploit the symmetry of the
filters.

A comparison of computational complexity between various popular DWTs and
Liftings is provided by [6], in Table 2.

In the Table 2, please note that the fast wavelet algorithm are not applied to DWTs
and Liftings. Liftings are deduced from DWTs by the factorization method of Daubechies
and Sweldens [6].

From Table 2, Liftings are faster because DWTs require much larger operation
counts of multiplications and additions.

Table 1 introduces the properties of DWTs, such as Haar, Daubechies, Symlets, B-
spline Coiflets [8] and Liftings .

Table 1 : Comparision of features of wavelet mothers ( N=1,2,3,4..)

Wavelets Vanishing | Regularity Filter Filter C . d ¢ .
meoments length characteristic Table2: i pRTISTOE & Eampptationsl
: cost between Lifting and DWT [6].
Haar 1 Not continuous | 2 Symmetry
Daubechies If\I (pS'l fAbc;ut I?fN 2N Asymmetry Wavelet DWT | Lifting | %
(Db-N) unctions) or large type improve
d speed
Sym-N N ——- 2N Near from Haar 3 3 0%
(N=2,3..8) symmetry D4 14 9 56%
Coif-N 2N (psi —mne 6N Near from D6 22 14 57%
(N=1,2,..5) | functions) symmetry B(9,7) 23 |14 64%
2N- 1(ph1 B-Spline 17 10 70%
functions) (4.2)
Bior-Nr.Nd | Nr -1 Nr-1, Nr-2 Max(2Nr, | Symmetry
(B-spline) (psi rec. 2Nd) + 2
Functions)
Lift-Nr.Nd NrorNd |  ----- Nror Nd | Symmetry

Vanishing moments of Coiflets are the highest but their filters have long lengths and

asymmetry phase. Biorthogonal wavelets- Bior Nr.Nd and Lift Nr.Nd-satisfy the requirement
of image compression which are linear phase filter, high regularity, quite short filter length,
high vanishing moments.The parameters in the Table 1 show that Liftings can be applied in
image compression like DWTs.

We can consider the experimental schemes to evaluate which wavelets are better.
Furthermore, these results will persuade us of the ability of image compression using
Lifting transforms. Some experimental parameters to evaluate the performance of DWTs
and Liftings will be introduced in the next part.
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3.2. Comparisions from experiments :

We suggest two experimental schemes in Fig.3 and Fig.4. In Fig 3, the procedure follows
the steps :

1- Dividing an image into 8x8 blocks.

2- Using 2D-DWT or 2D-Lifting on these 8x8 blocks. The decomposition levels are
depend on the size of testing images. We choose 4 for the levels.

3- We calculate the variance and histogram for every subband.

4- Using IDWT or the inverse-Lifting to reconstruct the image.

The entropy, vaiiaiice and histogram are the statistical specific characteristics of
compression. If the variance is high, we need uore bits to code data . So, the code gain will
decrease. If lots of data found. from histogram are zero, we can believe in the efficiency of
coders behind the wavelet transforms.

In Fig 4, the procedure is similar to Fig 3, as followed :
1- Using 2D-DWT or 2D-Lifting on these 8x8 blocks.
2- Rounding the real wavelet coefficients.
3- Coding the integer wavelet coefficients with the Shapiro’s EZW algorithm [8].
4- Calculating the following parameters :
* The number of POS, NEG, IZ, ZTR [8].
* The size of file after having coded by EZW.
5- Using IDWT or the inverse-Lifting to reconstruct the image.
6- Calculating the PSNR, MSE to evaluate the losses of information from rounding the
real data.

The Shapiro’s EZW algorithm exploits the zerotree structure of wavelet coefficients
and attains the coding gain which is better than that of the zero run length coding. Therefore,
the more ZTR and the less POS, NEG we get, the better coding gain will be attained. For this
reason, we use EZW to indirectly evaluate the ability of the transforms.We have performed
many sets of experiments using three different types of wavelets and the images, “Lena”
256x256 and 512x512. The three wavelet families are :

* Daubechies ( Db2, Db3, Db4).
* B-spline (Bior 2.2, Bior 4.4, Bior 3.5) [8].
* Lifting (Lift 2.2, Lift 4.2, Lift 4.4 ).

Figs 5a,6a,7a show the histograms of the DWT and Lifting wavelet coefficients with the
same filter length. Figs 5b,6b,7b are like Figs 5a,6a,7a but the vertical axes are limited to [-
80,80]. Fig’s 8 show the LL4 variances of the DWT and Lifting with the same filter length.
The Fig’s 9 introduces the LL4 variances of the Lifting with the different filter lengths.
From Table 3, we can deduce the ability of generation of zero-tree structure data. Table 4a)
indicates the loss of information by rounding the real wavelet coefficients. Table 4b)
indicates the loss of information by rounding the coefficients of Lift(4,4) on some different
types of images such as Lena 256x256, Wbarb 256x256 [9] and Sinsin128x128 [9] .
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Fig 3 : Scheme to evaluate the statistical
specific characteristics of compression
such as entropy, variance and histogram

2D-DWT or Rounding the Coding
2D-forward Lifting —»| real coefficients —¥»| EZW
Calculating Reconstructed 2D-IDWT or Decoding *
MSE snd Image ' 2D-Inverse Lifting  [€ ] EZW
PSNR
v
; Calculating the parameters as followed :
f}ig 4: Schem: to tcalcul;ztc thelptaram;:fter otf - The number of POS, NEG, IZ, ZTR.
e zero-tree structure of wavelet coefficients. - The size of file after coded by EZW.
Transforms The number of | The number of | The number of | The number of Table 3 :
POS NEG 1Z ZTR N
Lift(2,2) 24925 24459 35862 121730 Evaluating
Lifi(4,2) - 24042 24071 34631 119120 the ability of
Lift(4,4) 23991 24111 34664 119306 exploitation
Db2 26760 25324 36376 120760 of zero tree
Db4 26312 25860 36784 121832
Bior(2,2) 24458 24672 36144 122838
Bior(4,4) 25239 24681 34522 117094
Bior(3,5) 23231 22496 36618 128959

Table 4 a) : Evaluating the losses of information from rounding

the real data : .

Transforms | PSNR (dB) MSE | The size of EZW file Table 4b) : Evaluating the
(bytes) losses of information from

Lift(2,2) 57.660 0.098 58451 rounding the real data on

Lift(4,2) 57.740 0.096 56914 some types of images

Lifi(4,4) 57.882 0.093 56953 PSNR MSE

Db2 58.402 0.082 59471 (dB)

Db3 58.398 0.083 59221 Lena 57,882 | 0.093

Db4 58.383 0.083 59656 256x256

Bior(2,2) 57.690 0.098 - 58899 Wharb 55.774 0.098

Bior(4,4) 58.277 0.085 56859 256x256

Bior(3,5) 56.484 0.128 60185 Sinsin 50772 | 0.071

128x128
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3.3 Analyzing the results :

e The distribution of wavelet coefficients of Liftings is the same like DWTs (Figs
5,6,7). Lots of zeros concentrate around .

e The ordinate axis of the histograms. Moreover, the number of zeros of Lift(4,4) is
more than that of Bior(2,2) and Db2. The LL4 variance (Fig 8) of Lift(4,4) is in the
middle of Db2 and Bior(2,2). So, the compressional abilities of Lifting and DWT are
nearly the same.

* When the filter lengths increase the coding gain gets more in DWT. Fig 9 proves the
similar rule in Lifting transforms. However, if the lengths is too long the variance will
increase. It makes go down the coding gain .

* From Table 3, the DWTs generate more ZTR, POS and NEG than Lifts but not much.

* Hence, we compare the size of EZW coded file ( Table 4) to evaluate the ability of
exploitation of zero tree structure for DWT and Lifting.

®  The least MSE ( <0.1)and high PSNR (>50dB) will prove that the procedure with
rounding( Fig 4a) b) ) is almost lossless. It is difficult to find even small loss in
performance from the reconstructed images ( Figl1a, Fig 11b) . The original images
“Lena 256x256” are in Figl0a and Fig10b.

4. CONCLUSION

This paper compares Liftings and DWTs through lots of features. From this
comparision, we believe that Liftings can attain the compression efficiency as DWTs.

Because the Lifting wavelet basis functions are constructed in space-domain, Liftings
can adapt to the variable features in an image such as smooths or textures. So, Liftings are
the good tools to build the adaptive transforms. It promises well a higher efficiency than that
of DWTs.

The Lifting transform is a type of the fast wavelets. If we find an fast wavelet
algorithm used for DWTs to conform to Liftings, their speed will be improved more. Then
we can apply Liftings in video compression. That is our future work.
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Fig 10a : Original image Lena 256x256
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Fig 10b : riginal image zoomed in 4 times ~ Fig 11b: Decompressed image zoomed in 4 times
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AP DUNG BIEN POI WAVELET THE HE MGT TRONG NEN ANH

L& Quang Tuén, Vii Dinh Thanh - Trudng Pai Heoc Bach Khoa, PHQG-HCM
Nguy&n Kim Sdch - TT Nghién citu Ung Dung & Phét Trién Truyén Hinh

M Ung dung th€ hé wavelet thi nhdt (nhu wavelet B97, cdc ho wavelet -
Daubechies, ho B-spline...) trong nén 4nh va khit nhiéu tin hiéu, da cho k&t qiia vugt trdi so
vdi nhitng phuong phdp trude d6( dua trén bi€n d8i Fourier va DCT) [1], [2], [3]. Tir khodng
1996 dé&n nhitng nam gin day, cdc nha todn hoc-va chuyén gia X 1y tin hiéu mot va nhidu
chidu, phdt trién th€ hé wavelets mdi, vdi tén goi bi€n ddi Lifting. Nhd c&u trdc don gidn
ctia bi€n ddi Lifting, ngudi ta c6 thé thi€t k& bién doi wavelets thich nghi v6i tin hiéu c6 mé
hinh thdng ké thay ddi, phit hgp vdi cdc 4p dung thyc t&, dic biét 1a tin hiéu 2 chiéu trd 18n.

Bai vi€t nay chi gidi han nghién cifu hiéu qda cda bi€n d8i Lifting trong nén dnh,
phan tich so sanh v& 1y thuy&t va thye nghiém véi nhiing k&t qui ng dung wavelets thé hé
thit nht tai cdc hoi nghi trude day (11, [2], [3]. PE thé hién 1o két qia phén tich 1y thuyét,
trong thuc nghiém trén dnh thi chudn, ching toi st dung bi€n ddi Lifting thong thudng (
khong dugc thi€t k€ danh cho nén dnh) ; ngugc lai nhifng wavelet th€ hé thid nhat dudc si
dung 14 nhitng loai thudng dugc chon cho nén &nh.
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