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ABSTRACT: Consider some square matrices of the same order. We can withdraw a
gwen number of rows of the first matriz, a given number of rows of the second, ete., and form
a new square matriz where the rows conserve their original ordinals. The sum of determinants
of all possible mizing matrices constitutes the introduced notion. The main theorem is that if
the starting matrices are non-negative definite (n.n.d.) then the above sum is non-negative, a
necessary and sufficient condition for its positiveness is given. Applications: measuring the
steepness in multidimensional geometry, majorizing the error norm of least squares estimates.
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1 Introduction and summary

Investigating the matrix expression of the error of least squares estimate has led the author
to the following notion.

Definition 1 Let A,,...,A, be m X m matrices, m,n > 1. Consider non-negative
integers my, ..., my such that my + -+ m, = m. We define
; m! ,
A (my)o---0Ap(m,) = sum of ———— determinants,
m1! LA P mn!

each determinant corresponds to a partition {D,,...,D,} of the set

ry
{1,...,m} with §D; = m; , i = 1,...,n, and has the form det | : |, wherer; (j =

I'm
1,...,m) is the jth row of A; when j € D; .
When n=m. m; = -+ = m,, = 1, we shall simply write

A(l)o-0A,(l)=Aj0--0A,.

The sum defined above is called sum of mizing determinants. This paper aims to present
a property of such sums which, to the author’s knowledge, does not figure in the existing
literature, namely

Theorem 1 Let B,y,...,B, be m x m non-negative definite (n.n.d.) matrices and
m,...., M, non-negative integers, my +---+m, = m, m,n > 1. Then By(m;)o---0
B, (m,) is non-negative; it vanishes if and only if
Bec{1,...,n},p#0) Rank (---B;-+);e, < ) mi— 1, (1)
] i€p

&

’1‘ ICe projet est réalisé avec I’appui du Fonds international de coopération universitaire-FICU
(AUPELF-UREF, Agence francophone pour 'enseignement supérieur et la recherche).
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where the symbol
(- Bi Viey

denotes a block matriz formed with blocks B;, the indez i varying over the subset ¢ from
left to right.

The proof is given in Section 2. Applications are given in Sections 3 and 4.
Notations. The following will be used in the paper.
M., = linear space of all p x g real matrices.
oo = cardinality of the set ¢.
If Q is a set in a linear space F: Span(@ = linear hull of the set @ in F, and for F
Euclidean, Q* is the orthogonal complement of the set @ in F.
For any p x p matrix C = (¢;;) and any set 0 C {1,...,p}:
Clo) = (cij)ijeo -

2 Proof of Theorem 1

- Lemma 1 G and H being arbitrary ﬁnite-dz’meﬁsional subspaces of some linear space E,
then '

i. dimSpan (G U H) = dim G + dim H — dim(G N H).

i. If, moreover, dim E = m finite then dim(G N H) = dim G + dim H — m if and only
if Span (GU H) = E.

(i) is from [2] (p. 453, formula (1)).
The "if” assertion of Theorem 1 is trivial. In the particular case n =m, m; =--- =
mn, = 1. Theorem 1 is reduced to the following

Lemma 2 Let Ay,...,An be m x m n.n.d. matrices. If
Rank (---Aj-)e, 240 V9 C{l,...,m}, ¥ #0 (2)
then Ajo---0A,, > 0. - '
- Proof. Frpm the requirement we have Rank A; > 1, ¢ = 1,...,m. Consider the spectral
decomposition

A, = PAP', P=(P,.--P,) orthogonal,
A = diag(/\l,...,,\m), A1 Z"'?_A#>0,

where 1 = Rank A; > 1. We can check that for m > 2

Ajo---oAn=) A\Qaoj)o:0Qnu(oj), (3)
=1

J

where Q;(c;) is the (m — 1) x (m — 1) principal submatrix of Q; = P'A;P corresponding
to o; = {1,...,m} — {j}. In general we have

Qi(0) = (- Py ) Ai (- Pyo-) ey for o C {1,...,m}.
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Since Q; is n.n.d., so is Q;(0). Further let ¢ denote any subset of {2,...,m} and let
K; = ker A; . Then

dimker | Q;(o) = dimker| A; (++-Pse-)

f€o
icp © /e
= dim (M, K:)[)Span {Py, f € o}.
Hence from Lemma 1 (ii), the index f ranging 1,...,m, we get

5 = dlm nie‘p.{{i .
dimker | Q:(o;) if N, K; C Span {Py, f # j}, (4)

= dim N, K; — 1 otherwise.
i€y

Let us reason by induction. We rnal;e the following, equivalent to (2),
- Assumption: A,,...,A,, are m X m n.n.d. matrices satisfying the condition
dimNeyK; <m—f Vo C{l,...,m}, v #0. (5)
Let m > 2. We admit the following

Induction hypothesis: For arbitrary (m — 1) x (m — 1) n.n.d. matrices
B,,...,B,,_ there holds

Byo---0Bpy > 0if dimker(-- B} )i, Sm—1—fv
for every non-void set % C {1,...,m — 1}.
Due to formula (3), this hypothesis has three consequences:

if By,...,Bp-1 are (m — 1) x (m — 1) n.n.d. matrices

then always Byo---0B,,-; > 0, (6)
whereas B; o---0B,,_; = 0 if and only if

B c{l,...,m—1},¢ #0) dimker (---Bj--)ic,, = m — f; (7)
B o, S (8)

Under Assumption (5) we intend to prove A o---0A, > 0. In view of (8) we start from
the converse
Supposition: A;o---0 A, =0. 9)

On account of Assumption (5), Supposition (9) is equivalent to

(Vi=1,...,0),80 C{2,....m}, 0 #0),
N,K; C Span {Py, f # j} and dimN,K; = m — fp. (10)

For short reference we shall say that
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a subset  of {2,...,m} suits some integer j, 1 < j < p, if simultaneously
¢ #0, N,K; C Span{Py, f # j} and dimN,K; = m — fe. (11)
Then note the following properties.

(a) If ¢ suits j and ¢’ suits j' # j then ¢ U ¢’ suits both j and j'.

(b) If there exists a set ¢ that suits a certain j < u = Rank A, , then necessarily u > 2
and N, K; is not included in K . '

(c) If ¢ suits j then there exists another j such that every set ', if any, suiting j' is not
included in .

Now, by (10) and (11) Supposition (9) is equivalent to
(¥ =dies s o) 30 € 4200 smi})s o suits 4 . (12)

For =1, from (b). (12) is impossible. Let (12) be true for some p > 2. Consider some
7 < p and let ¢ be a set of maximal cardinality that suits j. By (12) for any j' < u there
exists ¢’ suiting j' and from (c) there exists j' # j such that §¢' Uy > o, from (a) o' Uy
suits 7, which contradicts the maximality of fp. Therefore (12) is always impossible. Thus
the induction hypothesis and Assumption (5) entail that Aj o---0 A,, > 0. On the other
hand for m = 2 the induction hypothesis is trivially true. So Lemma 2 is proved.

Let us now prove Theorem 1 in the general case. Without loss of generality, we shall
assume that m,,...,m, are positive. Put lp = 0,....Li = m; + -+ my,...,. 1, = m.
Consider the partition {1,...,m} = UL,A; , where A; = {li_; +1,...,1;}. To every
set @ in {1,..., n} there corresponds a subset, called A-set, of {1,...,m}, of the form
A = Uje, A, where A = 0 if and only if ¢ = (. Since an intersection of A-sets is again
a A-set. to every set ¥ in {1,...,m} there corresponds a minimal A-set containing .
From By,..., By, let us generate n.n.d. matrices A,,..., A, by putting A; = B; for all
feA;,i=1,...,n Then we can show that

myl...my!By(my)o-+-0B,(m,) =Aj0---0A,,

. and Theorem 1 follows from Lemma 2. Q.E.D.

3 A multidimensional geometric characteristic

Theorem 1 enables us to establish a geometric fact in multidimensional vector spaces.

Theorem 2 Let {f},...,f,}, m > 1, be a basis for a subspace ® of R* and
{fix.....fmk} its orthogonal projection on some subspace K of R® according to the inner
product u'v for u,v € R". Then the ratio

_ det (fig - i) (Fic -+ Fmc)
det (f1 i 'fm)f (fl e fm)

is independent of the choice of basis for ®. Moreover 0 < o < 1, and 0 = 0 if and only if
® C K. 0 =1 if and only if ® contains some non-null vector orthogonal to K.
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Proof. 1t is easily seen that o is independent of the choice of basis.
Write f; =fix +tix ., ik € K, tig L K, i=1,...,m. Then

(fr-fm) (1o fin) = (Bircine + tixtind) 1,5 =1,...,m
Consider n.n.d. matrices B = (f{fjx) and C = (t}xt;x). We can check that
det (f; < )’ (f - ) = det (B + C) = det B+ Y_ B(r) o C(s),

r=0,...,m—1, 7+ s =m. By Theorem 1, B(r) o C(s) > 0 hence 0 < ¢ < 1, moreover,
when det B > 0 then B(r) o C(s) = 0 if and only if Rank C < s — 1. The assertions of
Theorem 2 follows. Q.E.D.

Further, dim K = n — dim K+ entails dim (QD N KL) > dim ® — dim K by
Lemma 1 (ii). Hence if dim ® < dim K, o can in fact vary from zero to one, and then o
can be used as a measure of steepness of the subspace ® relatively to the subspace K in
Rr,

4 Statistical application

In [1] generalized least squares (GLS) estimates (GLSE) were defined and can now be
expressed more generally as follows. Consider a system of k£ models

Y:J:bijgl+n:] 3 '?::].,...,k’ j: 1,_._,111.,

the ith model contains n; items, the Y;; are r x 1 response vectors, the £(i) x 1 vectors
b;; are regressors, random or not, the 6; unknown £(i) X r matrix parameters, the 7;;
residuals and a prime denotes transpose. The global matrix parameter is

6=(6,-6.).

Put- € = £(1)+---+£(k), then the range space of 8 is M;,. Arbitrary constraints may be
imposed on the parameter 6, which means its range © may have a quite arbitrary shape.
We call GLS value any value # which minimizes some norm of the global residual

!
n= (nil---nin,5---5n§ﬂ'--nknk) :
as in My, the conceptual variable f varies over an affine manifold F containing the set
O, if unique @ is called the GLSE for the regression parameter g.

The notion of sym of mixing determinants proves to be a useful tool for investigating
the complex matrix expression of the error §—8, namely it enables us in definite conditions
to majorize the Euclidean norm ||§ — || by ||D7||, where D is some positive constant
independent of the data as well as of the sizes ny, ..., n, and =y is a linear vector function of
the global residual . This error norm evaluation serves for proving the strong consistency
of the GLSE. :
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TONG PINH THUC HON HQP
Nguyén Béc-Vin

TOM TAT : Xét mot s8 ma trin vubng cing cfp. Rat mdt s§ cho trude cdc hang cla ma
tran thit nh4t, mot s& cho trudc cdc hang cla ma tran thi hai, v.v., rdi tao mdt ma trén vudng
mdi véi chc hang gilf nguyén s8 thi ty gbc cla ching. Ching t6i dua ra khéi niém téng dinh
théc cia ctia moi ma tran hdn hdp nhut véy. Dinh Iy chinh 1a: n€u c4c ma trin xuéit phdt x4c dinh
khong am thi t8ng n6i trén s& khong am, di€u kién cén va di cho t8ng duong dudc chi ra. Ap
dung : do d6 d6c trong hinh hoc nhiéu chiéu, dénh gid chuén sai clia u6c lugng binh phudng bé
nhAt.
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