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Abstract: In this paper a straighforward Feynman path integral formalism
is discussed and applied to the problem of the suppression of bremsstrahlung
radiation of long-wavelength photons, the Landau-Pomeranchuk-Migdal (LPM)
effect, in a target of finite thickness with multiple scattering. Taking into account
the side effect yields corrections to the Migdal theory. The method is also applied
to the treatment of the standard LPM effect in the presence of an external field.
In brief, it is shown that preliminary numerical results are in very good agreeing
with experimental data.

HIEU UNG LANDAU-PEMRANCHUK-MIGDAL

CHO CAC BAN TINH THE HOU HAN.
PHUGNG PHAP TICH PHAN LO TRINH FEYNMAN
(Nhan dugc ngay 30/12/1997)

Tém tAt: Trong cong trinh nay hinh thic luan tich phan 1o trinh Feynman
dugc ban dén va dp dung cho bai toan sut giam cudng do bic xa hadm cua cdc
photon séng dai, con duge goi la higu tng Landau-Pomeranchuk-Migdal (LPM),
trong cac ban hitu han cé tinh dén hi¢u ttng tdn xa nhitu lan. Viéc tinh dén céc
hieu ting bién cho phép chiing t&i higu chinh 1y thuyét cua Migdal. Phuong phéap
cua chiing t6i ciing dugc 4p dung dé 1y giai hiu ing LPM trong su hién dién cua
truong ngodi. Cac két qua tinh toan s rat phit hop vdi cac két qua thuc nghiém

1 Introduction

While passing through amorphous medium, high energy particles undergo scat-
tering on atoms randomly in the formation length. These uncorrelated acts cause
a suppression of the emission of long wave-length photons in comparison with that
predicted by Bethe-Heitler bremsstrahlung theory for isolated atoms [1]. Landau and
Pomeranchuk [2] first described the effect, using the classical radiation theory with
taking into account multiple scattering of particle inside the formation length in a
qualitative manner. Subsequently, a quantum theory of this effect was developed by
Migdal (3], treating multiple scattering in a dynamical manner véa the kinetic equa-
tion for the position and velocity distribution function of particle in the medium. A
good report of the problem was given in [4). In his theory Migdal treated nicdium
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as infinitely thick, for which it works quite well in agreeing with the measurements
of the LPM effect at SLAC [5,6]. However, as the target thickness decreases the
boundary effect becomes more important and the Migdal formulas fail to account for
the boundary of the targets [5,6].

The interest in the LPM effect now is increased. Blankenbeckler and Drell
presented the eikonal approach to the LPM effect [7]. Baier, Dokshitzer, Peigne,
Schiff [8] and Levin [9] made a generation of the LPM effect to QCD for nuclear
matter medium.

Here we have developed a method, using the Feynman path integral formalism.
applicable for performing the statistical averages that treat the LPM suppression
effect. It is worth noting that one can easily treat the standard LPM effect in
the presence of an uniform electric field by changing paths in path integrals. Our
treatment includes as limiting cases Bethe-Heitler bremsstrahlung relevant for very
thin target, and the LPM effect for infinitely thick medium. For the later case
our results go accurately over into the ones of Baryshevskii and Tikhomirov for the
standard LPM in an external field [10] and of Migdal for the standard LPM [3].
Taking into account the boundary effect allows us to make corrections to the well-
known Migdal formulas for thick target.

2 Radiation cross—section as functional of
particle trajectories

For this purpose we adopt the Schwinger operator method [11], its generaliza-
tion was developed by Baier and Katkov [2]. Thus we have the radiation cross—section
summed over the polarizations of the photon and of the final electron, and averaged
over the polarizations of the initial electron

i G g i ) : i e
ity [ (&) - (A) (A7) + (BiB) + (Buf) (Bud)] »
X exp {357 [E(”z —7) — w‘r]}, (1)
- 1 ( E+m ., x/.s"+m_‘)
A = P+ 2
2vee' \Ve +m e+ m

o 1 ( e +m \/s+?nf*,)

£ = e~w, p' =
where %, w are the momentum and energy of the photon, p and ¢ - of the initial
electron. Indices 1 and 2 correspond to the moments of time t; and t, respectively.!

Let the electron, having initial velocity 7, enter a target at the moment t=20
and go out of it at the later moment T ~ L (L is the target thickness). The Z axis is
directed along the direction of velocity &, vg. Since typical values of scattering angles of

- 'Relativistic units A = c = 1 are being used thronghout.
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ultra-relativistic particles by atoms of medium are small, one can use the small-angle
approximation and represent the particle velocity as

ST ; i
0 t<0

dt) = { () 0<t<T
T tz2T

By using the small-angle approximation (2) and integrating (1) with respect to the
directions of the photon momentum, we can express the probability of emission in
the form '

dW e’ oo o exp(—iar)[1 €*+e? 0

e e R A =

dw s Im[md e 7 [ 27 4ee’ Oy =t :
2

1 exp{—m—y /"ﬁ?(t)dt L2 ([ ,-(t)dt]2+uw2,-—ﬂh-)2} (3)

-
T,y

where a = we/2e'y%. We recall that in an amorphous medium the formation length
is defined as

lf:_: ,\ . - (4)

@=(3) z;

Here X, is the radiation length and E, = m\/41r /a =~ 21 MeV. The probability of
photon emission is defined by ordinary Bethe-Heitler bremsstrahlung theory as

dWr 2.-«»2 ,192 T 2 2 E!2 2
Bu _ €7 (4) [(E"'_,,_)_,_w_}_ (6)

dv = 127w g2 g?

The physics of the LPM effect is that bremsstrahlung is suppressed when the mean
square multiple scattering angle over the formation length [y : (97) = (9?) [; is greater
than or equal to the square characteristic angle between the incident electron and
the produced photon: 92 ~ 1/4%.

3 Feynman path integral formalism and
multiple scattering problem

To treat the LPM effect for a target of arbitrary thickness one should average (3)
over all possible trajectories of the electron. For this purpose it is necessary to divide
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the integral over t's into parts corresponding to different regions of the particle
trajectory

f dtlft dt, = f—ocodti t?dt2 .2 fgdtlf:dtz + [7dty [ dEy +
i !

+ [2odts fg dty + [2dty ffdts + ff dty [ dts . (7)
Thus, the probability of photon bremsstrahlung will consist of six terms
dw dwes ‘
o N il (auﬁ: 13293J d (8)
dw <5 dw

In formula (8) the terms W* describe the probability of photon emission, which is
formed by part of particle trajectory in vacuum before it enters the target (a = L),
inside the target (o = 2), and after emerging from the target (o = 3). The terms
W (a < B ) - interference between them. By using the following transformation

exp {ia:2 U:’ ﬁi(t)dtr} N % fj: exp (—qz) exp [q%v@ /: ﬁi(t)dt} dg, (9)

one can find that in this instance, as in many others, the general expression for the
probability of a radiation process, accompanying relativistic charged particle passage
through medium, involves some kind of a particle trajectory functional of the quadratic
form

G [9:(£)) = exp { f [~iad?(t) + bits(2)] dt} . (10)

Here we denote a and b; some coefficients. The averaging of the radiation cross—
section over all possible particle trajectories leads to the calculation of the continual
integral of this functional in accordance with the conditional Wiener measure, which
corresponds to the probability that a particle trajectory was in the "corridor” v,(t) +
d¥;(t) in the space of all possible trajectories with a fixed end.

We should determine first this measure. Motion of relativistic charged particles

in a transverse plane is described by a Langeven equation ;
ep(t) — F(t) = f(t), (11)
where 5 = (z,y), F(t) is the regular force, acting upon a particle, f(t) is the Gaussian
d—correlation random force with a zero mean value i
(fi(tf)fk(t» = 620';6,:“5“, == t), 2., K=Tpcy 2 (12)
o; = d(8}(t))/dt, tz. (13)

We stress that this model reflects the random step nature of multiple scattering,
which can be characterized by the formal mean square scattering angle per unit
length (13). It is smaller by a factor of 2 than the value given in (5)

opt o, =0=(8})/2. (14)
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This is justified in the framework of the small-angle approximation, which is adopted
in our derivation when the particles approach to the scattering centres at not very
short distances. A more accurate description of the particle scattering on the Coulomb
potential has recently been given in [8]. The continual description of the multiple
scattering behaviour, as it is represented in (12-13), is physically due to the fact that
at high energies, owing to a large value of the formation length, relativistic particles
suffer on this length a large number of successive scattering acts by small angles by
atoms of medium. Since the particle mean free path in amorphous and crystalline
media is large compared to the range of the potential. we can regard the successive
scatterings as independent (12). Let us define the solution of equation (11) in the
absence of the random force in term of gy(t). Then we have

B = oy (15)
where (t) = )= Fo(t), olt) = Fo(t).

Solution of equation (15) with the Gaussian §-random force (12) is the Wiener mea-
sure {13,14]

dwds(t) = H dwdsi(t), (16)
=2,y
\. B -1_ B 1 tz ‘o 12 .
Awdat) = exp[ o ft ﬂsi(t)dt]l;[dﬂﬂ(t),

where N; is the normalizing factor, chosen from the condition [ dwd(t) = 1. The
conditional Wiener measure can be written in the Feynman notations [14]

1 ta .
(b1 Do, o) = o5 [~ 5 [ $5(2)a| D0, (17)

o;
with the help of which we shall average the functional G [ﬂt(t)]zf over all trajectories
with fixed ends 191'1!2 = Isi[tllg)

1 sty |
S R t 2k S 2 9
(ee)), = [ epem -5 | ThO@]DIL). (18)
In order to make the general treatment of the standard LPM effect in the presence
of an external field, which is assumed to be uniform in the transverse plane, one can
change path in path integral (18)

Fai(t) = 3:(¢) — duil?). (19)

This procedure has been described in [15]. The functional method was used in [16] to
treat the standard LPM effect in classical limit for an infinite medium. However, in
this work continual integral was calculated directly by its definition, that deals with
difference equations and matrix of infinite dimension. These calculations are very
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cumbersome. This work has been extended by Baryshevskii and Tikhomirov [10].
The application of Feynman path integral method, which we describe here, leads to
a simpler and more straightforward derivation of the LPM effect in the most general
case. The interested reader can find that path integral (18) is easily calculated by the
Feynman method. For this purpose we should take factor out of the path integrand,
which contains the whole dependence of integral on trajectory ends. Thus obtained
path integral over trajectories is calculated by means of a spectral representation [14].
The case with an uniform external electric field is the simplest one. We write out
here for further reference the result of calculation for this case

ey : 7
<eXp {fz |[—iad?(t) + bdi(t)] dt}> :‘/_za-mmhn-rx

w? y
S (L% (Vez —05) w; — 2_;‘7-:| + m{ —n; cosh ;7 (03 + 02) + 200,105+

222

-2%7'?‘ (coshmm — 1) (941 + y9) + c:?";b‘ [%T‘ sinh ;7 + ,?1—:(1 -- cosh 7]1-7-)} }) i $20}

/

where 7; = /2ioya, T =ty — t;, W = eE/e is the transverse acceleration of the
electron. We will carry out the averaging of the probability of photon emission (3)
with the help of one or two quadratures. that depends on the correlative link between
different parts of particle trajectory

(h (P9:) G [94(2) 32> = f;h (99:) (G [9;(t) ;;)* dds;, (21)
(h (P, 92) G [191-(%)]82) = f_if_ih (P13, 09:) (G [9:(¢) f;)* (G [9(t) jj)’ dd1;d9; (22)

where 0 < ¢, < t, < T. Thus, one should use (21) and (22) to compute (dl’i’”/dw) and
(dW? [dw) vespectively. It is the same for (dW'%/dw) and (dW? /dw), just with the
substitution ¢, — T. The quantities (dW'!/dw) and (dW?®/dw) vanish as we use a
subtraction procedure which should lead to no emission in the limit of no scattering
and zero field (see below).

4 Target of arbitrary thickness in the presence of an
external field

Consider the LPM effect with symmetric scattering in the presence of uniform
electric field, directed along the z-axis

Op=0y=7. w,=0, w,=w. (23)

After a simple calculation with the Gaussian integrals we can obtain the explicit
results in the form

delz 62 0 T n
T S _?Im./:mdtlfo dt2cosh nty (tanh iy — nty) -
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[L L ("—PO i ‘—”;P(f)] exp (—iar — %%Po) ’ (24)
dW? n
) e s
(& + S (Stanh % + 22 tanh® )| exp (—iar — L7 + 2 tanh §)  (25)
dwis e? 0 S n
< dw >= -——;Imf dtlf dtzcoshnT{n(T— T)+[1 —n*, (2 ]taﬂhWT}
[72 % 455,' ("P + PZ)] exp (—ia‘r — Ty g_ﬂp) ) (26)
dW23 n
< dw > = —?Im]{; dtlfT dt?coshn (T —t1) [n(t2 — T) + tanhn (T - t1)] 9
[+ 6257 (5P + P9 exp (miar = £ (T-)+ 5R),  (20)

where

r = tg—t, np=rieyia,

B tanh i, (2 tanh %2 — ntl)
¢ (tanh nty —nty) ’

tanhnT [2 tanh 3723 +n(r - T)}
[1—n%, (t, - T)|tanhnT +9(r - T)°
tanhn (T —t,) [2 tanh &;t‘—l +n(ty - T)]

A= T @G- @

Changing variables in (2T) to t; =T —ty, to =T — 1y, and interchanging orders of

integrals, one can find !
dWas\ _ [/ dWis ;
< = >z< N (29)

It is necessary to note that interchanging of orders of integrals over time and di-
rection of the photon momentum leads to non zero value for probability of emission
in the limit of no scattering and zero field (¢ — 0,w — 0). It proves convenient
to regulate the obtained results by subtracting this value from the corresponding
terms in (24-27). Thus, we obtain finally the following results for the probability of
emission

(%) oy (30)
B = ——Im f dts " dt, L e
[% or . 2_;? (% tanh % + ggtanh?%t)} exp (—za‘r & %21_ + % tanh 7?27')
N Wz; (—1+ cosaT + aT SiaT) , | (31)
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7 - _flmfo dtldet2 y x
T - Jo  coshnty (tanhnty — nt,)
1 4 fa w? _, , w? Wl
[? + = (;]'PQ + ;{P@) exp (—za‘r - ?tz - -{;;?-PO) —
2
e [1 —cosal + aT (— - SIGT)} (32)
way? 2 :
B o= -Zm[ a[” s
E T s S5 - ,dtz coshnT {n(r — T) + (1 — n?t; (t, — T)|tanh nT'} =
1 2 i 2 2 2
-5+E+E (EP—l—w—sz exp —w'r——w—T-I—~w—P —
~ dee’ \ 7 n on
e’ T i ]
A [cos aT — aT (5 - SzaT)J : (33)

The subtracted terms in (31-33) have been computed with the help of the following
asymptotic behavior of the sine integral function

m(%—Sim) :cosm-l—O(%) [z — 0. (34)

5 Infinitely thick target. LPM limit

Our derivation of the LPM effect is valid for a target of arbitrary thickness in
the presence of external field. As a first application we apply our results to the case
of infinitely thick target. In this limit the term I3* in (33) vanishes; the term I3?
in (32) leads to a finite value while the term /2* in (31) being proportional to the
target thickness will dominate. Changing variable of integral over ¢, in this term to
T =ty — t; yields

PO WEL S 'T { + Im/ (35)

smh 777'

1 e+ nr . 2w g7 w?  2w? nr
[;5 - el (; tanh 3 + ?tanh 5 ) |exp —tar — T + -Etanh 5 !
The expression (35) recovers accurately the result calculated by Baryshevskii and
Tikhomirov [10] for the LPM effect in the presence of external electric field.

Let us now consider in more details the limit of no external field (w — 0), that

corresponds to the Migdal theory. In this case the probability of photon emission
becomes simpler

dw
<E> =129 18 (36)

T- *l s N nT
22 R o g BOES E i
L Im/ dtl.[ smhn'r ( * 2ee’ n kntil 2
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=, 7ra'y2 (=14 cosal + aT SiaT), ' (37)
1a(t1+t2) 1 E2 4 5’2 o
i T o B s g
i Imf dtz./ coshqt2 tanhr;t2 + nt;) (‘y t 2o qpo)
- a [1 —cosal +aT (-— - SIGT)] (38)
way?
oo oo —1aT —ia(h-{-fg)
- [ ol d ne e
8 T Im/; dtlfa b2 {cosh nT [ (t, + ta) + (1 + ntity) tanhnT) E
1 e? + e o p
(,}7 T dee’ EP ) } <
e’ T
i [cos aT — aT (5 - SmT)] ) (39)

where

i tanh nt, (2tanh%’—+nt1)
¢ (tanhnty +nty)

- tanh nT [2 tanh 922 +n(t + tz)] »
~ (L4 ntyty)tanhnT + 7 (t + ) 40)

As mentioned above, in the case of an infinitely thick target the leading term in (36)
is

mroe - CT fmd g {1 PHE G Y BT
LPM =~ 1 0 CTinhogpr \ 42 % n o) o - )

Substituting z = 77 in (41), and changing the path of integral in the complex plane
from z = n7, (0 < 7 < o) to the path along real axis ¢ = Rez, (0 <z < o0) we get
the Migdal result [3]

2728 Wiy = (&27/96r7%¢e's?) [Gs)? +28(s) (2 +27)],  (42)
K 2 |T [ sin 288 _,,.
G(s) = 48s [4 _/0 snhe dw]’

é(s) = 245 [/ coth z sin 2sz e >**dz — g] :
0

i = +flalboyt).
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6 Thick target approximation.
Corrections to the Migdal theory

If the target is not of infinite thickness but still sufficiently thick so that
, 1
T > min {lf, —} " (43)
In|
then the term /'* must be taken into account while the term I3 is still negligible
[P35 Wiy =
g~ialtittz) 1 e +e?e 1
- f dt f ittt S e
[m : coshntz (tanh nty + nt,) ( i 4ee’ 7 ) * ay? ]44)

Thus, in the thick target approximation, taking account for the side effect yields the
corrections to the Migdal theory

dw 7
<_d7> = Wipm + 2W'Lpu. (45)

This is to explain why in the SLAC experiments [5,6] the bremsstrahlung rate is
always higher than that predicted by the Migdal theory and the subtraction of two
spectra for targets of different thickness is fit so good to the measurements.

7 Thin target. The Bethe-Heitler limit

In the opposite case of extremely thin targets, the Migdal theory is completely
in disagreeing with the experimental data, which are closer to the Bethe-Heitler
theory when the target thickness becomes smaller than 0.1%X,. -This can be early
expected because there is too little total multiple scattering to cause suppression. As
mentioned. above, our derivation of the LPM effect is valid for a target of arbitrary
thickness. One can find that the Bethe-Heitler limit coincides with the lowest-order
term in a formal expansion of formulas (36-39) in power of T. In fact, the terms 2
and I*? is proportional to T2 and T respectively, while the term I3 is linear in T and
will dominate. Furthermore, it is also evident from (39) that the LPM suppression
disappears when

o X
Im(q2 )5aT =% TSTO:%}EzU.I%XO. (46)

Thus, in the limit of an extremely thin target (T < T,) the probability of bremstr-
rahlung becomes

[ T=9 :ech € +5’2f f sin (z + y) f /'00 zy cos (z + y)
: " ra 4ee’ (z+y) (x+y)® |’

(47)
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In (47) we have made the change of variables of integrals from t;, ¢, to ¢ = at;, y =
at,. The first integral in (47) can be easily computed by using the asymptotic behavior
of the sine integral function (34)

sin (z +y)
fda:/ i =L (48)

Since the photon absorption, which has not been taken into account in our treatment.
can be derived by introducing a small imaginary part of the photon energy «w —
w(1—iej, it is natural to use the cutoff function exp [—¢(z + y)] to evaluate the second
integral. The result is

:ry cos (z + y) 1
d d = —=, 49
This yields finally
dW\ 1.0 e’ y2aT [2(e? +€?) WP dWgy
i = ol i )
< dw > el S brw e? Ej Ok MR Y (ag)

Thus, our treatment includes as limiting case Bethe-Heitler bremsstrahlung relevant
for very thin target, that is confirmed by the SLAC experiments [5.6].

8 Numerical Results

In this section we give some of our preliminary numerical results. The theoreti-
cal formulas (36-40) enable us to calculate the expected bremsstrahlung rate for a case
of intermediate thickness. As pictured in Fig.1 for not very thick targets taking into
account for the boundary effect yields extra contributions to the total bremsstrahlung
rate. In the case of extremely thin targets, the boundary effect cancels out the LPM

suppression and we are back to the Bethe—Heitler regime for the case of isolated
atom (50).
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0.7% Xo Gold, 25 Gev beam
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Figure 1. The bremsstrahlung spectra kdN/dk in relative unit versus Log[k(MeV)]
for 25 GeV electrons incident on (a) 1%, (b) 0.7% radiation length uranium and gold
targets. The Landau-Pomeranchuk—Migdal theory is denoted by middle curves, and
our theory, the contributions of the boundary effect are denoted by lower curves and
the total bremsstrahlung rate is denoted by upper curves.

9 Conclusion

In this report we have given outline of the application of Feynman path integral
method in performing the statistical averages that treats the LPM suppression effect
in the presence of an uniform electric field. Our derivation is valid for a target of arbi-
trary thickness. It includes as limiting cases Bethe-Heitler bremsstrahlung relevant
for very thin target and the LPM theory for an infinite medium. In the thick target
approximation we have made corrections to the well-known Migdal formulas. Our
theory is completely in agreeing with the SLAC experiments on the LPM effect [5,6].
The theoretical results (36-40) enable us to calculate the expected bremsstrahlung
rate for a case of intermediate thickness. A more detailed description of our present
work is being completed for publication elsewhere [17]. It includes our numerical
calculation for targets of various thickness.
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