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ABSTRACT : In this paper, we propose a method for discovering the binary und fuzzy
association rules from database. We study a new kind of association rules: fuzzy
association rules. We use the rough set theory of Z.Pawlak and fuzzy set theory of L.A.
Zudeh for defining some concepts and developing vur method bused on these new
concepts. We also introduce an application for discovering the fuzzy rules from a
databuse in supermarket. In this application, we study the quantity of purchased items
instead of ‘to be purchused or-not to be purchased’ information of a particular item as
the traditional approach did.
Keywords: binary association rules, binary descriptor vector, binary information mapping, binary
information system, binary large descriptor set, fuzzy association rules, fuzzy descriptor veclor,
fuzzy information mapping, fuzzy information system, fuzzy large descriptor set.
1. INTRODUCTION

»

Problem of association rule discovery is one of the key problems in knowledge
discovery from large database. There are many research works related to this problem
(1][2]19][12]). In these works, the association rules have the format “There are n% of
customers who buy book, buy video tape”. We propose a method that can help us (o
discover the fuzzy association rules such as “There are m% of customers who buy
MANY books, buy FEW video tape”. We employ Z.Pawlak’s idea in rough set theory
[14] for defining the binary information system, and some concepts on binary information
system. Atter that, we employ L.A. Zadeh’s idea in fuzzy set theory [11] for changing the
above concepts to fuzzy concepts. These new definitions are used for discovering the
binary large descriptor set, fuzzy large descriptor set, binary association rules and fuzzy
association rules. We propose a method for discovering these things from database. Our
method works with the information system in the memory instead of the database in disk,
so the efficiency of mining process is improved significantly. We also discuss a real life
application in discovering the binary and fuzzy association rules from a supermarket
database. This paper is organized as follows: 1) Introduction; 2) Formal definitions on
binary information system 3) An algorithm for discovering binary large descriptor sets
and binary association rules from binary information system 4) Formal definitions on
fuzzy information system 5) An application to a database in supermarket 6) Upgrading
the proposed algorithm for discovering fuzzy association rules 7) Using a cube database
for discovering the relations among many fuzzy information systems 8) Conclusions and
future works.
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2. FORMAL DEFINITIONS ON BINARY lNl* ORMA l ION SYS lEM
2.1 Binary information system :

¥ o et

Let O={0,.,0,} be a finite set of 'n objects D-{d,, o) be a finite -set. of m
descriptors, B ={0,1}. A binary information system is defined as Sg = (0,D,B,y) where
is a mapping x: OXD--- > B, % (0,d)=1 if object 0 has deseriptor d and i (0, d)=0 if not.

2.2. Binary information mapping

Given a binary information system Sg =(0,D,B,y). Let P(O) be the power set of O,
let P(D) be the power set of D, binary information mappings ps and Ap are defined as
follows: : :

P P(D) e >P(0) and Ag.P(0) ----> P(D) (1)

e GivenScD,ps(S) ={oeO0IVdeS,ylod)=1}"

e GivenXcO,AsX) ={deDIVoe X,y(o,d)=1}

Some properties of pg(S) and Ag(X) cah be staﬁ:d as:

i) ¥ 81,82 %€ "P(D)/'S1 &'52 = pa(82) "€ pe(51)

ii) ¥ X1,X2 € P(0), X1 ¢ X2 = Ap(X2) c Ap(X1)

2.3. Binary large descriptor set

‘Given a binary information system Sg = (O,D,B,y) and a threshold vel0,1]. Let S
be a subset of D, Sis a binary large dcscrlptor set with threshold v if:

Card(ps(S)) >= v* Card(O) A ()

Let Lg be a set of all binary 1arge descriptor sets discovered from Sp, we have the
following property: - '

i) -V.Sely, TeS = Tely

We denote Lgy as a subset of Lg if X € Lgp, card(X) = h ( h is a positive
integer).

24. Binary large association rules and confidence factor

Given a binary information system Sg = (0,D,B,y) and a threshold ve[0,1]. Let L
be an element of Lg , X and Y be the subsets of L where L= XUY and XNnY={}.We
define a binary association rule between descriptor set X and Y as an information
mapping : X --- >Y. The confidence factor of this rule is denoted as CFg (X --- >Y) and
calculated by:

Chg (XY= Cal‘d(PB (X)nps (Y))/ Card(PB (X))
(3)

We denote Rgp as the set of all binary large association rules which are
discovered from Sg where CFg(r )>=0, V1 € Rgp.

2.5. Binary descriptor vectors and some operations on these vectors
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Given a binary information system Sg = (O,D,B,}) where O={0y,..,0,} is a finite
set of n objects and D={d,,...,dn} is a finite set of m descriptors, we define some concepts
related to our algorithm as follows:

2.5.1 Binary descriptor vector

A binary descriptor vector vg(X)=(Xy,....X,) where X < D is a vector with n
components. Each component X; takes a value in B. Let VSg be a set of all binary
descriptor vectors of Sg. If card(X)=1, X is a descriptor of Sg and X = % (0,X). On Vg,
we define two operations as: :

2.5.2 Binary descriptor vector product

Given X, X, < D, let va(X)=( X11,...X1a) and vi(d2)=( Xa1,....X20) be the elements
of VSg. The binary descriptor vector product of vg(X,) and vg(X3) is denoted as:

v(X3)=va(X)) Op va(X2) (4)

where va(X3)= ( X31,....X30), X3 = min(Xy;, Xa)), j=1,...,n, X3 =X, U X < D. From
vector vg(X3), we know all objects having descriptor set X, and X;. We use vg(X,;) for
representing pg(Xd;); ve(X2) for representing pg(Xz); and vg(X3) for representing pp(Xs).

2.5.3. Support of the binary descriptor vectors

Given X, c D, a support of vg(X,) denoted as supg(vs(X,)) is defined as:

supp(ve(X1))={0€0IVd e X;, x(0,d)=1} (5)
It is easy to see card(supg(vs(X)))) = card(ps(X,))
2.5.4. Calculating card(pg(S))

Let S={s),...,sx} be a subset of D where s; is a descriptor of Sg, j =1,....k.. Each g,
corresponds to a binary descriptor vector vg({sj}) of VSg. The cardinality of pg(S) is
calculated by: '

card(pg(S)) = card(sups(ve({s1}) ®s ... @svs({sx}))) (6)

We denote VSg;, as a subset of VSh containing only vector VB(X) where X < D
and card(X) = h, his a given threshold. : -

3. AN ALGORITHM FOR DISCOVERING BINARY LARGE DESCRIPTOR SETS
AND BINARY ASSOCIATION RULES FROM BINARY INFORMATION SYSTEM

In this section, we deVelop the idea of Apriori-Tid algorithm presented in [12] and
propose an algorithm for discovering binary large descriptor sets and binary association
rules from binary information system. Our proposed algorithm works with bits in memory
and does not work with the database on disk, so we can improve the speed of mining rule
process. Given a database and two threshold MINSUPP, MINCONEF for the min support .
and min confidence of the association rule in data mining lnemlure the Apriori-Tid
algorithm has two phases:

Phase 1: Discover the large descriptor sets based on a given MINSUP threshold.
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Phase 2: Build up the association rules based on a given MINCONF threshold.

Given a binary information matrix Sg = (O,D,B,y) where O={0),..,0,} is a finite set
of n objects, and D={d,,..,dn,} is a finite set of m descriptors, B={0,1} and thresholds v,
Be[0,1] where v is MINSUPP and B is the MINCONF. Our proposed algorithm is as
follows:

3.1. Discover the binary large descriptor set Ly
1) Answer ={}
2) Generate Ly, from Sg;
3) For (k=2;Lgx<>{};k++)do
4) Genexlate Lgy from Lgy.,
5) Answer =y Lgg
6) Return Answer;
3.1.1 Generating Ly ;
1) Lgi={}
2) For (i=1;1<=m,; i++) do
3) If (card(supg(vs({di})) > v * card(O) then begin
4) «SaveLargeSet({ d; }, Lg));
5) SaveDescriptorVector(vg({d; }, VSg.1);
6) End;
5) Answer=Lg,
6) Return Answer;
where m = card(D).
3.1.2. Create Lyy from Lg .,

Based on the property VS € Lg, Tc S = Te Ly , we generate Lgy from Lgy..
The procedure is as follows:

1) Create a matrix which rows and columns are the elements of Lg k1.
2)Lpx={}

3) For(each X € Lgy.;) do

4) For (each Y € Lgy.; and X <> Y) do begin

3) T = XUY;

6) It (card(supg(ve(T)) > v*card(O) ) and Card(T) =k ) then begin
7) SaveLargeSet(T, Lgy);

8) SaveDescriptorVector(vs(T), VSgx);

9) end; ‘
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10) end;

11) Answer = Lgg;

12) Return Answer;

SaveLargeSet(T, Lgy) is a function for saving a binary large descriptor set T to

Lgx.

SaveDescriptorVector(va(T), VSgx) is a function for saving a binary descriptor
vector vg(T)to VSpx. Based on (4), we can calculate rapidly supg(vs(T)) at g step of the
above loop from the elements of VSgx..

3.2. Discover the binary association rules from Rg g

DReg={};

2) For (each L € Lg ) do begin

3) For (each X,Y € L and XUY =L and X NY ={} ) do begin

4)if (CFg (X --- >Y) >= ) then SaveRule(X --- >Y, Rgp);

5)if (CFg (Y --- >X) >= [ ) then SaveRule(Y --- >X, Rgp);

6) End

7) End

8)Answer = Rpp;

SaveRule(X --- >Y, Rg ) is a function for saving the binary association rule to Ry g.

3.3. An example

Given a binary information systcm_SB = (0,D,B,y) as defined in table 1 andu =035
=0.5. From Sg, we have the following binary descriptor vectors of Vg

ve({d1}) =(1,0,1,0) ; ve({d2}) = (0,1,1,1);

va({ds}) = (1,1,1,0); va({ds}) = (1,0,0,0);

va({ds}) = (0,1,1,1).

Table 1: A binary information system

di [dy [dy [dy [|ds
0, 1 0 1 1 0
o; |0 1 1 0 |
o; |1 1 ] 0 1
oy [0 1 0 0

3.3.1. Creating Ly

Calculate card(supg(vs({di}),i=1,...,5, we have:

card(sups(ve({di}) = 2; card(sups(vs({d2}) = 3;

card(supp(vs({d3}) = 3; card(sups(vs({ds}) = 1; card(sups(va({ds}) =3
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With MINCONF=0.5, we have Lg = { {d,}, {d2}, {ds}, {ds}}.

In VSg , we have the following descriptor vectors: :

ve({di}) = (1,0,1,0) ; va({d2}) = (0,1,1,1); ve({d3}) = (1,1,1,0); vs({ds}) = (0,1,1,1).
3.3.2. Creating Ly ; from Ly

From Lg ), we build a matrix expressing the mapping f: Lg ;X Lg --—- > R ( real
number set).

{di} | {do} | {ds} | {ds}
f 1 2 1
iy o > | 3.1 3
dy b 2 1 2 | 2ifes
{ds} 1 3 2 3

Given (X,Y)eLg,xLg and X<>Y, T=XUY, the value of f(X,Y) is card(supg(vg(T)).
We select T=XUY which card(supg(ve(X) Op vg(Y))) = card(supg(vg(T)) >= MINSUP*
card(O) and card(T)=2. When we calculate supg(vg(T)), T=XUY we use vg(X) which was
saved in VSg , for increasing the speed of calculation. Finally, we have L, as follows:

L2 = { {di,ds}, {d2,ds3}, {d2,ds} , {d3,d5} ).

In VSg, , we have the following descriptor vectors:
ve({di,d3}) = (1,0,1,0); va({d2,d3}) =(0,1,1,0) ;
va({d2,ds)) = (0,1,1,1; va({ds,ds)) =(0,1,1,0)
3.3.3 Creating Ly 3 from Lg ,

From Lg, we build matrix expressing the mapping f: Ly ,X Lg,---- > R ( real
number set).

{di,ds} | {dods} | {dapds} | {ds,ds}
{d:,ds} 2 I 1 1
{d;,d5} 1 2 2 2
{dy,ds} | 2 3 2
{ds,ds} 1 2 2 2

Given (X,Y)eLg)xLpsand X<>Y, T=XUY, the value of f(X,Y) is card(supg(vs(T)).
We select T=XUY which card(supp(vs(X) ®p vg(Y))) = card(supg(vs(T)) >= MINSUP*
card(O) and card(T)=3. When we calculate supg(ve(T)), T=XUY we use vg(X) which was
saved in VSg, for increasing the speed of calculation. Finally, we have Lys ={ {d; .d;
ds}} and VSg 3 containing only one descriptor vector vg({d,,ds , ds}) =(0,1,1,0)

10
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3.3.4 Creating Ly 4 from L3

From Lg3, we build matrix expressing the mapping f: Lg3X Lg3---- > R ( real
number set).

{d,,d3 ds}
{d;,d3, &s} 2

We have Lgy4 = { }. Stop the procedure.

Finally, we have:

Lg = Lgy, U Lsa U Lgy = ({di}.{d2}, {d3}, {d5}, {di ,d3}, {d2d3}.{d2.ds]} ,
{d3,ds}.{d,d3 ds} )

If MINCONF = 50%, we may have some binary association rules as follows:

{di} = >{d3}, {d3} > {d\}, {d3 ds5}--- > {d2}

4. FORMAL DEFINITIONS ON FUZZY INFORMATION SYSTEM

4.1 Fuzzy information system

Let O={0y,..,0n} be a finite set of n objects and D={dj,..,dn} be a finite set of m
descriptors, let F=[0,1] be a subset of real number set. A fuzzy information system is a Sg
= (O,D,F,n). Mapping p is defined as p: OxD--- > F, where p(o.d) € F expresses the
degree of object o having descriptor d,

4.2. Fuzzy information mappings

Given a fuzzy information system Sg = (O,D,B,p) and a threshold teF, we define
the fuzzy information mappings prand Af as follows:

pr: P(D) ------ >P(0) and Ag.P(O) ---- > P(D)

e GivenScD,pr(S) ={0€0IVdeS, plo,d)>=1}

e GivenXcO,As(X) ={deDIVoe X, pulod)>=1}
Some properties of pr(S) and Ax(X) can be stated as follows:
)V 81,52 e P(D),S1c 52 = p(S2) ¢ pr(S1)

ii) Vv X1,X2 € P(O), X1 ¢ X2 = Ap(X2) c Ap(X1)

4.3. Fuzzy large descriptor sets

Given a fuzzy information matrix Sg=(O,D,F,u) and a threshold v € TuletSc D,
S is a fuzzy large descriptor set with threshold v if:

Card(pg(S)) >= v* Card(O) ; (7

Let L be a set of all fuzzy large set discovered from Sg, we have the following
property:

3-¥Sels TS = T L

11
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We denote Ly as a subset of Lg if X € Lgy, card(X) = h ( h is an positive
integer).

4.4. Fuzzy association rules and confidence factor

Given a fuzzy information matrix Sg=(0O,D,F,u) and a threshold v € T. Let S be an
element of Lg . X and Y be the subsets of S where S= XuUY and XN Y = {}.

We define a fuzzy association rule between descriptor sets X and Y and denoted as
X--- >Y. The confidence factor of this rule is calculated by:

CF¢ (X--- >Y) = Card(pr (X) N pr (Y)) / Card(pr (X)) (8)

We denote Rgp as the set of all fuzzy large association rules r discovered from Sg
where CFg(r )>=p.

4.5. Fuzzy descriptor vectors and some operations on these vectors

Given a fuzzy information system Sg = (O,D,F,p) where O={0,,..,0,} is a finite set
of n objects and D={d,..,d,,} is a finite set of m descriptors, we define some concepts
related to our algorithm.

4.5.1 Fuzzy descriptor vectors

Let X be a subset of D, we define a fuzzy descriptor vector ve(X) for representing
X. A fuzzy descriptor vector ve(X)=(X,,...,X,) is a vector with n components, each
component X; takes a value in F. Let VSg be a set of all tuzzy descriptor vectors of Sg. If
card(X)=1, X is an element of D, where X=u(0j, X). On VSg we define two operations
as follows:

4.5.2. Fuzzy vector product

Let ve(d)=( diy, . . ., dyp) and ve(da) =( dy), . . ., d3,) be the elements of VSg. The
fuzzy vector product of ve(d,) and vi(d,) is a vector ve(d3)=( dsy, . . ., d3.) of VSE where
ds; = min(d,; dy), j = 1,...,n. This fuzzy vector produci 1s denoted as ve(ds) = ve(d)) O
vr(d2).From vector ve(ds), we can know all objects having descriptor d; greater than a
given threshold. We use ve(d;) for representing pp({d;}); ve(d,) for representing pg({dz});
and vg(ds) for representing pg({dj, d2}). It is easy to discover this property:

Let Z be a subset of D and Z=XUY and XNY=({}. If we know ve(X) and ve(Y), v¢
(Z) can be calculated by ve(Z)=ve(X) O ve(Y).

4.5.3. Support of the fuzzy descriptor vector

Let v(d))=( dy), ..., dj,) be a element of VSg and a glven threshold a € T. A
support of fuzzy vector v(d ) 1s defined as:

supr(ve(d1)) ={ 0 € O : p(o,d)) >=a } , forall j=1,...,n. 9)

where card(supp(vi(d;)) ) is the number of objects o having p(v;,d)) >=w .

4.5.4. Calculating cardinality of pg(S)

Let S={s),...,sx} be a subset of D, where $j»J =1,...,k 1s an element of D. Each $)

corresponds to a vector v(sj) of V. The cardinality of pg(S) is calculated by:

12
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card(pg(S) ) = card(supg(vr(d)) (10)
where vi(d) = ve(s1) O ... Op VE(sk).

We denote VSg);, as a subset of VSg containing only vector vi(d) where d € P(D)
and card(d) = h.

5. AN APPLICATION TO A DATABASE IN SUPERMARKET

Suppose that, we have a table where each row is a transaction and each column is
an item. A typical table of this kind is shown in table 2.

Table 2: Table of transaction and items

dl (pd2rjd3 o 4y P A3 | de
al 9T a0y 121070 0 0
02 221 56 15 0 0 0
03 144 123 Lod7 1540, 2104 .31
o4 174 .45:), 14 | - 61 15:4.- 316
05 0 0 I+ 7 i8] 19
06 0 0 ]2 31 154415

The element b;; of this table is the quantity of the purchased item d; in transaction
0;. Let O be the set of transaction and D be the set of items. We define a mapping y as y:
OxD --- > { 0, 1 } where y(0,d)=1 if transaction o has item d. From table 2, we build up g
as shown in table 3.

With threshold v = 0.6 (60%), set {d1,d2,d3} and {d4,d5,d6} are binary large
descriptor sets and binary association rule such as:{d1,d2} --- > {d3},

Table 3: Binary information matrix

dl d2°|1d3 |[dd4 |d5 |dé
ol .}l 1 1 0 0 0
02 |1 1 1 0 0 0
03 || 1 1 | 1

o4 |1 1 il 1 1 1
o5 |0 0 } 5kl 1 1
o6 |0 0 1 ] 1 1

In binary information matrix, each x(o,d) is equal to 1 or 0. This representation
does not consider the quantity of purchased items in transaction because if transaction ol
has 12 items of d3 and transaction 05 has only 1 items of d3 but x(ol,d3)=y(05,d3) = 1. If
d3 is an item that has high price, the selling of a small quantity of d3 and large quantity of
d3 has big difference. We use three fuzzy sets MANY, AVERAGE, FEW |7,8] for
fuzzitying each item. The membership functions of these fuzzy sets are appropriated to
item d are p'yvany . paver'; 1orew. Let 1 many . n4"yany be n membership functions of n
fuzzy sets MANY appropriated 1o n items. We fuzzify the information table in table 2 and
the result is shown in table 4.

13
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Table 4: A fuzzy information matrix with n membership function pany .
dl d2 [d3 |d4 |[d5 |d6
ol {08 [09 |08 [0 0 0

o2 |08 (08 |08 [0 0 0

o3 |09 |08 |07 |06 |06 |03
o4 | 0.6 0.(; 09 06,107 |05
o5 |0 0 0.1 {07 |08 [04
06 |0 0 0.1 064707 |10:5

where pmany: OxD --- > [0,1].With v = 0.5(50%); ‘Tt = 0.6(60%), we can discover
from the fuzzy information matrix the following large descriptor sets for the concept
MANY of n items as {d1,d2,d3),{d4, d5}. Set { d1,d2,d3} means the fuzzy association
rule:{d1,d2} --- > {d3}, the CFg(*) of this rule is equal to 1 or 100%. It means that
There are 100% customers who buy MANY {d1,d2}, buy MANY {d3}.

6. UPGRADING THE PROPOSED ALGORITHM FOR DISCOVERING FUZZY
ASSOCIATION RULES

Given a fuzzy information matrix Sg = (O,D,B,u) where O={0,,..,0.} is a finite set
of n objects, and D={d,,..,dn} is a finite set of m descriptors, B={0,1} and thresholds v,
Pel0,1] where v is MINSUPP and B is the MINCONF. Let L is a set of all large fuzzy
descriptor sets of S, let Lgx be a subset of Lg if X € Lgy, card(X) =k ( k is an positive
integer) and Rgp be a set of all fuzzy association rules which have confidence greater
than a given threshold B. The algorithm for discovering the fuzzy association rules is the
same as the procedure mentioned in 3 for discovering binary association rules. In this
algorithm, Sg Lg Lgx Rppare replaced by Sg, Lg Ly Rgprespectively.

7. USING A CUBE DATABASE FOR DISCOVERING THE RELATION AMONG
MANY FUZZY INFORMATION MATRICES

With (O,D) and three sets of [Mdmm} ,{pdAVER} ,“.I.dFEW} we have three fuzzy
information matrices which are built up from the same (O,D). We build a cube database
where dimension #1 is the transaction; dimension #2 is the items and dimension #3 is the
membership functions ,.LdMANy ; p"AVER K ;,LdFEw_ In each dimension, we discover the fuzzy
large sets. Let Fl= (O,D, p"MANy, v, 1) is the first layer of dimension #3. F2= (O,D,
pdAVER, L, 1) i1s the second layer of dimension #3 and F3=(0O,D, pdpgw, v, 1) is the third
layer of dimension #3. With F1 we discover the set LF1 containing all fuzzy large
descriptor set of F1.With F2 we discover the set LF2 containing all fuzzy large descriptor
sets of F2. With F3 we discover the sets LF3 containing all fuzzy large descriptor sets of
F3.Let SF1 be the subset of LF1, SF2 be the subset of LF2 and SF12=SF1NSF2 <> {}.
We build the fuzzy associa[ibn rules based on SF12. Let Li and Lj be the subset of S12
and S12 = LiULj and LinLj=(}. we define a fuzzy association rule between Li and Lj
and denoted as Li --- > Lj. The meanings of these rules are as follows:

There are n% of customer who buy MANY item X, also buy FEW item Y, or
There are m% of customer who buy AVERAGE item T, also buy MANY item U.

14
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8. CONCLUSIONS AND FUTURE WORKS

The usage of fuzzy information system and some fuzzy concepts help us to upgrade
the meaning of binary and fuzzy association rules discovered from a large database. This
approach give us a chance to integrate the fuzzy set with rough set into data mining
application and give us an idea to increase the speed of mining process. We also think
about how 10 change the continuous dala and discrete data to an information by using
fuzzy membership functions. We continue to study the partitioning methods for
converting the relational database to our information systems and improving the speed of
our algorithm by using a parallel algorithm.

KHAM PHA CAC LUAT KET HOP NH] PHAN VA KET HGP MO TRONG
CcOSG DU LIEU
Hoang Ki€m - P Phiic

TOM TAT: Trong bai bdo nay, ching 16i dé xudt mot phuong phdp dé phdt hién cdc ludt két hop
nhj phdn va két hyp mo trong co s dit lidu. Chiing t6i nghién citu mét kiéu ludt két hop mai: ludt
két hgp mo. Chbing t6i dung ly thuyét 1dp thé ciia Z. Pawlak va ly thuyét tdp mo ciia L.A. Zadeh dé
dinh nghta mgt s6" khdi niém va phdt trién phuong phdp dua trén cdc khdi niém mdi nay. Ching
t6i cing dé xudt mor ing dung nhdm khdm phd cdc ludt két hgp md ti cdc co sd dig liéu trong siéu
thi. Trong itng dung nay, chiing t6i chi y dén sé "lugng mdt hang dugc mua thay vi chi luu y “la co
mua hay khdng mua m@t mdt hang nao dé” nhu cde 1iép cdn truyén théng da lam.
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