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ABSTRACT
We study the transmission of optical solitons in a nonlinear waveguide with the generic Kerr non-
linearity coefficient, the frequency dependent linear gain-loss, and the Ginzburg-Landau (GL) gain-
loss profile. We first derive the expression for the collision-induced amplitude dynamics of two fast
single solitons in the presence of weak cubic loss and weak quintic loss. This expression is then
used to study the amplitude dynamics of solitons in multichannel optical waveguide systems. We
show that the dynamics of soliton amplitudes in two-sequence transmission with the GL gain-loss
profile are described by a Lotka-Volterra (LV) model. The stability analysis for the LV model is used
to obtain the simple conditions on the physical parameters and to calculate the linear amplifier
gain-loss for the transmission stabilization of the soliton sequences. The theoretical calculations
are then confirmed by numerical simulations with the corresponding nonlinear Schrödinger (NLS)
models. Furthermore, the optimal value of the Kerr nonlinearity coefficient for the robust transmis-
sion stabilization of the soliton sequences with the GL gain-loss profile is also proposed.
Key words: Soliton, Nonlinear Schrödinger equation, Kerr nonlinearity, Amplitude dynamics,
Transmission stabilization, Multichannel optical waveguide transmission

INTRODUCTION
Solitons are the stable shape preserving traveling-
wave solutions of nonlinear wave models such as
the NLS model, the GL model, or the Korteweg-
de Vries (KdV) model1–7. Recently, solitons have
attracted much attention in a variety of fields, in-
cluding hydrodynamics, condensed matter physics,
and optics 4–7. In nonlinear optical media, solitons,
which can be described by the NLS equations, are
formed thanks to the perfect balance between non-
linearity and dispersion4–6. One of the most fun-
damental properties of solitons is elastic collision,
i.e., the fact that solitons do not change their shape
in collisions4–6. Due to the stability of solitons of
NLS equations, they can be used as bits of informa-
tion and can be extensively used in the information
transmission and processing in broadband waveguide
systems4,5. Through broadband optical waveguide
links, the information transmission rate can be signif-
icantly increased based on the wavelength-division-
multiplexing (WDM) method, where many pulse se-
quences propagate through the same waveguide4,5,8.
In these systems, each pulse sequence is character-
ized by the central frequency of its pulses and is called
a frequency channel. WDM or multichannel sys-
tems have been the subject of intensive research in
recent decades due to their important applications

in fiber optics transmission lines5,8, data transfer be-
tween computer processors9,10, and multiwavelength
lasers11,12.
In this paper, we consider the transmission of two
soliton sequences in a broadband optical waveguide
system with a large frequency difference between
two sequences. We take into account the effects of
the second-order dispersion, the linear gain-loss, the
GL gain-loss profile, and Kerr nonlinearity with the
generic Kerr nonlinearity coefficient γ . The propaga-
tion is described by the following system of coupled
perturbed NLS equations13–16:

i∂zψi +∂ 2
t ψi + γ

∣∣ψ j
∣∣2 ψ j +2γ |ψk|2 ψ j =

iF−1 [ĝ j (ω) ψ̂ j
]
/2+ iε3

∣∣ψ j
∣∣2 ψ j +2iε3 |ψk|2 ψ j

−iε5
∣∣ψ j

∣∣4 ψ j −3iε5 |ψk|4 ψ j

−6iε5 |ψk|2
∣∣ψ j

∣∣2 ψ j,

(1)

where 1 ≤ j, k ≤ 2 with j ̸= k and ψ j is propor-
tional to the envelope of the soliton sequence j. In
Eq. (1), z is the propagation distance, t is the time, ε3

and ε5 are the cubic gain and quintic loss coefficients,
respectively, with 0 < ε3, ε5□ 1, F−1 is the inverse
Fourier transform, ψ̂ j is the Fourier transform of ψ j

with respect to t, and ĝ j (ω) corresponds to the lin-
ear gain-loss4,16,17. On the left-hand side of Eq. (1),
the second term corresponds to the second-order dis-
persion, while the third and last terms describe the
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intrasequence and intersequence interaction due to
Kerr nonlinearity. On the right-hand side of Eq. (1),
the first term is due to the linear gain-loss, the second
and third terms describe the effects of intrasequence
and intersequence interaction due to cubic gain, while
the fourth, fifth, and last terms describe the effects
of intrasequence and intersequence interaction due to
quintic loss.
It is well known that the propagation of solitons in
silicon waveguides can be affected by nonlinear loss,
which arises due to gain or loss saturation or multi-
photon absorption (MPA)13,18–20. This can lead to
a downshift of the soliton amplitude and frequency
in a two-soliton collision. The expressions for the
collision-induced amplitude shift in fast collisions of
two solitons with Kerr nonlinearity coefficient γ =
2 were derived in Refs.16,18,21 for cubic loss and in
Ref.13 for quintic loss. The LV models were also es-
tablished to study the amplitude dynamics of soliton
sequences with cubic loss in Ref.13 and with the GL
gain-loss profile in Refs. 13,14,16,22 for γ = 2. How-
ever, the expression for the collision-induced ampli-
tude shift of two solitons with nonlinear loss and a
reduced model for deterministic amplitude dynamics
due to the GL gain-loss profile have not been uncov-
ered for the generic Kerr nonlinearity coefficient. Fur-
thermore, the use of the frequency dependent linear
gain-loss ĝ j (ω) for investigating the propagation sta-
bilization of solitons has been studied in several ear-
lier works, such as in Ref.23 with delayed Raman re-
sponse for γ = 2 and in Ref.15 for the generic coef-
ficient γ . In these papers, it has been shown that the
use of the frequency dependent linear gain-loss ĝ j (ω)

can suppress radiative effects via the decay of the ra-
diative sidebands and lead to the enhancement of the
propagation stabilization of solitons at long distances
compared to the use of the constant gain-loss coef-
ficients. However, the robustness of the use of the
frequency-dependent linear gain-loss for stabilizing
the propagation of soliton sequences in the presence
of the GL gain-loss profile with the generic coefficient
γ has not been studied. In particular, the investiga-
tions for the optimal value γ in the transmission sta-
bility of soliton sequences with the GL gain-loss pro-
file have not been explored.
In this work, these important problems will be ad-
dressed. We first derive the expression for the
collision-induced amplitude shift in a fast two-soliton
collision described by the coupledNLS equationswith
the generic Kerr nonlinearity coefficient γ in the pres-
ence of cubic loss and quintic loss. Our perturbative
technique is extended from the perturbative method

for calculating the effects of nonlinear loss on fast col-
lisions of flat-top solitons in Ref.24 and on fast col-
lisions of two-dimensional solitons in Ref.25. More
specifically, our perturbative method is based on the
calculations for the collision-induced changes in the
envelope of solitons and the approximation of the in-
tegrals by looking for fast varying terms of the inte-
grand. The current approach allows one to simply
establish the collision-induced amplitude shift in a
fast two-soliton collision compared to the approaches
in Refs.13,18,19, which were based on the technique
describing small perturbations about the ideal NLS
soliton derived by Kaup26. The expression for the
collision-induced amplitude shift above is useful for
applications in multiwavelength optical communica-
tion systems. In particular, this expression is then
used to establish the LV model for deterministic am-
plitude dynamics of two soliton sequences of Eq. (1).
The derivation for the LV model is similar to that
in Refs. 13,18. Based on the stability analysis for the
steady states of the LV model, we obtain the condi-
tions on the physical parameters and achieve a proper
choice of the linear amplifier gain-loss for the propa-
gation stabilization of the soliton sequences. Our pre-
dictions are carried out by the simulations of the cor-
respondingNLSmodelswith varying γ . Furthermore,
based on the numerical simulation results, we also
look for the optimal value γ for stabilizing the prop-
agation of the soliton sequences of Eq. (1) and dis-
cuss the instability of solitons at long-distance propa-
gation.
The rest of the paper is organized as follows. In section
II A, the expression for the collision-induced ampli-
tude shift in a fast two-soliton collision with cubic loss
and quintic loss for the generic value γ is established.
The numerical simulations are then demonstrated in
section II B. In section III A, the LVmodel for the am-
plitude dynamics of two soliton sequences of model
(1) is derived. The stability of the steady states of the
LVmodel is then analyzed to obtain the conditions for
stabilizing the propagation of the soliton sequences.
The theoretical predictions are demonstrated by the
simulations in section III B. Section IV is reserved for
the discussion, while sectionV is reserved for the con-
clusions.

EFFECTS OF CUBIC LOSS AND
QUINTIC LOSS ON A FAST
TWO-SOLITON COLLISION
In this section, we derive the expression for the
collision-induced amplitude shift in a fast collision of
two single solitons in the presence of cubic loss and
quintic loss with the generic Kerr nonlinearity coeffi-
cient γ . Then, the simulations are demonstrated.
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A. Theoretical calculations for the ampli-
tude dynamics
We study fast collisions between two single solitons in
nonlinear optical waveguides described by the system
of coupled perturbed NLS equations13–15:

i∂zψi +∂ 2
t ψi + γ

∣∣ψ j
∣∣2 ψ j +2γ |ψk|2 ψ j =

−iε̃3
∣∣ψ j

∣∣2 ψ j −2iε̃3 |ψk|2 ψ j − iε5
∣∣ψ j

∣∣4 ψ j

−3iε5 |ψk|4 ψ j −6iε5 |ψk|2
∣∣ψ j

∣∣2 ψ j,

(2)

where ε̃3 is the cubic loss coefficient with 0 < ε̃3□ 1.
On the right-hand side of Eq. (2), the first and second
terms describe the effects of intrapulse and interpulse
interactions due to cubic loss. Other terms and coef-
ficients in Eq. (2) are described in Eq. (1).
First, we consider the propagation of a single soliton
described by the NLS equation with cubic loss and
quintic loss:

i∂zψ j +∂ 2
t ψ j + γ

∣∣ψ j
∣∣2 ψ j

=−iε̃3
∣∣ψ j

∣∣2 ψ j − iε5
∣∣ψ j

∣∣4 ψ j.
(3)

The optical soliton j is the fundamental solution
of the unperturbed NLS equation i∂zψ j + ∂ 2

t ψ j +

γ
∣∣ψ j

∣∣2 ψ j = 0, where the soliton envelope is given by
ψs, j (t,z) = Ψs, j (t,z)exp

(
iχ j

)
,

Ψs, j (t,z) = η jsech
(
x j
)
, (4)

x j =
√

γ/2η j
(
t − y j −2β jz

)
,χ j =α j+β j

(
t − y j

)
+(

η2
j −β 2

j

)
z and parameters η j, β j, α j and y j are re-

lated to the amplitude, frequency, phase, and position,
respectively15. One can denote by w∗ the complex
conjugate of a complex number w. We now perform
the energy balance calculations for Eq. (3) 27. That
is, simplifying [w∗×Eq.(3)−Eq.(3)∗×w] and then
integrating the resulting equation over z, it implies:

∂z
∫ ∞
−∞

∣∣ψ j
∣∣2 dt

=−2ε̃3
∫ ∞
−∞

∣∣ψ j
∣∣4 dt −2ε5

∫ ∞
−∞

∣∣ψ j
∣∣6 dt.

(5)

One can use the standard adiabatic perturbation the-
ory for the NLS soliton28, which has been extensively
used in previous studies of NLS equations; see, for ex-
ample, Refs.13,18,19. It arrives at the equation for the
amplitude dynamics of the single-soliton propagation
of Eq. (3):

dη j (z)
dz

=−4ε̃3

3
η3

j (z)−
16ε5

15
η5

j (z) . (6)

Next, let us investigate the effects of cubic loss and
quintic loss on a fast collision between two single
solitons of Eq. (2). We assume 1/ |△β |□ 1 where
△β = β2 −β1 and assume two solitons are well sep-
arated at the initial propagation distance z = 0 and

at the final distance z = z f . Let zc be the collision
distance, i.e., zc = |y2 (0)− y1 (0)|/ |2△β |, and let
[zc −△zc, zc +△zc] be the collision length. Thus,
△zc□ 1 in a fast collision. Based on the perturbative
method developed in Refs. 13,18,19, we look for a solu-
tion of Eq. (2) in the form:

ψ j (t,z) = ψ j0 (t,z)+ϕ j (t,z) (7)

where ψ j0 (t,z) = Ψ j0 (t,z)exp
(
iχ j0

)
is the single-

soliton propagation solution of Eq. (3), and ϕ j (t,z) =
Φ j (t,z)exp

(
iχ j0

)
represents a small correction to

ψ j0 due to interpulse interaction. By using the per-
turbative technique developed in Refs. 24,25, one can
obtain the equation for the collision-induced changes
in the envelope of soliton 1. More specifically, one can
substitute Eq. (7) into the energy balance equation of
Eq. (2) and consider the collision effects of the order
of nonlinear loss coefficients. By using the standard
adiabatic perturbation theory for the NLS soliton28

and integrating the resulting equation with respect to
z over the interval [zc −△zc, zc +△zc], the following
is obtained:∫ zc+△zc

zc−△zc
∂z

∫ ∞
−∞ |ψ1|2 dtdz =∫ zc+△zc

zc−△zc
∂z

∫ ∞
−∞ Ψ2

10dtdz−4ε̃3L1,1

−2ε5 ∑2
l=1 b2,lL2,l ,

(8)

where L1,1 =
∫ zc+△zc

zc−△zc

∫ ∞
−∞ Ψ2

20Ψ2
10dtdz,L2,l =∫ zc+△zc

zc−△zc

∫ ∞
−∞ Ψ2l

20Ψ2(2−l)+2
10 dtdz,b2,1 = 6, and

b2,2 = 3. Let z−c = zc −△zc and z+c = zc +△zc

for the simplicity of the notation. By the def-
inition of ψ j0, one can use the approximation
ψ1

(
t,z−c

)
⊔ ψ10

(
t,z−c

)
. Simplifying Eq. (8), it

implies:∫ ∞
−∞

∣∣ψ1
(
t,z+c

)∣∣2 dt =−2ε5 ∑2
l=1 b2,lL2,l+∫ ∞

−∞ Ψ2
10
(
t, z+c

)
dt −4ε̃3L1,1.

(9)

By the definition of ψ j0, one has Ψ j0 (t,z) =

η j (z)sech
(
x j
)
, where η j (z) satisfies Eq. (6). Thus,

one then obtains∫ ∞
−∞ Ψ2

j0 (t,z)dt = 2η j (z)
√

2/γ. (10)

We note that η j
(
z−c

)
⊔η j

(
z+c

)
⊔η j (zc) in a fast col-

lision. Let △η(c)
1 be the total collision-induced am-

plitude shift of soliton 1. One can express ψ1
(
t,z+c

)
in the following manner:

∫ ∞
−∞

∣∣ψ1
(
t,z+c

)∣∣dt = 2
[
η1 (zc)+△η(c)

1

]√
2/γ. (11)

Substituting Eqs. (10) and (11) into Eq. (9), it yields:

△η(c)
1 =

√
γ/2

[
−2ε̃3L1,1 − ε5 ∑2

l=1 b2,lL2,l
]
. (12)
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One can simplify Eq. (12) by calculating the integrals
L1,l and L2,l with l = 1,2. For this purpose, one can
approximate these integrals by using the similar cal-
culations in Refs. 24,25. More specifically, one can con-
centrate on the fast varying terms of Ψ j0 (t,z) in L1,l

andL2,l , i.e., the factors are v j = t−y j0−2β jz and can
approximate Ψ j0(t,z) by

_
Ψ j0

(
v j,zc

)
. Since the inte-

grands of L1,l and L2,l are exponentially small in the
pre- and post- collision regions, one can extend the
limits of these integrals to−∞ and∞. By changing the
integration variable with v j = t −y j0 −2β jz and not-
ing that

∫ ∞
−∞

_
Ψ

2l
j
(
v j,zc

)
dv j =

∫ ∞
−∞ Ψ2l

j (t,zc)dt, one
can obtain

L1,1 =
1

2 |△β |

∫ ∞

−∞
Ψ2

20 (t,zc)dt
∫ ∞

−∞
Ψ2

10 (t,zc)dt
(13)

and

L2,l =
1

2 |△β |

∫ ∞

−∞
Ψ2l

20 (t,zc)dt

×
∫ ∞
−∞ Ψ2(2−l)+2

10 (t,zc)dt.
(14)

Substituting Eqs. (13) and (14) into Eq. (12), it arrives
at

△η(c)
1 =

4
√

2/γ
|△β |

[−ε̃3η1 (zc)η2 (zc)

−2ε5η3
1 (zc)η2 (zc)− ε5η1 (zc)η3

2 (zc)].

(15)

Equation (15) describes the collision-induced ampli-
tude shift of soliton 1 in a fast two-soliton collision
described by Eq. (2). It is an extension of Eq. (11) in
Ref.18, of Eq. (10) in Ref.13 and of Eq. (11) in Ref.19

(for two-soliton collisions with cubic loss and quintic
loss). More specifically, the expression of△η(c)

1 for γ
= 2was derived in Ref.18 with cubic loss only (ε5 = 0),
in Ref.13 with quintic loss only (ε̃3 = 0) and in Ref.19

with cubic loss and quintic loss (for two-soliton colli-
sions).

B. Numerical simulations
The analytic predictions for the amplitude dynamics
of Eqs. (6) and (15) are derived based on a perturba-
tive approximation, which is valid for ε̃3□ 1, ε5□ 1
and 1/ |△β |□ 1. Therefore, it is important to carry
out the theoretical results by the simulations of the
full NLSmodel. For this purpose, we validate Eqs. (6)
and (15) by the simulations of Eqs. (3) and (2) with
varying γ , respectively, using the split-step Fourier
method with second-order accuracy 4,6. That is, the
errors for the numerically solving Eqs. (3) and (2)
are of order O

(
h3), where h = △z is a propagation

step-size. The initial conditions for the simulations
are given by Eq. (4). Additionally, we use the step

sizes in t and z as △t = 0.0588 and △z = 0.001 and
use the computational domain as −500 ≤ t ≤ 500.
We note that the predictions of Eqs. (6) and (15) were
carried out by simulations of the corresponding NLS
model with γ = 2 for cubic loss only in Ref.18 and for
quintic loss only in Ref.13.
First, we verify Eq. (6) by implementing the simula-
tions for the single-soliton propagation of Eq. (3) with
γ = 1.8, as an example, for j = 1. The other param-
eters are ε̃3 = 0.01, ε5 = 0.01,η1 (0) = 1, β1 (0) =
5, y1 (0) = −20, α1 (0) = 0 and the final propaga-
tion distance z f = 4. Figure 1 presents the initial soli-
ton profile |ψ1 (t,0)| and the evolution in z of its pro-
file |ψ1 (t,z)| for 0 < z ≤ z f . In addition, the solito
amplitude parameters η(num)

1
(
z f
)
and η(th)

1
(
z f
)
are

calculated, where η(num)
1 (z) is measured by the simu-

lation of Eq. (3), and η(th)
1 (z) is calculated from Eq.

(6). The relative error inmeasuringη1 (z)which is de-
fined by

∣∣∣η(th)
1 (z)−η(num)

1 (z)
∣∣∣/η(th)

1 (z) is less than
5.5×10−4 for 0 < z ≤ z f .

Figure 1: (Color online) The initial soliton profile
|ψ1 (t,0)| and its evolution profile |ψ1 (t,z)| for 0 <

z ≤ z f obtained by the simulation of Eq. (3) with γ =
1.8, β1 (0) = 5 and y1 (0) =−20.

Second, we demonstrate a fast two-soliton collision
by the simulation of Eq. (2) with γ = 1.8. The
other parameters are ε̃3 = 0.01, ε5 = 0.01, η1 (0) =
1, η2 (0) = 1, β1 (0) = 0, β2 (0) = 20,y1 (0) =

0, y2 (0) = −20, α1 (0) = 0, and α2 (0) = 0. Thus,
the collision distance is zc = 0.5. Figure 2 depicts the
evolution of two soliton profiles over [0, z f ] obtained
by the simulation using the contour plot, where z f =
2zc = 1. In addition, the collision-induced amplitude
shifts△η(c)(num)

1 and△η(c)(th)
1 are calculated, where

△η(c)(num)
1 is measured by the simulation of Eq. (2),

and △η(c)(th)
1 is calculated from Eq. (15). The rel-

ative error in measuring △η(c)
1 , which is defined by∣∣∣△η(c)(th)

1 −△η(c)(num)
1

∣∣∣/ ∣∣∣△η(c)(th)
1

∣∣∣, is 0.02.
2345



Science & Technology Development Journal, 25(1):2342-2353

Figure 2: (Color online) The contour plot for soliton
profiles over [0, z f = 1] in a fast two-soliton colli-
sion at the propagation distance zc = 0.5 obtained
by the simulation of Eq. (2) with γ = 1.8, β1 (0) = 0,
and β2 (0) = 20.

Finally, we study the contribution of the Kerr non-
linearity coefficient γ to △η(c)

1 and study the depen-
dence of △η(c)

1 on △β . For this purpose, we imple-
ment the simulations for Eq. (2) with varying γ as
1 ≤ γ ≤ 5 and varying△β as 10 ≤△β ≤ 60 as a con-
crete example. We use the parameters ε̃3 = 0.01, ε5 =

0.01, η1 (0) = 1, η2 (0) = 1, β1 (0) = 0, y1 (0) =
0, y2 (0) =−20, α1 (0) = 0, α2 (0) = 0 and z f = 2zc.
We observe very good agreement between the simula-
tion results and the theoretical predictions of △η(c)

1 .
In fact, the results are summarized as follows:

• For 1 ≤ γ ≤ 2.6: The relative error in measuring
△η(c)

1 is less than 0.03 for 10 ≤△β ≤ 60.

• For 2.6 < γ ≤ 3.2: The relative error in measur-
ing △η(c)

1 is less than 0.025 for 12 ≤△β ≤ 60
and less than 0.05 for 10 ≤△β < 12.

• For 3.2 < γ ≤ 4: The relative error in measuring
△η(c)

1 is less than 0.045 for 12 ≤△β ≤ 60 and
less than 0.08 for 10 ≤△β < 12.

• For 4 < γ ≤ 5: The relative error in measuring
△η(c)

1 is less than 0.03 for 15≤ γ ≤ 60, less than
0.07 for 12 ≤ △β < 15, and less than 0.11 for
10 ≤△β < 12.

Overall, the relative error in measuring △η(c)
1 is less

than 0.045 for 12 ≤△β ≤ 60, i.e., for fast collisions,
with 1 ≤ γ ≤ 4. The simulation results for△η(c)

1 are
presented in Figure 3 with △β = 10, 20, 40 for 1 ≤
γ ≤ 5.
In summary, the simulation results above validate the
theoretical predictions for△η(c)

1 in Eq. (15).

Figure 3: (Color online) The dependence of △η(c)
1

on γ for each△β . The orange-squared, blue-circled,
and red-stared stems represent△η(c)

1 measured by
the simulations of Eq. (2) with △β = 10, △β = 20,
and△β = 40, respectively.

CROSS-TALK DYNAMICS IN A
TWO-CHANNELWAVEGUIDE
SYSTEM
In this section, we establish a reduced model for the
deterministic amplitude dynamics of two soliton se-
quences with linear gain-loss, GL gain-loss profile,
and Kerr nonlinearity with the generic Kerr nonlin-
earity coefficient γ . Then, the simulations are demon-
strated. Furthermore, we look for the optimal value
γ for stabilization of the propagation of soliton se-
quences.

A. A Lotka-Volterra model for the ampli-
tude dynamics
We consider the transmission of two soliton se-
quences in thewaveguide systemdescribed by Eq. (1).
In this paper, we consider the form of ĝ j (ω) as fol-
lows:

ĝ j (ω) ={
g j, if β j (0)/2−W/2 < ω < β j (0)/2+W/2
gL, elsewhere.

(16)

In Eq. (16), g j is the constant net linear gain or
loss for the jth sequence, which is determined by
the difference between the linear amplifier gain and
linear waveguide loss, gL < 0 is the loss required
for suppressing the radiation emission, and the spec-
tral width W satisfies 1□ W ≤ △β with △β =

|β2(0)−β1(0)|. The values of gL and W are deter-
mined by simulations of Eqs. (1) and (16) such that
one can yield the longest stable propagation distance.
We emphasize that similar forms of ĝ j (ω), which
are the step gain-loss functions, have been studied in

2346



Science & Technology Development Journal, 25(1):2342-2353

Refs. 22,23. In addition, further applications of the step
gain-loss functions have been studied in Refs. 15,21.
The derivation of the LV model for deterministic am-
plitude dynamics of two soliton sequences of Eqs. (1)
and (16) is similar to the one carried out in Ref.13 for γ
= 2. It is based on the following assumptions. (1) The
temporal separation T between adjacent solitons in
each sequence is T□ 1 In addition, the amplitudes are
equal for all solitons from the same sequence, but they
cannot be equal for solitons from different sequences.
(2) Since T□ 1, the solitons in each sequence are well
separated. Thus, the intrasequence interaction is ex-
ponentially small and is neglected. (3)The two soliton
sequences circulate in a waveguide loop with△β□ 1.
(4) The gain-loss is assumed to be a weak perturba-
tion. As a result, high-order effects due to collision-
induced frequency shifts and the emission of radia-
tion are neglected.
Since the sequences of solitons are periodic, the am-
plitudes of all solitons in a given sequence undergo
the same dynamic evolution. We take into account
the single pulse amplitude shift, which is given by Eq.
(6), and the collision-induced amplitude shift, which
is given by Eq. (15). Using similar calculations for de-
riving the LVmodel in Ref.13 leads to the equation for
the amplitude dynamics of the jth soliton sequence:

dη j

dz
= η j[g j +

4ε3

3
η2

j −
16ε5

15
η4

j

+
8
√

2/γ
T

ε3ηk −
8
√

2/γ
T

ε5ηk

(
2η2

j +η2
k

)
.

(17)

In multichannel waveguide systems, it is usually de-
sired to achieve a steady state in which the amplitudes
of solitons in all sequences are equal and constant4.
Therefore, one can look for an equilibrium state of Eq.
(17) in the form η(eq)

1 = η(eq)
2 = η > 0. Setting the

right-hand sides of Eq. (17) equal to zero and letting
κ = ε3/ε5, it arrives at

g j = (18)

4ε5η
(
− κ

3 η + 4
15 η3 − 2κ

√
2/γ

T +
6
√

2/γ
T η2

)
.

Substituting Eq. (18) into Eq. (17), one can obtain a
simpler form of the LVmodel for analysis and numer-
ical simulations:

dη j

dz
= ε5η j{

4κ
3

(
η2

j −η2
)
− 16

15

(
η4

j −η4
)

+
8κ

√
2/γ

T
(ηk −η)

−
8
√

2/γ
T

[
ηk

(
2η2

j +η2
k

)
−3η2

]
}.

(19)

Equation (19) describes the amplitude dynamics of
solitons in a two-channel waveguide system with the

generic Kerr nonlinearity coefficient γ and with the
linear gain-loss and GL gain-loss profiles. For γ = 2,
Eq. (19) becomes Eq. (25) in Ref.13, Eq. (4) in Ref.14,
and Eq. (5) in Ref.16. From Eq. (19), one can see
that (η ,η) and (0,0) are the equilibrium states of the
model for any positive values of η , κ , and T .
We now investigate the predictions of the LV model
(19) for the transmission stabilization of two soliton
sequences. As a concrete example, one can choose
η = 1.We require that the equilibrium point at (1,1)
is stable so that the soliton amplitude values of the two
sequences approach 1 as the propagation distance in-
creases. Furthermore, we also require that the equi-
librium point at (0,0) is stable. This requirement is
important for suppressing radiative instability due to
the growth of small amplitude waves. In addition, by
the simulations, one can define 0.9 ≤ γ ≤ 5.4 for the
propagation stabilization of soliton sequences. From
the above requirements and noting that T□ 1, the lin-
ear stability analysis implies the following conditions
on T and κ :

2
(

2T
√γ +45

√
2
)

5
(

T
√γ +6

√
2
) < κ <

2
(

4T
√

2γ −15
)

5
(

T
√

2γ −6
) . (20)

When γ = 2, condition (20) becomes condition (27)
in Ref.13.
Overall, the LV model (19) is an extension of the one
in Ref.13, where the reduced model for deterministic
amplitude dynamics of two soliton sequences was de-
rivedwith γ =2. TheLVmodel (19)with γ =2was also
used in Refs. 14,16 for studying the robust transmission
stabilization and dynamic switching of two soliton se-
quences.

B. Numerical simulations
The derivation of the LV model (19) is based on sev-
eral simplifying assumptions. In particular, Eq. (19)
provides an approximate description for the ampli-
tude dynamics of the two soliton sequences of Eq. (1)
while neglecting the effects of the radiation emission,
pulse distortion, and intrasequence interaction. This
might breakdown the predictions of the LV model at
large propagation distances. Therefore, it is neces-
sary to carry out the predictions of the LVmodel (19)
by simulations with the full coupled-NLS model (1).
In particular, we will address the important question
about the optimal value γ for stabilization of the prop-
agation of soliton sequences described by Eq. (1).
The NLS model (1) is numerically solved by using
the split-step Fourier method with periodic boundary
conditions with second-order accuracy 4,6. The us-
age of periodic boundary conditions means that the
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simulations are implemented in a closed waveguide
loop. The initial conditions for the simulations are in
the form of two periodic sequences of 2J + 1 solitons
with amplitudes η j (0), frequencies β j (0), positions
δ j , and zero phases as follows:

ψ j (t,0) =

∑J
l=−J

η j (0)exp
[
iβ j (0)

(
t − lT −δ j

)]
cosh

[
η j (0)

(
t − lT −δ j

)] (21)

where j = 1,2.
As a concrete example, we present the simulation re-
sults with varying γ as 0.9 ≤ γ ≤ 5.4 and with pa-
rameters used in Ref.14 as T = 20, ε5 = 0.01, κ =

1.5, β1 (0) = 0 andβ2 (0) = 40.These parameters sat-
isfy Eq. (20). Additionally, we use J = 1, δ1 = 0 and
δ2 = T/2. In addition, we use the step sizes in t and z
as△t = 0.0588 and△z = 0.001 and use the compu-
tational domain as−30 ≤ t ≤ 30.The simulations are
implemented up to a distance zs, where zs is the dis-
tance at which the instability appears. More specif-
ically, we define zs as the largest distance at which
I j (z)<C, see Ref.23, where

I j (z) =

∣∣∣∣∣∣∣∣∣ψ(th)
j (t,z)

∣∣∣− ∣∣∣ψ(num)
j (t,z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣ψ(th)
j (t,z)

∣∣∣∣∣∣ , (22)

∣∣∣∣ψ j
∣∣∣∣= [∫ tmax

tmin

∣∣ψ j
∣∣2 dt

]1/2
, tmin =−tmax =−30, and

C is a constant. In practice, we useC = 0.05 and note
that this value ofC was used in Ref.23 for studying the
transmission stabilization of soliton sequences. We
also note that the predictions of Eq. (19) with γ = 2
were carried out by the simulations in Ref.13 andwere
used in Refs.14,16 for studying the transmission stabi-
lization and on-off switching of soliton sequences.
First, we illustrate the evolution of the two soliton se-
quences of Eq. (1) with ĝ j (ω) in Eq. (16). The initial
amplitude parameters are η1 (0) = η2 (0) = 1. The
profiles of two soliton sequences over

[
0, z f

]
, where

z f = 0.5, are presented in Figure 4 using the con-
tour plot. One can measure the net linear loss g j in
Eq. (16) as g1 = g2 = −0.003009 and the ampli-
tudes of soliton sequences as η1 (z) = η2 (z) = 1 for
z ∈

[
0, z f

]
.

Second, we carry out the predictions of Eq. (19) by
the simulations of Eqs. (1) and (16). The parame-
ters are η1 (0) = 1.1, η2 (0) = 0.9,γ = 1.8, ε5 = 0.01
andW = 15.We useC = 0.05 to define zs.The simu-
lation results are presented in Figure 5. Figure 5(a)
shows the dependence of η j (z) on z for z ∈ [0,zs],
where zs = 28890, while Figure 5(b) presents η j (z)
at short distances. The profiles of two soliton se-
quences

∣∣ψ j (t,z)
∣∣ are shown in Figure 5(c) at z = zs

Figure 4: (Color online) An illustration of the evo-
lution of two soliton sequences of Eqs. (1) and (16)
over

[
0, z f = 0.5

]
using the contour plot. The colli-

sions of two soliton sequences occur at the propa-
gation distances z = 0.125 and z = 0.375.

and in Figure 5(d) at z = z f with z f = 30000 > zs.

As seen in Figures 5(a) and (b), the soliton ampli-
tudes tend to the equilibrium value η = 1 with in-
creasing distance, i.e., the transmission is stable up to
the distance z = zs. One can observe the very good
agreement for η j (z) between the predictions of the
LVmodel (19) and the simulation of the coupled NLS
model (1) for 0 < z ≤ zs. In addition, as seen in Fig-
ure 5(c), the agreement for the soliton profiles ob-
tained by the simulation at z = zs and its theoretical
prediction is good, i.e., the solitons retain the shape
at z = zs. For z > zs, the transmission of solitons is
unstable. As seen in Figure 5(d), the agreement for
the soliton profiles obtained by the simulation and the
theoretical prediction is good for sequence 1 but it is
not good for sequence 2 due to the intrasequence ef-
fect. More specifically, one can observe the difference
between the simulation result and the theoretical pre-
diction for the position of the 1st soliton and of the
2nd soliton of sequence 2. Moreover, by implement-
ing the simulations with 8 ≤W ≤ 45, one can observe
very good agreement between the simulation results
and the theoretical predictions for the soliton ampli-
tudes η j (z) and for the soliton profiles

∣∣ψ j (t,z)
∣∣ for

0 < z ≤ zs. Additionally, one can obtain the optimal
valueW for the transmission stabilization of two soli-
ton sequences in the interval [10, 25]. As an example,
one obtains zs of 13880, 28890, 14070, 12870, 2070,
2080, 2100, and 2080 for W as 10, 15, 20, 25, 30, 35,
40, and 45, respectively.
Third, we validate the predictions of Eq. (19) by
the simulations of Eqs. (1) and (16) with varying γ
and with varying ε5. The parameters are η1 (0) =
1.1, η2 (0) = 0.9 and W = 15. The simulations are
implemented up to a short distance such that one can
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Figure 5: (Color online) The simulation results for Eqs. (1) and (16) with γ = 1.8, ε5 = 0.01, andW = 15. (a) Depen-
dence of η j (z) on z for 0 < z ≤ zs . (b) The magnified version of η j (z) in (a) at a short distance. The brown solid
and gray dashed curves represent η1 (z) and η2 (z), respectively, obtained by the theoretical predictions of Eq.
(19). The blue squares and red circles correspond to η1 (z) and η2 (z), respectively, measured by the simulation.
(c - d) The soliton profiles at z = zs (c) and at z = z f (d). The blue dashed and red dashed-dotted curves represent
|ψ1 (t,z)| and |ψ2 (t,z)|, respectively, obtained by the simulation. The brown solid-starred and gray solid curves
correspond to the theoretical predictions for |ψ1 (t,z)| and |ψ2 (t,z)|, respectively.

clearly observe the approach of the soliton amplitudes
η j (z) to the equilibrium value η = 1. For example,
we use z f = 1000. Figure 6 (a) depicts η1 (z) for
0< z≤ z f with ε5 = 0.01 andwith γ = 1, γ = 2.2, and γ
= 4, while Figure 6 (b) showsη1 (z) for 0< z≤ z f with
ε5 = 0.01, 0.02, 0.03, 0.05 and γ = 1.8. The soliton
amplitude η1 (z) tends to the equilibrium value η = 1
with increasing distance. Additionally, the agreement
for η1 (z) between the predictions of the LV model
(19) and the simulation results of the coupled NLS
model (1) for 0 < z ≤ z f is very good. In addition, as
seen in Figure 6(b), the approach of the soliton am-
plitude η1 (z) to η = 1 is faster as ε5 increases. This
observation is similar to the one in Ref.14 for γ= 2.
Finally, we investigate the use of the frequency de-
pendent linear-gain loss for enhancing the transmis-
sion stabilization at long distances compared to the
use of the constant gain-loss coefficients. Further-
more, we address the important question about the
optimal value γ for stabilization of the propagation
of soliton sequences described by Eq. (1). For this
purpose, we implement the simulations for Eq. (1)
with ĝ j (ω) = g j = const and with ĝ j (ω) of Eq. (16)
for varying γ as 0.9 ≤ γ ≤ 5.4. The initial amplitude

parameters are η1 (0) = 1.1 and η2 (0) = 0.9. Ad-
ditionally, we use W = 15 and W = 20. In addi-
tion, we use C = 0.05 to define zs. The simulations
are implemented up to z f > zs such that the instabil-
ity of the solitons can be clearly observed. The sim-
ulation results for zs are shown in Figure 7. The val-
ues of zs obtained by the simulations of Eq. (1) us-
ing the frequency-dependent gain-loss ĝ j (ω) in Eq.
(16) are significantly larger than those obtained by
using constant gain-loss coefficients. These observa-
tions are the same as those in Ref.23 for studying the
propagation of solitons with delayed Raman response.
Furthermore, as seen in Figure 7, the optimal value
γ for the transmission stabilization of two soliton se-
quences can be found in the interval [1.6, 2.6]. In par-
ticular, one can yield the longest stable propagation
distance for two soliton sequences with γ = 1.8. More
specifically, with W =15, one can observe that zs =
28890 for γ = 1.8 is larger than zs for other values of γ .
In addition, one can observe the profiles of the soliton
sequences at z= z f > zs in Table 1 and in Figure 8. Let
us describe the results of Table 1 as follows. For exam-
ple, the second row of Table 1 with №1 describes the
simulation results with γ ∈ [0.9, 1.6]. For these val-
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Figure 6: (Color online) Dependence of η1 (z) on z obtained by simulations of Eqs. (1) and (16) with varying γ
and varying ε5 . (a) The simulation results with ε5 = 0.01 and varying γ as γ = 1, γ = 2.2, and γ = 4. The black solid,
gray dashed, and brown dashed-dotted curves represent η1 (z) obtained by the theoretical predictions of Eq. (19)
for γ = 1, γ = 2.2, and γ = 4, respectively. The blue diamonds, red squares, and green circles correspond to η1 (z)
measured by the simulations for γ = 1, γ = 2.2, and γ = 4, respectively. (b) The simulation results with γ = 1.8 and
varying ε5 as 0.01, 0.02, 0.03, and 0.05. The black solid, gray dashed, brown dashed-dotted, and orange dotted
curves represent η1 (z) obtained by the theoretical predictions of Eq. (19) with ε5 = 0.01, 0.02, 0.03, and 0.05,
respectively. The blue diamonds, red squares, green circles, and purple triangles correspond to η1 (z)measured
by the simulations with ε5 = 0.01, 0.02, 0.03, and 0.05, respectively.

ues γ , one can observe the distortion of the bottom of
soliton sequences 1 and 2 at z = z f , while the intrase-
quence effects at z = z f are not observed. The profiles
of soliton sequences are presented in Figures 8 (a) and
(b) for γ = 1.4∈ [0.9, 1.6]. Similar results are obtained
for other values of ε5. That is, one can find that the
optimal value γ for the transmission stabilization of
two soliton sequences is in the interval [1.6, 2.6]. For
example, one can yield the longest stable propagation
distance for two soliton sequences with γ = 1.8 as zs =
17080 for ε5 = 0.02 and zs = 12590 for ε5 = 0.03.

Figure 7: (Color online) Dependence of the stable
propagation distance zs on γ obtained by the simu-
lations of Eq. (1). The value zs is defined by using Eq.
(22) andC=0.05. The yellow-stared stems represent
zs obtained by simulations with ĝ j (ω) = g j = con-
stant. The red-circled and blue squared stems cor-
respond to zs obtained by simulationswith ĝ j (ω) of
Eq. (16) forW = 20 andW = 15, respectively.

In summary, the agreement between the simulation
results and the theoretical predictions for the soliton
amplitudesη j (z) and for the soliton profiles

∣∣ψ j (t,z)
∣∣

is good for 0 < z ≤ zs. This validates the theoretical
prediction for the LV model (19).

DISCUSSION
We derived the expression for the collision-induced
amplitude dynamics in a fast collision of two sin-
gle solitons propagating in nonlinear optical waveg-
uides with the generic Kerr nonlinearity coefficient γ ,
weak cubic loss, and weak quintic loss. Our perturba-
tive technique is extended from the perturbative tech-
nique for calculating the effects of nonlinear loss on
fast collisions of flat-top solitons in Ref. 24 and on fast
collisions of two-dimensional solitons in Ref.25. The
current expression for the collision-induced ampli-
tude dynamics is a modification of the one in Ref.13,
which was derived by a different approach. Further-
more, this expression was then used to investigate the
amplitude dynamics of soliton sequences in multi-
wavelength optical communication systems. Partic-
ularly, we used the collision-induced amplitude dy-
namics above to derive the LVmodel for deterministic
amplitude dynamics of two soliton sequences in Kerr
media with the generic Kerr nonlinearity coefficient
γ , the frequency dependent linear gain-loss, and the
GL gain-loss profile. The derivation for the LV model
is similar to that in Refs.13,18. We then analyzed the
stability analysis for the steady states of the LV model
to obtain the conditions on the physical parameters
and to achieve a proper choice of the linear amplifier
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Table 1: The soliton sequence profiles at z = z f obtained by simulations of Eqs. (1) and (16) withW = 15

№1 γ The instability of the soliton profiles Figures

The distortion of solitons The intrasequence effects

1 [0.9, 1.6] Yes (for solitons 1 and 2) No 8(a, b), γ =1.4

2 (1.6, 2.6] No Yes (for soliton 2) 5(c, d), γ =1.8

3 (2.6, 2.8] Yes (for soliton 2) Yes (for soliton 1) 8(c, d), γ =2.8

4 (2.8, 3.8] Yes (for soliton 2) No 8(e, f), γ =3.2

5 (3.8, 4.2] Yes (for soliton 2) No

6 (4.2, 4.6] No Yes (for soliton 2)

7 (4.6, 5.4] Yes (for soliton 2) Yes (for soliton 2)

Figure 8: (Color online) The soliton profiles at z = z f obtained by the simulations of Eqs. (1) and (16) withW = 15
and their theoretical predictions for γ = 1.4 (a), γ = 2.8 (c), and γ = 3.2 (e). (b, d, f ) Magnified versions of graphs in
(a, c, e), respectively, for small values of

∣∣ψ j
(
t,z f

)∣∣.The symbols are the same as those in Figure 5(c) and (d).

gain-loss for the propagation stabilization of the soli-
ton sequences.
Our theoretical calculations were confirmed by nu-
merical simulations of the corresponding NLS mod-
els with varying γ . In addition, we also determined
the optimal value γ for stabilizing the propagation of
the soliton sequences of Eq. (1) and discussed the
instability of solitons at long-distance propagation.
One can expect that the current perturbationmethod,

which was used to investigate the collision-induced
amplitude dynamics of two solitons with nonlinear
loss, can be applied to study the soliton dynamics
with delayed Raman response or with other dissipa-
tive perturbations for the generic Kerr nonlinearity
coefficient in a similar manner. Furthermore, the
study for the LV model and the investigation for the
optimal value γ with the frequency dependent linear
gain-loss in the current paper can be used to study the
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on-off switching of solitons in multichannel optical
waveguide systems, which has been only explored in
several earlier works for γ = 2, such as in Refs.14,16,22.

CONCLUSIONS
In this paper, we investigated the soliton dynamics in
optical waveguides with the generic Kerr nonlinearity
coefficient γ and nonlinear gain-loss. The collision-
induced amplitude dynamics of two solitons in the
presence of weak cubic loss and weak quintic loss
are derived for the generic coefficient γ for the first
time. Furthermore, the robustness of the use of the
frequency-dependent linear gain-loss for stabilizing
the propagation of soliton sequences in the presence
of the GL gain loss profile with the generic coefficient
γ was studied. In addition, the optimal value of the
Kerr nonlinearity coefficient for the propagation sta-
bilization of soliton sequences in the broadband opti-
cal waveguide system with a GL gain-loss profile was
addressed.
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