A LOVAZS TYPE THEOREM

Trần Ngọc Danh

Department of Mathematics and Computing Science

College of Natural Sciences

(Received Dec. 30, 1997)

Abstract:

Let $\mathcal{C}(n)$ be the set of all n-dimensional boolean vectors and $\mathcal{C}(n,k)$ be the set of all $\mathbf{a}=(a_1,...,a_n)\in\mathcal{C}(n)$ such that $a_1+...+a_n=k$. For $\mathbf{a}\in\mathcal{C}(n,k)$ let $\delta_i\mathbf{a}$ denotes the vector of $\mathcal{C}(n-1)$ obtained from \mathbf{a} by deleting the i-component of \mathbf{a} . The shadow of \mathbf{a} is defined to be $\Delta \mathbf{a}=\{\delta_i\mathbf{a}:\ 1\leq i\leq n \text{ and } a_i=0\}$ and that of $A\in\mathcal{C}(n,k)$ is $\Delta A=\cup_{a\in A}\Delta \mathbf{a}$.

In this paper we will prove a Lovazs type theorem: If $A \in \mathcal{C}(n,k)$ with $|A| = \binom{x}{k}$ then $|\Delta A| = \binom{x-1}{k}$, after showing that $|\Delta C(A)| \le |\Delta A|$ where C(A) is the first |A| vectors of $\mathcal{C}(n,k)$ in \vee -order.

MỘT ĐỊNH LÝ KIỂU LOVAZS

(Nhận được ngày 30/12/1997)

Tóm tắt:

Gọi $\mathcal{C}(n)$ là tập hợp các vector Bool n-chiều và $\mathcal{C}(n,k)$ là tập hợp tất cả các vector $\mathbf{a}=(a_1,...,a_n)\in\mathcal{C}(n)$ sao cho $a_1+...+a_n=k$. Với $\mathbf{a}\in\mathcal{C}(n,k)$ gọi $\delta_i\mathbf{a}$ là vector cuả $\mathcal{C}(n-1)$ có được từ \mathbf{a} bằng cách bỏ đi thành phần thứ i cuả \mathbf{a} Bóng cua \mathbf{a} được định nghĩa là $\Delta\mathbf{a}=\{\delta_i\mathbf{a}:\ 1\leq i\leq n\ \text{và }a_i=0\}$ và bóng cua $A\in\mathcal{C}(n,k)$ là $\Delta A=\cup_{a\in A}\Delta\mathbf{a}$.

Trong bài này, chúng tôi sẽ chứng minh một định lý kiểu Lovazs: nếu $A \in \mathcal{C}(n,k)$ với $|A| = \binom{x}{k}$ thì $|\Delta A| = \binom{x-1}{k}$, sau khi đã chứng minh rằng $|\Delta C(A)| \le |\Delta A|$ với C(A) là tập hợp |A| vector đầu tiên cuả C(n,k) trong \vee -thứ tự.

1 Introduction

Let $\mathcal{C}(n)$ be the set of all n-dimensional boolean vectors and $\mathcal{C}(n,k)$ be the set of all $\mathbf{a}=(a_1,...,a_n)\in\mathcal{C}(n)$ for which $a_1+\ldots+a_n=k$. Denote by $\delta_i\mathbf{a}$ the vector $\mathcal{C}(n-1)$ obtained from \mathbf{a} by deleting the i-th component of \mathbf{a} . The shadow $\Delta\mathbf{a}$ of \mathbf{a} is defined to be $\Delta\mathbf{a}=\{\delta_i\mathbf{a}:\ 1\leq i\leq n\ \text{and}\ a_i=0\}$ and that of $A\subseteq\mathcal{C}(n,k)$ is $\Delta A=\bigcup_{\mathbf{a}\in A}\Delta\mathbf{a}$.

Definition 1 (V-order) We order C(n,k) by putting $\mathbf{a} < \mathbf{b}$ if $a_i = 1 > b_i = 0$ where $i = \min \{j: a_j \neq b_j\}$.

For $A \subseteq \mathcal{C}(n,k)$ let $\mathcal{C}(A)$ denote the first |A| vectors of $\mathcal{C}(n,k)$ in \vee -order. If $\mathcal{C}(A) = A$ then we say that A is compressed or A is an initial section IS. Our results in this paper are the following

Theorem 1 For $A \subseteq \mathcal{C}(n,k)$ we have $|\Delta C(A)| \leq |\Delta A|$.

Theorem 2 Let $A \subseteq \mathcal{C}(n,k)$ with $|A| = \binom{x}{k}$ where x is real and $x \ge k$.

Then $|\Delta A| \ge \binom{x-1}{k}$.

Theorem 1 is quite similar to what we have done in [2]. Theorem 2 is a Lovazs type theorem dealing with a collection of k-subsets of an n-set [1].

2 Proof of the theorems

For $\mathbf{a} \in \mathcal{C}(n,k)$ let $\forall \mathbf{a} = \max \{j: a_j = 0\}$ and $\mathbf{a}^* = \delta_h \mathbf{a}$ with $h = \forall \mathbf{a}$. By a simple calculation we get

Lemma 1 For $\mathbf{a} \in \mathcal{C}(n,k)$ we have $\mathbf{a}^* = \max \{ \Delta \mathbf{a} \}$. Further if $\mathbf{a} < \mathbf{b}$ then $\mathbf{a}^* \leq \mathbf{b}^*$ $\forall \mathbf{a}, \mathbf{b} \in \mathcal{C}(n,k)$.

Here and elsewhere, A+B denotes $A\cup B$ if $A\cap B=\emptyset$, and if A is a subset of vectors and $t\in\{0,1\}$ then $At=\{(\mathbf{x},t);\;\mathbf{x}\in A\}$

For $A \subseteq \mathcal{C}(n,k)$ let $A_{n:t} = \{(a_1,...,a_n) \in A : a_n = t\}$ (t = 0 or t = 1) and we can write A = M0 + N1 where $M \subseteq \mathcal{C}(n-1,k)$ and $N \subseteq \mathcal{C}(n-1,k-1)$.

The following lemma is immediate

Lemma 2 If A is an IS then so is ΔA . Further,

$$\Delta A = \{ \mathbf{a}^* : \mathbf{a} = (a_1, ..., a_n) \in A \text{ and } a_n = 0 \} = \delta_n(A_{n:0}).$$

Thus if A is an IS and A = G0 + H1 then $\Delta A = G$.

Definition 2 Let $A, B \subseteq C(n,k)$ with A = M0 + N1 and B = G0 + H1. If G = C(M) and H = C(N) then B is said to be the part compression of A and written as B = PC(A). If PC(A) = A then A is called part compressed.

Lemma 3 Let $A = M0 + N1 \subseteq C(n, k)$ and B = PC(A) = G0 + H1. If Theorem 1.1 is true in n-1 dimensions then $|\Delta B| \leq |\Delta A|$.

Proof. Put $\mathbf{m}_0 = \max\{B_{n:0}\}\$ and $\mathbf{m}_1 = \max\{B_{n:1}\}\$. We consider two cases.

Case 1. $\mathbf{m}_1 < \mathbf{m}_0$. It is easy to check that $\Delta B = G$, so $|\Delta B| = |G| = |M| \le |\Delta A|$.

Case 2. $\mathbf{m}_1 > \mathbf{m}_0$. After a short argument we get $G_{n-1:1} \subseteq (\Delta H)1$ and hence $\Delta B = (\Delta G)0 + (\Delta H)1$.

Since Theorem 1 is true in n-1 dimensions we have $|\Delta G| \leq |\Delta M|$ and $|\Delta H| \leq |\Delta N|$ so $|\Delta B| = |(\Delta G)0| + |(\Delta H)1| \leq |(\Delta M)0| + |(\Delta N)1| \leq |\Delta A|$ as required.

Now let \mathbf{z}_p denote the zero vector of dimension $p \geq 1$. If $\mathbf{a} \in \mathcal{C}(n,k)$ with $a_n = 1$ and $a_{n-1} = 0$ then we can write $\mathbf{a} = (\mathbf{u}, \mathbf{z}_p, 1)$ for some p with $\mathbf{u} = \emptyset$ or \mathbf{u} ends 1.

Definition 3 Let $A \subseteq C(n,k)$. Define

$$\phi \mathbf{a} = \left\{ \begin{array}{ll} (\mathbf{u},1,\mathbf{z_p}) & \text{if } \mathbf{a} = (\mathbf{u},\mathbf{z_p},1) \text{ and } (\mathbf{u},\mathbf{z_p},1) \not\in A, \\ \mathbf{a} & \text{if otherwise.} \end{array} \right.$$

Also $\phi A = \{\phi \mathbf{a} : \mathbf{a} \in A\}$ and we say that A is ϕ -closed if $\phi A = A$.

Lemma 4 If A is part compressed then $\Delta(\phi A) \subseteq \phi(\Delta A)$.

Proof. As in [2].

Proofs of the theorems. Both theorems are true for n=2 and for k=0, 1, so we consider the induction steps.

Proof of Theorem 1. By Lemma 3 and Lemma 4 we may assume that A is PC and ϕ -closed. We then change A to an initial section B with $|\Delta B| \leq |\Delta A|$ as we have done in [2], that is $|\Delta C(A)| \leq |\Delta A|$.

Proof of Theorem 2. By Theorem 1 we can assume that A = G0 + H1 is an IS. Let y and z be the reals such that $|G| = \begin{pmatrix} y \\ k \end{pmatrix}$ and $|H| = \begin{pmatrix} z \\ k-1 \end{pmatrix}$, so

By Lemma 2 we know that $\Delta A = G$, so $|\Delta A| = |G| = \begin{pmatrix} y \\ k \end{pmatrix}$.

If $y \geq x-1$ then $\binom{x-1}{k} \geq \binom{y}{k}$, so $|\Delta A| \geq \binom{x-1}{k}$. Now suppose that y < x-1. The induction hypothesis and the inequality $(\Delta G)0 + (\Delta H)1 \subseteq \Delta A$ give

$$|\Delta A| \ge |\Delta G| + |\Delta H| \ge {y-1 \choose k} + {z-1 \choose k-1}. \tag{2}$$

Further $|\Delta A| = |G| = {y \choose k}$, and so ${y \choose k} \ge {y-1 \choose k} + {z-1 \choose k-1}$.

Using the usual identity $\binom{y}{k} = \binom{y-1}{k} + \binom{y-1}{k-1}$ with a short calculation we get $z \le y < x-1$, and hence

$$\binom{x-1}{k-1} - \binom{y-1}{k-1} - \binom{z-1}{k-2} > \binom{y}{k-1} - \binom{y-1}{k-1} - \binom{y-1}{k-2} \ge 0.$$
 (3)

From (1) and (2) we get

$$|\Delta A| \geq \binom{y-1}{k} + \binom{z-1}{k-1} = \binom{y}{k} - \binom{y-1}{k-1} + \binom{z}{k-1} - \binom{z-1}{k-2}$$
 or
$$|\Delta A| \geq \binom{x}{k} - \binom{y-1}{k-1} - \binom{z-1}{k-2} \geq \binom{x-1}{k} + \binom{x-1}{k-1} - \binom{y-1}{k-1} - \binom{z-1}{k-2}$$
 so by (3) we get
$$|\Delta A| > \binom{x-1}{k}.$$

Thus Theorem 2 is proved.

Acknowledgement. The author would like to express deep thanks to Prof. David E. Daykin for his suggestions.

References

- [1] I. Anderson, Combinatorics of finite sets, Clarandon Press, Oxford (1987). Press (1986).
- [2] T.N. Danh and D.E. Daykin Set of 0, 1 vectors with minimal sets of subvectors, Rosrock. Math. Kollog., 50 (to appear)
- [3] D.E. Daykin, Ordered ranked posets, representation of integers and inequalities from extremal poset problems, Graphs and Order, Proc. Conf. Banff, Canada (1984). Ed. I.Rival, pages 395-412.