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ABSTRACT
Introduction: Hydrological models play an important role in water studies. There have been nu-
merous models developed and applied in river runoff simulation. This study focused on evaluating
the runoff simulations using the LST model and the DE optimization for calibrating model param-
eters in the pre-hydropower construction (PrC) and post-hydropower construction (PoC) periods
in the Be river catchment. Methods: The model performance, parameter evolution, and objective
function evolution in two periods were evaluated and compared. The duration between 1878 and
1993 was defined as PrC, in which 1978-1988 and 1989-1993 were used for calibration and valida-
tion, respectively. The PoC period was from 1994 to 2013, in which 1994-2006 and 2007-2013 were
respective calibration and validation durations. Results: The results showed that DE optimization
was robust and efficient for calibrating model parameters. The LST model outperformed in natural
daily runoff simulation with high NSI values of approximately 0.90 for PrC period. The lower perfor-
mances were achieved in the PoC periodwith NSI greater than 0.7. On the other hand, good results
were shown for the water balance index, PBIAS, with the obtained values of -0.266% and 6.906%
for calibration and validation, respectively, of the PoC period. The obtained values for PrC period
were -1.052% and 14.941%, respectively. Using DE optimization, an outperformed parameter set
could be found in initial generations for natural runoff simulation of the PrC period. Conclusion:
The NSI evolution trend of the PoC period was similar to that of the PrC; however, it gave a lower
performance in the initial and the last generations. Parameter evolutions are not the same for all
parameters for both periods. Some have constant directions, and others change directions by gen-
erations.
Key words: LST model, Be river, Hydropower construction, DE optimization, Calibration

INTRODUCTION
With the development of computer science and tech-
nology, the application of hydrological models in wa-
ter resources fields has been increasing and requires
high accuracy in simulations. The conceptual mod-
els have been commonly used among hydrological
models because they give highly reliable results with-
out time-consuming simulations1,2. In addition to
hydrometeorological data, the model performances
highly depend on the model parameters. Therefore,
parameter calibration plays an essential role in im-
proving the accuracy of the models.
Model parameters are usually determined in manual
selection and automatic selection using an optimiza-
tion tool. Manual selection requires the modelers to
have excellent modeling experiences and understand
the model operations. This work is time-consuming
and someway gives not high performance. Compared
tomanual selection, automatic calibration is an objec-
tive method that provides results with faster and eas-

ier implementation3,4. In automatic calibration, pa-
rameters are automatically adjusted according to the
specific schematic algorithm to search for optimal so-
lutions. Automated optimization does not depend on
the modeler’s correction but it depends on the opti-
mization algorithm, objective function, model struc-
ture, and interactions between parameters5. Some
commonly used automatic optimizations such as SCE
- UA (Shuffled complex Evolution), GA (genetic al-
gorithm), PSO stream method (Swarm optimization
herd), MOSCEM (multi-objective disturbance com-
plex urbanization), ES (evolutionary strategy), DE
(difference evolution) have been developed and ap-
plied for hydrological calibration. These methods do
not give the same results when being applied in par-
ticular cases, so several studies have been conducted
to evaluate the effectiveness of different algorithms.
Raska and Ulrych evaluated Modified Downhill Sim-
plex and DE for parameter optimization compared
with Random Search, Downhill Simplex, Hill Climb-

Cite this article : Hang N T T, Nga T N Q, Khoi D N. Runoff Simulation for Pre-and-Post Hydropower
Construction Periods in the Be River Catchment Using LST Model Calibrated by Differential Evolu-
tionary Optimization. Sci. Tech. Dev. J.; 24(4):2164-2176.

2164

Copyright

© VNUHCM Press. This is an open-
access article distributed under the 
terms of the Creative Commons 
Attribution 4.0 International license.



Science & Technology Development Journal, 24(4):2164-2176

ing, Tabu Search, Local Search, Simulated Annealing,
Evolution Strategy, and Differential Evolution opti-
mization6. Iwan et al. compared DE and SPO in
constraint optimization, and the results showed that
DE outperformed SPO7. Nezhad et al. developed an
SCE algorithm using aDE for optimizing hydropower
reservoir systems8. Nandi & Reddy (2020) compared
DE with GA and SCE algorithms for automatically
calibrating the distributed variable infiltration capac-
ity (VIC) hydrological model3.
DE algorithm, which was introduced by Storn and
Price 9, has been proved to be a powerful and efficient
algorithm. It has been successfully applied in numer-
ous fields of sciences such as computer science10, bi-
ology11, environment12, water resources8. Many re-
searchers have investigated hydrological model cal-
ibration using SCE-UA, GA, PSO algorithms4,13.
However, only a few studies using DE optimization
in the hydrological model were found.
Be river is the biggest attribute of the Dong Nai river
basin in southern Vietnam, which is rich in water re-
sources and has a significant influence on the social-
economic development of the area and the down-
stream. Runoff estimation in the catchment takes
an essential role in water management and social-
economic developing plan. In 1995, the first hy-
dropower plan, Thac Mo, was constructed. Three
other hydropower and irrigation dams were built, in-
cluding Can Don, SrokPhuMieng, Phuoc Hoa. The
dam operations significantly influence the down-
stream flows and the water supply in the catchment.
However, there was no examination of difference in
runoff estimating performance between the periods
before and after human construction.
This work aims to introduce an application of the DE
to automatic calibration for the Long-and Short-term
runoff model (LST model)14. The model was applied
to the Be river catchment. The model performances
will be evaluated. At the same time, we will evaluate
how much the runoff simulation estimation accuracy
for the period after human construction changes com-
pared to the period before the construction using the
LST rainfall-runoff model with DE optimization for
calibration.

MATERIALS-METHODS
Study area
Be river catchment was selected to investigate in this
study. Be river originates from the southwest high-
land in Dak Nong province, with an elevation of 600-
800 m. It is the largest tributary in terms of length,
basin area, and contributed water volume of the Dong

Nai River basin. The river’s total length is about 350
km, and the catchment area is about 7600 km2. TheBe
river has a narrow riverbed with a high river flow. The
lowest flow in the dry season is around 60 m3/s and
the highest in the flood season is around 1000 m3/s.
The average flow of the catchment is about 250 – 300
m3/s. The total annual flow is 7.9 – 9.0 billion m3,
approximately 25% of the water volume of the entire
Dong Nai river system. In this study, the upper catch-
ment at Phuoc Hoa station with an area of approx-
imately 6000 km2 was considered for investigation.
The study area has tropical monsoon climate condi-
tions. There are two seasons during a year, namely
the rainy and dry seasons. The rainy season lasts from
May to October and accounts for 85% of annual rain-
fall, whereas the remaining 15% of the annual rain-
fall occurs in the dry season. The annual rainfall in
the catchment varies between 1700 and 2700 mm.
The catchment’s average temperature, humidity, an-
nual sunshine hours, and evaporation are about 25.5-
26.7◦C, 78.1%, 2500-3000 hours, and 1100 mm, re-
spectively.
There are four hydropower dams, namely Thac Mo,
Can Don, Srok Phu Mieng, and Phuoc Hoa, respec-
tively, located upstream to downstream of the study
area (Figure 1). Thac Mo hydropower plan was firstly
constructed and completed in April 1995. The dam
catchment has an area of 2200 km2. The second
dam is Can Don, which was started to operate in Jan
2004. The Can Don sub-catchment area is about 3225
km2. The third hydropower dam, Srok Phu Mieng,
was completed in December 2006 with an electricity-
producing capacity of 2x51 MW. Hydropower pro-
duction is not the major purpose of Phuoc Hoa dam.
Major usage of the Phuoc Hoa dam is for irrigation,
supplying water for agriculture of Ho Chi Minh City
and Binh Duong, Dong Nai provinces. At the same
time, the water from Phuoc Hoa lake is allocated
to Dau Tieng reservoir, contributing to the supply
of water to Tay Ninh, Ho Chi Minh, and Long An
provinces.

Data
In this study, simulations of the years from 1978 to
2013 were investigated. We divided simulations into
two periods, 1978-1993, when the hydropower dams
were not constructed, and 1994-2013 when dams
had been constructed and operated. For 1978-1993,
the data durations of 1978-1987 and 1988-1993 were
applied for calibration and validations, respectively.
The durations of 1994-2006 and 2007-2013 were ap-
plied for calibration and validation in the latter pe-
riod. Nine stations of rainfall, consisting of Binh
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Long, Bu Dop, Bu Dang, Bu Nho, Dong Phu, Da-
kNong, Loc Ninh, Phuoc Long, Phuoc Hoa, were in-
volved in the simulation. Two stations of meteoro-
logical data (temperature, humidity, sunshine hour,
wind speed) at Phuoc Long and DakNong were used.
Daily simulated discharges are compared with the ob-
served at PhuocHoa station. Rainfall is the daily data,
and other meteorological parameters are the monthly
data.

LSTmodel
LST model is a lumped conceptual hydrological
model14. As described in the Figure 1, the model
structure contains three tank and the top tank con-
sists of two layers. The balance equations of four tank
layers are as follows:

Figure 1: LST model structure

dS1/dt = r − E1 − f − Q1 − Q2 (1)

dS2/dt = f − Q3 − g1 (2)

dS3/dt = g1 − Q4 − g2 (3)

dS4/dt = g2 − Q5 (4)

Where, E j is evaporation (mm); R is average basin
rainfall (mm); f and g are respective surface and un-
derground infiltrations (mm); Q1 is the surface flow
(mm); Q2 and Q3 are subsurface flow (mm) Q4 and
Q5 are underground flows (mm).
Runoff Qi and infiltrations are calculated as:

Q1 = a1 (S1 −Z1)
m , m = 5/3 (5)

Q2 = a2S1; Q3 = a3 (S2 −Z3) (6)

Q4 = a4S3; Q5 = a5S4 (7)

g1 = b2S2; g2 = b3S3;
f = b1 (Z2 +Z3 −S2)

(8)

Where, ai is the runoff coefficient, bi is the infiltration
coefficient, and Zi is the side outlet height (mm).

Model performance evaluation
Any rainfall-runoff model simulation must be eval-
uated by comparing the simulated runoff with the
observed. There are numerous indicators have been
used in model evaluation. In this study, the Nash
- Sutcliffe efficiency index (NSI) was used for opti-
mization’s objective function. At the same time, two
other commonly used indexes are applied to evaluate
the model’s performances. They are the rate of ob-
served standard deviation (RSR) and percentage of er-
ror (PBIAS). These indicators are defined as below:

NSI = 1− ∑n
i=1

(
Qm,i −Qs,i

)2

∑n
i=1

(
Qm,i −

__
Qm

)2 (9)

RSR =
RMSE

ST DEVobs
=

√(
Qm,i −Qs,i

)2√(
Qm,i −

__
Qm

)2 (10)

In these equations, n is the number of data, Qs,i and
Qm,i are the simulated and measured discharge of the
ith day;

_
Qs,

_
Qm are the average of simulated and mea-

sured discharges, respectively. The NSI equal to 1 in-
dicate the optimal fitness between simulated andmea-
sured data. The optimal values for RSR and PIAS are
zero. The higher values of NSI, the better of simu-
lations they indicate. Contrary, the higher values of
RSR and PBIAS indicate the lower performances. Ac-
cording toMoriasi et al.15, the simulation is evaluated
as acceptable with NSI > 0.4, RSR < 0.5, and PBIAS <
40%.
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Figure 2: Map of the study catchment

DE optimization

Differential evolution (DE) is one of the widely-
used global optimization algorithms proposed by
Storn and Price (1997) 9. DE operates similarly with
other evolutionary algorithms (EAs) with mutation,
crossover, and selection processes. However, it dif-
fers in terms of the crossover and mutation ways. The
flowchart and detailed equations of the algorithm are
shown in Figure 3. There are four steps, including
initialization, mutation, crossover, and selection, de-
scribed as follows.

Initialization: Initially, the Np individuals are gener-
ated using uniform probability distributed randomly
as Eq.12 in the flowchart. Each individual i contains
fifteen parameters of the LST model. The maximal
and minimal boundaries, p j,max and p j,min, are given
to generate the initial population and they are also the
boundaries for the offspring population. After that,
the objective function of each individual is simulated
to compare with the terminated condition. In this
study, Nash - Sutcliffe efficiency index, NSI, was cho-
sen as the objective function for optimization.
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Mutation: If the terminated condition is not satisfied,
the algorithm is continued with the mutation step to
create the new population v as Eq.13 (Figure 3), with
random indexes r0,r1,r2 ∈

{
1,2, ...Np

}
mutually

different. F is a scale factor ∈ (0,1+).
Crossover: The crossover is processed to create new
solutions u as Eq.14 (Figure 3). The crossover oper-
ator uses uniform random and the defined crossover
rate to get the trial vector. The defined crossover rate
is a fraction that controls the variable values that are
copied from the mutation. In Eq. 14, rand j is the jth
evaluation of uniform randombetween [0,1], Cr is the
crossover rate constant ∈ (0,1), jrand is the randomly
chosen index∈ (1, 15) in this study to ensure that gets
at least one parameter from vi,G.
Selection: To decide which members are selected for
next-generation G+1, the trial vector u is compared
with the parent-based vector x, and the better one ex-
ists for the next generation. This step is called selec-
tion.
The mutation, crossover, and selection processes are
repeatedly generated until the terminated condition is
met. The terminated condition was set for 1000 gen-
erations in this study. The performance of DE will de-
pend on the scale factor, F, and the crossover rate, Cr.
In the study, the values of F=0.7 and Cr=0.2 were cho-
sen following Hang and Chikamori (2017) 16.

RESULTS
Calibration and validation
The daily flow at Phuoc Hoa station was calibrated
and validated in two periods, before and after the hy-
dropower constructions. In this catchment, the first
hydropower plan,ThacMo started to be structured in
1994 and operated since 1995; therefore, the selected
periods in this study were 1978-1993 and 1994-2013.
The 1978-1988 and 1994-2006 durations are for cali-
brations, and the 1989-1993 and 2007-2013 were used
for validations. The model parameters for the PrC
and PoC periods were determined by DE optimiza-
tion. They are shown in Table 1. The achieved pa-
rameter sets are different for two-period simulations.
Remarkably, the values of S3 and S4 of the PoC simu-
lation are significantly greater than those of the PrC.
S3 and S4 are initial storages of the underground layer.
Since the hydropower dams have been operated, the
catchment water is stored after flood season to sup-
ply in the dry season of the following year. This point
could be a reason why the parameters S3 and S4 of
the PoC are greater than those of the PrC at the be-
ginning of January. The daily runoffs were simulated
then the monthly runoff was calculated. Table 2 and

Table 3 show the statistical performance for monthly
and daily runoffs. Figure 4 and Figure 5 show the
graphical simulated and observed flow.
From Figure 4 and Figure 5, we can see that the sim-
ulated runoff well matched the observed for both cal-
ibration and validation duration of PrC period. The
agreement between the observed and simulated in the
PoC period was significantly lower than those of the
PrC. However, the monthly flow shows a much better
fitness between simulated and observed. It is easy to
understand this phenomenon because the daily oper-
ation rates of hydropower dams were mostly different
year by year.
The statistical indexes of NSI and RSR showed that
the LST model with DE optimization resulted in the
outperformed for the PrC period compared to the
PoC.TheNSI values of 0.916 and 0.895 were obtained
for daily calibration and validation in the PrC. How-
ever, these fitness values were significantly lower for
the PoC period. NSI values of 0.729 and 0.765 were
achieved for calibration and validation, correspond-
ingly. The rate of observed standard deviation, RSR,
was 0.293 and 0.320 for calibration and validation in
the PrC period. These figures for the PoC period were
greatly higher, of 0.521 and 0.483. On the other hand,
the higher performance of PBIAS is noted for the PoC
period. The respective achieved values for calibration
and validation were -0.373% and 7.113% in the PoC.
In comparison, the higher value of 14.941% was re-
flected for the validation duration of PrC period (Ta-
ble 2).
Compared to the simulated daily runoff, the monthly
data resulted in better statistical performances with
the higher values of NSI and lower values of PBIAS
andRSR.TheachievedNSI of PrCwas 0.961 and 0.928
for calibration and validation. These values for PoC
were 0.805 and 0.871, respectively. A similar perfor-
mance tendency was achieved for the RSR index, with
better values obtained in the PrC period than those
in the PoC. They were 0.198 and 0.265 for calibration
and validation in the PrC; 0.441 and 0.358were the re-
spective values in the PoC. The water balance index,
PBIAS, was -1.038% and 14.984% in the calibration
and validation durations of PrC. The obtained val-
ues for the PoC were relatively better at -0.266% and
6.906%, respectively.

Objective function and parameter evolu-
tions

Best optimized objective function evolution
Here, the NSI evolutions in calibration for PrC and
PoC periods were analyzed and compared. The opti-
mization evolution of the best NSI for two-period cal-
ibrations is shown in Figure 6. It was evident that NSI
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Figure 3: Flowchart of DE algorithm
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Figure 4: Daily Observed and simulated flows (a) and colleration between the simulated and observed in calibra-
tion and validation (b and c) in the PrC period

Table 1: Final best-calibrated parameter sets after 1000 generations in PrC and PoC periods

No. Parameters Unit PrC PoC Min – Max boundaries

1 a1 - 0.00050 0.00011 0.0001 - 0.0005

2 a2 - 0.04379 0.04186 0.001 - 0.2

3 a3 - 0.00696 0.01267 0.1-0.003

4 a4 - 0.00299 0.00198 0.001 - 0.001

5 a5 - 0.00032 0.00016 0.0001 - 0.0005

6 b1 - 0.16592 0.14571 0.4-0.6

7 b2 - 0.01273 0.02519 0.01 - 0.1

8 b3 - 0.0090 0.00708 0.001 - 0.009

9 Z1 mm 55.9154 73.3844 5 - 100

10 Z2 mm 397.187 336.851 300 - 400

11 Z3 mm 98.2855 93.4643 5 - 100

12 S1 mm 10.38 13.7954 0 - 10

13 S2 mm 134.407 130.632 0 - 200

14 S3 mm 171.259 487.632 0 – 1000

15 S4 mm 313.521 3584.41 0 - 4000
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Figure 5: Daily Observed and simulated flows (a) and colleration between the simulated and observed in calibra-
tion and validation (b and c) in the PoC period

Table 2: Statistical measurements of daily runoff performance in PrC and PoC periods

Statistical measure-
ments

PrC PoC

Calibration
1978-1988

Validation
1989-1993

Calibration
1994-2006

Validation
2007-2013

NSI 0.914 0.895 0.729 0.765

RSR 0.293 0.320 0.521 0.483

PBIAS -1.052% 14.941% -0.373% 7.113%

Table 3: Statistical measurements of monthly runoff performance in PrC and PoC periods

Statistical measure-
ments

PrC PoC

Calibration
1978-1988

Validation
1989-1993

Calibration
1994-2006

Validation
2007-2013

NSI 0.961 0.928 0.805 0.871

RSR 0.198 0.265 0.441 0.358

PBIAS -1.038% 14.984% -0.266% 6.906%
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fitness values resulting from the LST-calibrated-DE
model improved immensely after the first generations
in both periods. However, they then changed slowly
in the later generations. In the later generations, the
lower speed of calibrated fitness was improved.
As mentioned above, the best NSI resulting from the
PrC period was significantly greater than the PoC pe-
riod. The best NSI of the initial generation was also
remarkably different between the two periods. They
were approximately 0.885 and 0.619 for the PrC and
PoC periods, respectively. In the first generation, the
calibrated NSI resulting from calibration in PrC pe-
riod slightly increased to 0.889. There was no change
of the best NSI in the first generation of PoC period.
The best PrC-calibrated NSI changed gradually in the
later generations. It reached 0.912 at the eightieth
generation, not much different compared to the final
value. The change of the best NSI in the first gener-
ations of the PoC period was significantly compared
to that of the PrC. It was 0.690 at the thirteenth gen-
eration, increasing 0.081 compared to the initial one.
This figure was only 0.014 for the PrC period. At 80th

generation, the best NSI of the PoC period jumped to
0.720. After that, it changed slightly till the last gen-
eration.
It can be concluded that even using automatic opti-
mization for calibrating simulated flow, the calibrated
flow in the PoC period was still significantly varied
from the observed compared to that in the PrC pe-
riod. It took about thirteen generations to get the op-
timal solution with approximate performance of the
one thousand generations in the PrC period. Even the
parameters were still trained to get better parameter
sets in the later generations; the improvement speed
was relatively slow. The PoC period took more than
thirteen generations to train the parameters to change
significantly; however, change was unremarkable af-
ter eighty generations.

Parameter evolution
To fairly compare the performances among param-
eters, the achieved parameter values were standard-
ized into the range [0, 1] based on the minimal and
maximal boundaries of the parameters, as shown in
Table 1. The standardized parameter evolutions are
shown in Figure 7. We found that some final best-
optimized parameters varied from the initial values,
whereas some only changed slightly, such as a1, b2,
b3. The changing directions are not the same for all
parameters. They may decrease or not change in one
generation and increase in the next generation. The
improving speeds were smaller in the later genera-
tions than the former in both periods.

As mentioned above, the objective function values
changed slightly after thirteen generations for PrC
and PoC periods; however, some parameters in both
periods still changed rapidly after these generation
numbers. Another clear point can be seen from Fig-
ure 7 that the parameters in the model of PrC fluctu-
ated significantly during one thousand generations of
execution. The changes in parameters in the period
after construction was just about ten times during
1000 generations. The objective function, however,
was significantly compared to the parameters. These
points indicate that numerous parameter sets were
resulting in similar model performance. These phe-
nomena can be explained by compensations among
the parameters so that more than one solution can
give a similar model performance.
From the results of parameter and objective function
evolution progress, we can assume that the DE opti-
mization has good performance in automatically cal-
ibrating the LST model. It resulted in the “very good”
performance of NSI, approximately 0.90 in more than
ten generations if there is no big human control-
ling construction in the catchment that influences the
catchment flow. In the case of having huge human
constructions, the achieved estimation was evaluated
as “good” criteria; however, it was remarkably lower
than those without human constructions.

DISCUSSION
A question in this study sought to evaluate the DE op-
timization algorithm in the LST rainfall-runoffmodel
applied to the Be river catchment. The results of the
study indicated that DE optimization was effective
and efficient in calibrating the LST model. This study
confirms the power of the DE optimization technique
in automatically calibrating a rainfall-runoff model3.
It resulted in the high performance of daily runoff
simulation with few generations of the algorithm to
be executed in both periods. In the PrC period, the
NSI values were obtained approximately 0.915, within
the “very good” range, according to Moriasi et al.15.
Obtained RSR values were 0.320 or lower. PBIAS val-
ues were approximately -1% and 15% for calibration
and validation. These values are within the “good”
and “very good” criteria15. Dao Nguyen Khoi et
al. simulated runoff simulation for Be river catch-
ment using the SWAT model, and it was automati-
cally calibrated using SWAT-CUP17. Their simula-
tions resulted in the NSI and PBIAS values of 0.730
and 24% for the daily runoff; respectively, they are
0.860 and -24% for monthly runoff. The simulations
in the duration of 1991-2010 gave the statistical per-
formance of NSI=0.60, PBIAS= -5% for daily runoff,
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Figure 6: Objective function evolution during 1000 generations in two period calibrations

and NSI=0.710, PBIAS=-5% for the monthly runoff.
The DE optimization integrated with the LST model
resulted in the outperformed simulations. This re-
sult again demonstrated the power of DE optimiza-
tion and the LST lump conceptual model in simulat-
ing catchment runoff.
Interestingly, it took more than ten generations for al-
gorithm execution to achieve an NSI value of nearly
0.90, while the final obtained NSI was only nearly
0.915. The evolution was improved quickly in the
initial generations, and the improvement was slower
in the later generations. Results of parameters evo-
lutions show that parameters did not have the same
direction of evolutions. A parameter could go up in
this generation, but it went down later. There were
significant changes in parameters in the evolutions;
however, the changes in NSI evolution were insignif-
icant. This point indicates that numerous parame-
ter sets were resulting in similar model performance.
This phenomenon can be explained by compensations
among the parameters so that more than one solution
can give a similar model performance1. [Zhang et al.
2015]. The analysis agrees with the findings of other
studies in terms of parameters and objective function
evolutions3,18.
The tendency of NSI evolution in the PoC period was
similar to that in the PrC. The parameter evolutions
were slightly different in the PoC period than the PoC
in the late generations; however, the NSI improve-
ment speed was slow in the latter generations in both
periods. The performance of simulations in the PoC
period was significantly lower than those in the PrC.

The DE model could train to find the parameter sets
that resulted in the NSI value greater than 0.700,
which was in the “good” range, according to Mori-
asi et al.15. However, the significant difference of
NSI values between two-period simulations indicates
that the human dam constructions significantly im-
pact the natural catchment flow. The dam outflows
are not similar during a year. The optimization could
not find the parameter sets that were constantly re-
sulting in good agreement with the observations year
by year. Even though the model performed as “good”
range as evaluation criteria, considering human con-
struction operations could result in a better simula-
tion that matches the observed better.
The findings could contribute to studies on devel-
oping and using models for hydrological simulation.
That helps us understand the DE algorithm effective-
ness in the model calibration in general and specifi-
cally in the LST model. On the other hand, the study
results emphasized the differences in calibratedmodel
parameters and performances in runoff simulation
for the case between natural flow and with being hu-
man controlling period. The results of simulations for
PrC and PoC periods suggest that it should be care-
fully considered in runoff simulations with the catch-
ment having massive human constructions. It may
give a “good” performance; however, it is consider-
ably lower than the case of natural flow simulations,
especially for daily runoff. Themonthly runoffpredic-
tion could be better for considering water resources
investigation.
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Figure 7: Evolution of model Parameters in calibration of PrC (left) and PoC (right) periods

CONCLUSIONS
The paper has discussed the DE optimization applied
in the LSTmodel for simulating the catchment runoff
in the periods before and after human constructions
in the catchment. From the results, we can conclude
that the LST model with DE optimization for the cal-
ibration resulted in outperformance of daily runoff
and monthly simulation in the PrC period. For the
PoC period, it can estimate the daily runoff by using
DE optimization in calibrating model parameters. It
resulted in relatively good performance NSI over 0.7.

However, the parameters found in the calibration of
PoC did not bring well-matched daily simulation with
observation for the other durations. However, the pa-
rameters determined byDE optimization could be ac-
ceptable for estimating the monthly flow for the PoC
period.
By using the DE optimization in calibration, we can
find the “very good” parameter sets for the natural
flow in only ten generations. Especially, the model
can be improved significantly in the first generation.
The evolution trends of NSI objective function were
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similar in PrC and PoC periods. However, the model
seemed to be not much improved after 80 generations
in the PrC and PoC periods; however, the improve-
ment was insignificant in the later generation. The
model parameters did not have similar evolution di-
rections for all parameters. Some parameters tended
to converge in 1000 generations; however, others did
not have constant directions after generation and gen-
eration.
The study could be a good reference for the hydro-
logical modelers investigating catchment runoff and
model development. The current study only exam-
ined the NSI index as an objective function for opti-
mization. Future work needs to consider other model
evaluation indexes and the multi-objective function
considerations in optimization.

LIST OF ABBREVIATIONS
DE: Differential Evolution
LST: Long-and-short-term
PrC: Pre-construction
PoC: Post-construction
NSI: Nash - Sutcliffe efficiency index
PBIAS: Percent bias
RSR: Rate of observed standard deviation
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