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ABSTRACT: The Gronwall — Bellman’s Lemma (GBL) plays very important role in
the researching Quality Theory of Ordinary Differential Equations. Beside the GBL there
are many expansions, that was gave by some the authors, example Brézis[3], Bihari [2],...

This report has investigated two problems : Expansions and Applications of this
important lemma. The special new results are given by the lemmas 6, 9 and many theorems
for applied case, example the theorems 4, 5, 6 about stablity of similar control systems.

§1. GRONWALL - BELLMAN’S LEMMA AND IT’S EXPANSIONS

I. THE GRONWALL - BELLMAN’S LEMMA.

1. Lemma I:

Suppose that u(t) = 0 be diﬁ’erentiaBIe on I = [t, &t] < R, D = u(t,) , and some real
numbers k, ¢ € R. If u(t) satisfies:

u't)<c.ut)+k, Vtel (1.1}
then u(t) <8 exp [c(t - to)] . {exple(t - t,)]-1} (1.2)
(&
(There is Ordiginal Gronwall lemma)
2. Lemma 2:
Suppose u(t) 20, a(t) 20 on J, k # 0. If u(t), a(t), satisfy:

u(t) < a(t) + kI]'u(s) dsl (1.3)
2

t
then () <a(t)+ k [4(s) exp[k(t - 9)]ds | (1.4)
to

Corollary 1: In the case, when a(t) = a - const,' u(t) satisfies (1.3), we have
u(t) <a.exp [k (t-t,)]
II. THE EXPANSIONS.
3. Lemma 3:
Suppose u(t)20,Vtel,a20,k=20andc > 0 real numbers. If u(t) satisfies:

t
u(t) <a+ I[cu(s) +k]ds (1.5

to
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. t
Proof : If we set v(t) = a(t) + [k(s)u(s)ds, then u(t) <v(t)
to

v(t,) = a(t,). Because a(t) € C'(), then
v'(t) = a'(t) + k(t) u(t) < a'(t) + k(t) v(t)

t t
v'(t). exp [— jk(s)ds] < [a'(t) + k(t)v(t)]exp [— jk(s)ds]

to tO

t t
% {v(t) exp[— [k(s) ds]} <a'(t)exp [— [Kk(s) ds} (*)

to to
Integrating (*) we have
't t S
v(t) La(t,) exp | [k(s)ds|+ [ a'(s)exp| [k(r)drids (O))
to fo to
7. Lemma 7 (Lemma Breézis [3]):
Suppose that u(t) =0, a(t) >0, b(t) > 0, k(t) >0 for all t € J and satisfy:

t
u(t) < a(t) + b(t) [k(s)u(s)ds (1.12)

to

t t
then u(t) < a(t) + b(t) Ia(s) k(s) exp{ Ik(r) b(r) dr]ds (113

to 8

8 Lemma 8:

Suppose that u(t) 2 0, a(t) > 0, and K(t, s) (where: l K(t, s) l <M,K(t,s)>0,for:to<s<
t<tiand K (t,8) =0, for : t, <t <s < ty) satisfy

t
u(t) < a(t) + J.K(t, s)u(s)ds (1.14)
t’O

then u(t) < @ (t), where o(t) is a solution of integral equation :

i
o) =a(t)+ [K(t,s)g(s)ds

to

t
Proof: PutKu= [K(t,s)y(s)ds with
to

t
Ku=u() , K'u= JK(t, ) K™t u(s)ds
to
The operator K satisfies following process:

t t s
K2u = jK(t,s)Klu(s)ds= jK(t,s)[ J-K(s,r)u(r)dr}ds

to to to
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then

then

u(t) < a.exp [c(t—to)]-i-%{exp [et-t,)]-1} (1.6)

t
Proof : Let u(t) satisfy (1.6), put v(t) = j [cu(s) + k]ds

to

such that v(t,) = 0, v'(t) = cu(t) + k < cv(t) + k implies

V(1) < v(t,) exp [e(t - t,)] + %{exp [t -t,)]-1}

Because v(t,) = 0 then v(t) < . fexplet - t,)]-1}
Cc

By in other hand, we have

t
u(t) -a < I{[u(s) ~a]+k+calds

to

¢
If z(t)=u(t)-a, thenz(t)< [[cz(s) + k + ca]ds and implies

to
z(t) < k+ca {exp [c (t - to)] - 1}
Finally, we have
u) =20 -2 saexp et~ ]+ Sexplets - 1,)]- 1) ©)

4. Lemma 4: ,
Suppose u(t) 20, k(t) 20, V t € J and satisfy:

t
utt) <a+ [k(s)u(s)ds (1.7)
to
t
u)<a.exp | [k(s)ds _ (1.8)
to

& Lengma s

Suppose u(t) =2 0, a(t) >0, k(t) > 0, V t € J and satisfy:

t
u(t) < a(t) + j‘k(s) u(s)ds (1.9)
to
i i
then ut) <alt) + | a(s)k(s)exp[]k(r)dr]ds (1.10)
' to S

6. Lemma 6 :
Suppose u(t).= 0, k(t) >0, a(t) € c! (1), a(t) >0V t € J and satisfy (1.9), then

t t s
u(t) < a(to)exp[ | k(r)dr] + [ a's) exp{ | k(r)drl ds (1.11)

I 15 i5
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The last formula (**) likes as (1.9). Using the lemma 5 we have the result.
10. Lemma 10 (Lemma Rihari [2]):
Suppose u(t) =20, f(t) 20, V t € [t,, +) and satisfy:

t
u(t) < c+ [f(s)p(u(s)) ds (1.17)
to

Where ¢ > 0, ¢(u) defined in 0 <u< u <+

and y(u) = J% O<u<u (1.18)
t o
If [ s < ylaso) (1.19)
to
t
then ut) < y! j f(s)ds (1.20)
to
§2. THE APPLICATIONS

There are many applications of GBL and it’s expansions, but in this report we limit the
area of this applications.

1. PROOF OF THE BASIS THEOREMS.
The GBL plays as instrument for proof of the basis theorems.
We consider two systems:
x'=X(t, %) : @D
y' =Xt y)+ Rt y) (2.2)

Where x, y € B — Banach space, on D«
D= {(x,t) : Hx— xoﬂ <r,te J}

The functions X(t, x) and R(t, x) satisfy:
| X(t,0)- X (¢,y) |<L|x -] (2.3)
| Rty || <ot, 6ty L1 (D) 2:4)

Using the GBL and it’s expansions (Lemmas 3 — 10) we can proof the following
theorems.

Theorem 1: If M, =sup|X(t,x)|, M=M, + L' then exists unique solution
D
of system (2.1) for everyt : | t- t0| <r. ML

Theorem 2: If x(t) is a solution of (2.1) and y(t) is a solution of (2.2),
o= || y (tg) —x(tg) “ then we have an estimation:

t
|y(®- x(t) | <dexplLt - t,)]+ [exp[Lit - t,)]0(s)ds

to
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then

t

j{ |K(t,5).K(s, r)dsJu(r)dr sz(t r)u(r)dr

to\r

K'u = an(t, r)u(r) dr

to

t
Where Ki(t,1) =K(t,1) , Ko(t, 1) = [K(t,8)K,,_1(s,r)ds

to
Estimate | Kq(t, )| and | K™
n (t _ I.)ll--].
Ka(t, <M"' —
|Katt, 1) | T
|K“U| M“(L(—“"“— I[u(s)|ds

When n — o we have |K u| -0
If PyK)=I1+K'+K*+..+K"then
u(t) < Py(K) a(t) + K™'u
When 1 —> o, then K™ u— 0and P,(K)a(t) = ¢ (t) so u(t) <g(t)

t
Where  ¢(t) = a(t) + j‘K(t,sm(sms ()

to
9. Lemma 9:
Suppose u(t) = 0 a(t), b(t), k(t) >0, ¥ t € J and satisfy:

i) e(t) = —b% > 0and 3 (1)
t
i) u(t) < a(t) + b(t) j lk(s) u(s) ds (1.12)

to
to to s

t i t
u(t) <c (t,) b(t) exp ( [z(s) ds] +b(t) [ c(s)exp ([ z(r) dr] ds (1.16)

Where z(t) = b(t) . k(t).

Proof : From (1.12) we estimate

u®) _ a)
b0 = b t!k(s)u(s)
u®) a)
Where b() = y(t), k(t) b(t) = z(t) and b(®) = e(t)
t
Implies y(t) Sc(t) + [2(s)y(s)ds ()
to
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< k(s) || x(s) - y(s) || + p(s).

t t
Finally, we have y(t) <& + Ip(s) ds + Ik(s) w(s)ds

to it
or y'(t) <k(t) w(t) + p(t). If function (t) is a solution of differential equation
@'(t) = k(t) o(t) + p(t)
then wy(t) < (t), forevery t € J. (M
IL STABILITY OF THE SIMILAR CONTROL SYSTEMS.
1. The Linear Systems.

Usually we consider system

x'=Ax + R(x) (2.8)
as the first approximative systems with necessary condition
R
tim 1RO | 2.9)
Ix H—J'O " X "

But we also can see R(x) as control function for process x(t) of Linear system.

&' =Ax (2.10)
Where A € N" — matrix and
im 1B®L @2.11)
Ixl>o x|
_ . | Bx]
Particularly, we consider the case, when R(x) = Bx  with ﬂhlmﬂ “ " #:0,
X X
that is x'=Ax + Bx (2.12)

Theorem 4: Suppose A, B € X" — matries , which satisfy

i) Re A; (A) > 0 for many j <n (A - Egeinvalue)

ii) C=A + B with Re }(C) <0 for ¥V j = 1,n then system (2.12) is stable.
2. The Nonlinear Control:

Beside the system (2.12) we consider system with nonlinear control:

x"= Ax + ¢(t, X) (2.13)
Where lim HM =0 (2.14)
lxl{—m " X "

Theorem 5 : If Re 4 (A) <0 for ¥ j=1,n and :
) o] <v®)] x| (2.15)
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Corollary 2:
Suppose 6(t) = N — constant

We have an estimation.
| y(t) - x(t) || <8exp [L(-ty)]+ %{exp [Lt - t)] -1}

e In the case, when N = 0;
| y(t) - x(®) | < Sexp [Lit - t,)]

e In the case, when N >0, § = 0:
ly®) - =) |< %{exp [Lt - to)] -1}

Nowaway, beside the system (2.1) we consider once more

x"=Y(t, x) (2.5)

and suppose that:
| Xt %) - Xt, ) | k® [ x -y || (2.6)
| Xt,x) - ¥ &, x) || < pct). .7

the functions k(t), p(t) € L'(J)
Theorem 3: If x(t) is a solution of (2.1) with x(t,) = X, and y(t) is a solution of
(2.5) with y(to) = Yo € Us (Xo) then (1) = | x(t) - y(t) | satisfies:
t t
w(t) <8+ jp(s) ds + jk(s)w(s) ds
tO tC)
and y(t) < (t) where @(t) is a solution of differential equation: ¢' = k(t) 4 + p(t).

Proof : We can write

t
XM =x(to) + [X(s, x(s))dx
to

t
(0 =y + [Y(s,y(s)ds

to
t
w(t) = | x(t) - y®) | < | x(t,) - yit,) | + j|| X(s,x(8)) - Y(x,3(s)) | ds
to

Because y(t,) = o € Us (Xo), then || x(t,) — y(t,) | < &

In other hand, we have

| X(s,x(s) - Y (s, ys) ||

[| X (s, x(8)) = X(s, y(s) + X(s, y(s) - Y (s, y(s) |
| X(s,x(s) = X (s, y(N || + || X5, 960 - Ys,y) || -

IA
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MG RONG VA UNG DUNG BO PE GRONWALL - BELLMAN

Nguyén Pinh Phu v Hoang Thanh Long
Khoa Todn - Tin hoc, Pai hoc KHTN, Pai hoc Quic Gia TP.HCM
(Bai nhdn ngay 02 thdng 11 ndm 2001, hoan chinh sita chita ngay 02 thdng 1 ndm 2002)

TOM TAT: B8 dé Gronwall — Bellman (GBL) d6ng vai trd quan trong trong nghién
ciu 1y thuyét dinh tinh phuong trinh vi phin. Bén canh bd dé GBL c¢6 mdt s6 md rong cia
mot vai tdc gid, vi du Brézis [3], Bihari [2], ..

Bai nay khdo cdu hai van dé : md rong va @ng dung b8 dé quan trong nay. Nhitng k&t qua
dic biét mdi dudc trinh bay trong cdc b6 dé ¢ 9 vd mét s6 dinh 1y cho ng dung, vi du dinh
1§ 4, 5, 6 v& 6n dinh ciia cdc hé tua diéu khic:
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ii) Iy(d)dt< © (2.16)
0

then system (2.13) is stable.
Proof : We have a Cauchy operator for system (2.10) : W(t, s) = X(t). X(s)

and a solution of system (2.13) is writed in Cauchy form :

t
(1) = W(t, t)Xo + [W(t, ) (s, x(s)) ds
0

that implies:

. :
| x®) | <[ Wet, 6]l o]l + [I Wet,9) || 0 (s, x(s)) | ds
; 0

Because Re Aj (A) <0,V j= -1,_n-, then exist numbers B, a > 0 such that

[W(t, t)| <B exp [0 (1~ to)]
t

| x(t)| <Bexp [- att - t)] + IB exp [~ alt - s)y(s)] x(s)||ds
0

Setting o(t) = | x(t) ||exp (at) > 0, we have

t
o(t) <B| x,|exp(at,) + B Iy(s) o(s)ds

tt'l'
Using lemma 4 of GBL'S expansions we get
t
o(t) < Be| x, | exp{_[y(s) ds]
0

or " x(t) || < K.exp (-at)

that means systems (2.13) is stable (@)
Theorem 6: If the control function ¢ (t, X) satisfies:
t,
M < 2".9_ @217
=l 2

Where A, = miplli(A)+ KJ-(A)l y Jor 1.1 = 1,n
ij

then system (2.13) is stable.
Corollary 3: Suppose that A is stable matrix. If

i) or | ot, x) ]| <[] x “B y(t), where B>0, [ x] Bl 20,

ii) or [l ot 0| <h (| x[) vt where h(u)<522

then system (2.13) is stable.
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§j,nr = (ZWE,M+I5k,m+I)'f|(Nj,m)

k=1

So the weight changes are:

iji,m(n+l) = . aj'm . Oi,m-l : (l 1)
where
F(N;m)-(t-0;,) (12a)
(5 im = Ny
” FNjm)- Z W g m1Oma (12b)
k=1

In Equation 12a, m is for output layer, meanwhile in Equation 12b, m is for hidden layer.
In Equation 11, 7 is a constant which represents learning rate. The larger 7, the larger the
changes in weight, thus the faster desired weight found. But if 1 is too big, it causes an
oscillation. The problem is to choose the maximum N without leading to oscillation. To do -
this, RUMELHART et al. (1986) proposed an additional term called momentum that they
believed would increase learning rate without leading to oscillation. With the addition of
momentum term, weights are modified according to the following equations:

Wji.m(n"'l) = Wji,m(n) + A\"Vji.tn(n'Fl) (13)
where AWji(n+1) = WOy O s .06 AW m(n) (14)
with o being a constant which determines the effect of the past weight changes on the
current direction of the movement. In practice, o is set around 0.9. The reference to DUC
(2000) may illustrate the standard back propagation training algorithm.

4. Artificial Neural Network and Runoff Model

There are various models that can be used to simulate the monthly runoff process, namely
HARMONIC, THOMAS and FIERING, and TANK. The first two models do not create a
linkage between runoff and causal rainfall. Consequently, the accuracy of simulated results
is limited due to the randomness of rainfall. The last model requires a large amount of
physical factors. As a result, the complexity and costliness in data collection and computation
may be encountered. Contrarily, the artificial neural network is a fuzzy model to link runoff
and its causal rainfall. It requires more data sources than the above-mentioned models do.
The data include monthly runoffs at considered location and upstream stations, monthly
rainfalls and evaporation, etc. at surrounding stations within the basin. The monthly runoff
data at upstream station has normally a very good correlation with that at downstream
station. As such, the randomness of rainfall process that effects to the runoff generation
(deterministic case) may be avoided. This makes the artificial neural network model may be
better for runoff simulation if the suitable selection of inputs and targets is obtained.

5. Application of the Artificial Neural Network Model to Simulate Monthly Runoff

5.1 Standards for statistic performance:

To evaluate the simulated results, the standards for statistic performance including
Efficiency Index (EI), Root Mean Square Error (RMSE), Root Mean Square Error Mean
(RMSEM), Mean Absolute Deviation (MAD), Root Mean Square Error over Standard
Deviation (RMSES) were used in this study. The reference to DUC (2000) may give detailed
explanation for these standards.
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l—e_Nj’m

Oj,rn = f(Nj.m) = N (43)
l+e M

with f'(Njm) = 0.5(1-0%m) (52)

can also be used as semi-linear function.

Now, the output Ojnis used as the input at layer m for the next layer m+1, that means
Lm=0jm (3a)
The forward process is repeated until the output signal at output target layer is reached.

If the fitting between final outputs and the targets at respective units of target layer attains
then the process stops. Otherwise, the search of ANN structure has to be redone until errors

between the final outputs and targets are small as appropriate for all the patterns of
respective input and target values.

1 &
Ep = 5 Z](tj —Oj‘L)z (6)
J=
Whereas total error is:
E = 2B (Ta)
P
E < g (7b)

where, € is the allowable total sum square error.

For this training process, several algorithms can be done. In this study the back propagation
neural network algorithm is used.

3. Back Propagation Neural Network Algorithm
Back propagation method tries to minimize the total error (E) by adjusting its weights:

oE , GE, ©N,;,
= ey (8)
W im  ONjw W
aE,P
= _-5j,m 'Or',mwl
éWj:‘,m
cE
where Oim=—"7"
‘ mj.m
For units in the output layer:
d, A,
5 = : ®)

Jam T '
0,;, N,,
Sj'm = (tj—Oj,m) « I ’(Nj'm)
For units in the hidden layers:

5 . e P J.m
! a?Jf,m m; m
5} ) | _n;m-l &‘P éNLmH . mhm (10)
' kot OV éoj,m dvj.m
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combination of input and output nodes and inside structure will reduce significantly time
consumption during training process. Figure 1 shows this simple ANN structure. Connection
from node (i) in layer m-1, to another node (j), in consecutive layer m, is a weight Wiim). L
is called as the signal at node i of input layer; Oj, as output signal of unit j at layer m (may
be hidden or output layer); n,, n; and n; are the numbers of unit in input, hidden and output
layers, respectively. t; is called as the target of unit j at output layer. Then the coming signal
(called as NET) at node j can be calculated by the following summation:

Ny = Wiim - Oim-1 ; m=1,2 (1)
i=0 :
where,if 1 #0 and m=1then O;p = I : input unit 2

ifi=0then Ogm;=1and Wjom=0;m: abias

ot tayer Ykl layer -
Aba
] ! ! L= o
1) ] z \2J—F oun
- - . 3
K . . 2 3
. 2 . S
- . 0 e
5 i
2 oum i ] L) —> oum E
-
" M
. . 2
) . " %) =3 0.0
W, w

w Y
[ 0.0
,_H" TPt s vabse of et et §of iromorg attein ge,

8 Ctpt conpait caboof kb pevle  of sy puresmpt
OUITY e vaboe ol e ek o raman. ptem;

Wy comavestinn weight fom barb ot s b smnpent sleh

WA sremecion weight from eus pue i bibien rck

Figure 1 Typical Three-Layer Feed Forward Artificial Neural Network
After NET is calculated, an activation function f is applied to modify it, thereby producing
the signal OUT (WASSERMAN, 1989) as follows:
Ojm = f(Njm) (3)
Function f was proposed as a semi-linear function (non-decreasing and differentiable to the
net total output). In practice, a logistic activation function in [0,1]

1
D = ) = e (@)

Lre N
is used as semi-linear function because it is non-decreasing function and has simple
derivative:
f,(Nj.m) = Oj,m(l‘oj.m) (5)

1.0

05

0.0 el

Figure 2 Activation Function in [0,1]
Another type of activation function in [-1,+1]
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