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Abstract:

Let C(n) be the set of all n-dimensional boolean vectors and C(n, k) be the set
of all a = (a1, ..., an) € C(n) such that a; + ... + @, = k. For a € C(n, k) let 4;a
denotes the vector of C(n — 1) obtained from a by deleting the i-component of a
The shadow of a is defined to be Aa = {§;a: 1 <1< n and a; = 0} and that of
A€ C(n,k)is AA = Ugeapda.

In this paper we will prove a Lovazs type theorem: If A € C(n,k) with | =

( i ) then |[AA| = ( ; ; : ), after showing that |AC(A)| < |AA| where C(A)

is the first |A| vectors of C(n, k) in V-order.

MOT DINH LY KIEU LOVAZS
(Nhan duoc ngay 30/12/1997)

Tém tét:

Goi C(n) 1a tap hop cdc vector Bool n-chidu va C(n, k) la tap hop tat ca cac vector
a = (ay,...,an) € C(n) sao cho a; + ... + a, = k. Véi a € C(n, k) goi d;a 14 vector
cud C(n— 1) ¢ duge tit a bing cdch bd di thanh phin thi i cua a Bong cuaa
duoge dinh nghia la Aa={da: 1<i<nvaa; =0}va bong cua A € C(n,k) la

AA = UaEA Aa.
Trong bai nay, ching t6i sé ching minh mét dinh 1y kiéu Lovazs: néu A € C(n, k)
véi |A] = i ) thi |AA| = ( o ; L ), sau khi da ching minh rdng |[AC(4)| <

|AA| véi C(A) 1a tap hop |A| vector dau tién cud ((n. k) trong V-thi ty.

1 Introduction

Let C(n) be the set of all n-dimensional boolean vectors and C(n, k) be the set of
all a = (ay, ..., a,) € C(n) for which a; +...+a, = k. Denote by é;a the vector C(n—1)
obtained from a by deleting the i-th component of a. The shadow Aa of a is defined
to be Aa={da: 1 <i<nanda; =0} and that of A CC(n,k)is AA= | Aa.
acA

Definition 1 (V-order) We order C(n,k) by putting a < b if a; = 1 > b; = 0 where
i:min{j: aj;aébj}. ‘
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For A C C(n.k) let C(A) denote the first |4| vectors of C(n, k) in V-order. If
C(A) = A then we say that A is compressed or A is an initial section IS. Our results
in this paper are the following

Theorem 1 For A C C(n,k) we have |AC(A)| < |AA|.

T

Theorem 2 Let A C C(n,k) with |A| = (k

) where © s real and x > k.

-1
Then |AA| > (‘” . )

Theorem 1 is quite similar to what we have done in [2]. Theorem 2 is a Lovazs
type theorem dealing with a collection of k-subsets of an n-set [1].

2 Proof of the theorems

For a € C(n,k) let Va = max {j: a; = O} and a* = §,a with h = va. By a
simple calculation we get

Lemma 1 For a € C(n,k) we have a* = max{Aa}. Furtherif a<b
then a* <b* Va,beC(n,k).

Here and elsewhere, A+ B denotes AU B if AN B = 0, and if A is a subset of
vectors and ¢ € {0,1} then At = {(x,t): x € A}

For A C C(n,k) let A,; = {(a,--,8,) EA: a, =t} (t=0o0r¢=1)and we can
write A = M0 4+ N1 where M CC(rn—-1,k)and NC C(n -1,k - 1).

The following lemma is immediate
Lemma 2 [f A is an IS then so is AA. Further,
AA={a" 8= (81,:0:) €A and a6, = 0} =8,(A,.5).
Thus if A 1s an IS and A = G0 + H1 then AA = G.

Definition 2 Let A, B C C(n,k) with A = M0+ N1 and B = GO+ H1. IfG =
C(M) and H = C(N) then B 1s said to be the part compression of A and written as
B = PC(A). If PC(A) = A then A is called part compressed.

Lemma 3 Let A= M0+ N1C C(n,k) and B= PC(A) =G0 + H1. If Theorem 1.1
is true in n-1 dimensions then |AB| < |AA].

Proof. Put my = max{B,} and m; = max{B,.;}. We consider two cases.
Case 1. m,; < my. It is easy to check that AB = G, so |AB| = |G| = |M| < |AA]|.

Case 2. m; > m,. After a short argument we get G,_;, C (AH)1 and hence
AB = (AG)0 + (AH)1.
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Sinee Theorem 1 is true in n — 1 dimensions we have |[AG| < |[AM| and
|AH| < |AN|so |AB| = |(AG)0|+ |(AH)1| < |(AM)0|+|(AN)1| < |AA| as reanired.
Now let z, denote the zero vector of dimension p > 1. If a € C(n, k) with a, =1
and a,_; = 0 then we can write a = (u.z,, 1) for some p with u = 0 or u ends 1.

Definition 3 Let A C C(n,k). Define

¢a = (u,1,z,) %f a= (u,'zp,l) and (u,z,,1) € A,
a if otherwise.

Also 9A = {¢a: a € A} and we say that A is ¢—closed if pA = A.
Lemma 4 If A is part compressed then A(¢A) C ¢(AA).

Proof. As in [2].

Proofs of the theorems. Both theorems are true for n = 2 and for k = 0, 1,
so we consider the induction steps.

Proof of Theorem 1. By Lemma 3 and Lemma 4 we may assume that A is
PC and ¢—closed. We then change A to an initial section B with |[AB| < |AA| as we
have done in [2], that is |[AC(A)| < |AA|.

Proof of Theorem 2. By Theorem 1 we can assume that A = GO+ H1 is an

IS. Let y and z be the reals such that |G| = (z) and |H| = (k i 1), 80

(6= () +(5) »

By Lemma 2 we know that AA = G, so |[AA| = |G| = (i)

1 =1
Ify > -1 then (m k ) > (y), so |AA| > : ) Now suppose that
+

k k
y < = — 1. The induction hypothesis and the inequality (AG)0 + (AH)1 C AA give
y—1 z—1
a4 2 146 +1aH] > (Y 7) 4 (1 0]): (2)

w1 (e 027+ ()

-1 -1
Using the usual identity (i) = (y I ) + (z 3 1) with a short calculation we

get z <y < z — 1, and hence

i I e A B e b LB

-1
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From (1) and (2) we get
2z () (53) - () -G2) + (20) - G23)
« ez ()-G5)- 6o = ()60 -60)- (62

so0 by (3) we get |AA| > (w ; =

Thus Theorem 2 is proved.
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